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REPRESENTATION OF COMPACT AND WEAKLY
COMPACT OPERATORS ON THE SPACE OF
BOCHNER INTEGRABLE FUNCTIONS

KEVIN T. ANDREWS

If X* has the Radon-Nikodym property, then for every
compact operator 7: L,(¢, X) —»Y there is a bounded function
g: 92— L(X,Y) that is measurable for the uniform operator
topology on L(X, Y) such that

T(f) = nggdy

for all /' in L,(#, X). The same result holds for weakly
compact operators if X* is separable Schur space. These
representations yield Radon-Nikodym theorems for operator
valued measures and a generalization of a theorem of D. R.
Lewis.

The representation of linear operators on the Banach space
L,(¢, X) of Bochner integrable functions, has been the object of much
study for the past forty years. Dunford and Pettis began this
investigation in 1940 [6] with the representation of weakly compact
and norm compact operators on L,(¢) by a Bochner integral. Their
work was based on an earlier paper of Pettis [9] and was comple-
mented by the work of Phillips [11]. More recently, the theory of
liftings has been used by Dinculeanu [5] and others to obtain a
representation for the general linear operator on L,(¢, X). In this
paper we will use methods in the spirit of Dunford, Pettis, and
Phillips to show that if X* has the Radon-Nikodym property, then
the compact operators on L,(¢, X) are representable by measurable
kernels and if X* is a separable Schur space (i.e., weakly convergent
sequences converge in norm) then the weakly compact operators on
L(p¢, X) are representable by measurable kernels. As corollaries,
we obtain a Radon-Nikodym theorem for operator-valued measures
and a generalization of a theorem of D. R. Lewis [4, p. 88] on
weakly measurable functions that are equivalent to norm measurable
functions.

Throughout this paper (2, 3, £) is a finite measure space and
X, Y and Z are Banach spaces with duals X* Y*, and Z* respec-
tively. The space of all bounded linear operators from X to Y will
be denoted by L(X, Y). The subspaces of L(X, Y) consisting of all
the weakly compact and norm compact operators from X to Y will
be denoted by W(X, Y) and K(X, Y). The space L,y X) is the
space of (-Bochner integrable functions on 2 with values in X and
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Lo(¢t, X) is the space of X-valued p-Bochner integrable functions on
£ that are essentially bounded. An operator T:L,(¢, X)—Y is
representable by a measurable kernel if there is a bounded measurable
9: 2 — L(X, Y) such that

T(f) = Bochner — L Fodp .

From this, it follows shat ||T|| = ||g|l~ [5, p. 283]. Recall that a
Banach space is weakly compactly generated if it is the closed linear
span of one of its weakly compact sets. Finally, note that if = is
a partition of 2 into a countable number of disjoint elements of X
and if f is in L,(g, X), then the function E.: L(z¢, X)— L(¢, X)
defined by

TR ELy
() = B

(here the convention 0/0 = 0 is observed) is a linear operator.
Most of the first lemma is well-known so we omit the proof.

LEMMA 1. For each countable partition w, the operator E. is a
contraction on L,(¢, X) and L.(¢, X). Moreover, if the partitions
are directed by refinement, then

lim [[E(f) — fll, =0  for all f in Ly, X)
lim [[E(f) = fll. =0  for all f in Lu.(tt, X) .

Before stating the main theorem we require a preliminary de-
finition. A function g in L.(g, L(X, Y)) is said to have its essential
range in the wuniformly (weakly) compact operators if there is a
(weakly) compact set C in Y such that g(w)x € C for almost all @ in
Q and z in X with ||[z]| < 1.

THEOREM 2. Let X* have the Radon-Nikodym property. Then
there is an isometric isomorphism between the space of compact
operators K(L,(¢, X), Y) and the subpace of L..(¢t, K(X, Y)) consisting
of theose functions whose essential range is in the uniformly compact
operators. In fact, T in K(L(¢, X), Y) and g in L.(t, K(X, Y))
are in correspondence if and only if

(/) =\ fodp  for all £ in Ly, X).

Proof. Let T be in K(L(#¢, X), Y). Notice that for any par-
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tition 7, f in L,(¢, X), and g in L.(#¢, X*) = (L,(¢, X))*, we have that
| B-rgdp = | 7B
2 Q2

It follows from this that the adjoint of TE, is E.T*. Now, if the
partitions 7 are countable, we have that

lim B.f = f for all f in L.(¢, X*)

by Lemma 1. Since ||E:|l- =1, this limit is uniform on compact
sets. By Schauder’s theorem, T*:Y* — L.(¢, X*) is compact and so

ligl E.T*y* = Ty*
uniformly for ||y*|| = 1. Therefore,
lizm E.T*=T*
in the operator norm. Since E.T* = (TE,)*, it follows that
hqm TE.=T

in operator norm.
Now, for each countable partition z, define ¢.: 2 — L(X, Y) by

A T@X )y (.
g:(")x = AZGJK———#A Xa(e) .
Then for each partition 7, ® in 2, and z in X with |[z|] < 1, we have
that g.(@)x & T{f: f in Ly, X), ||f]l. = 1}. Since T is compact, it

follows that g.(®) is in K(X, Y) for each partition 7 and @ in 2.
Moreover, one easily sees that

TEAf) = | foudn

for all simple functions f in L,(¢, X) and thus for all functions f
in L(¢, X). Hence if 7, and &, are two partitions, then

(TE., — TE)(f) = | f(g:, — 9:)ape .
Since

lim || TE., — TE. || =0,
T1,7y

an appeal to [5, p. 283] establishes that
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lim||gs, — gs,|lw = lim | TE, — TE. || = 0.
Ty, gy

Thus the net (g.) is Cauchy in the norm of L.(#, K(X, Y)). It follows
that there is a ¢ in L.(¢, K(X, Y)) such that

lim || g; — gl =0
and so
lim ng g-ap = ng gdp
for all f in L,(¢, X). We also have, for almost all w, that
gw)x & T{f: feL(y, X), || fll =1}

for all  in X with ||«]| = 1. Hence the essential range of ¢ consists
of uniformly compact operators. Finally, Lemma 1 ensures that

T(f) = lim TE(f) = lim | foudpe = | fodu.
Conversely, suppose that ¢g: 2 — K(X, Y) is a bounded measurable
function such that there is a compact set CCY with g(w)x in C for

almost all w in 2 and all z in X with ||z]] < 1. Without loss of
generality, we may assume g(w)x is in C for all @ in 2. Define

7(5) = | fodu

for feL,(¢, X). Another appeal to [5, p. 283] shows || T[] = ||g]|»-
Let

f= éxixb‘,,'
be a simple function in L,(#¢, X) with ||f]| =1 i.e.,
;:_.‘1 [l || el = 1.

Then

7(5) = | grde = 3| g@wdpo)

=1

3 L 2
= 3 ladluB Lﬂ“")nxind’“‘

is in coC by [4, p. 48]. Since co C is compact by Mazur’s theorem,
the operator T is compact. This completes the proof.
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That X* has the Radon-Nikodym property is necessary as well
as sufficient for the first part of the above proof. Indeed, if each
T in K(L,(p, X), Y) is representable by a Bochner integrable ¢ in
L.(¢t, K(X, Y)), then taking Y to be the scalars shows that L (¢, X)* =
L. (¢, X*) which implies [4, p. 98] that X* has the RNP. An
immediate consequence of Theorem 2 is a Radon-Nikodym theorem
for certain operator valued measures.

COROLLARY 3. Let X* have the RNP and let G: ¥ — K(X, Y) be
a p-continuous vector measure of bounded wvariation. If, for each
E, in X with pE, >0, there exists E, in X with E,S E, and
1(E) > 0 such that

{G___,E(Eg)x; veX, Ee3, ES B, pE) >0, ||z] = 1}

1s relatively morm compact, then there exists a Bochmner imtegrable
g: 2 — K(X, Y) such that

GE) = Sngp
Jfor each E in X.

Proof. By exhaustion [4, p. 70], the corollary is established if
for each K, in ¥ with p#(#)) > 0 we can find E, in ¥ with E, S E,
and #E, > 0 and a Bochner integrable g such that

G(E) = | gar
for all E in ¥ with £ < E,. So let E, €Y with (&) > 0 and select
the K, € E, guaranteed by the hypothesis. Define an operator 7T on
the simple funections in L,(#, X) by
T(f) = X GANEw, it f=3al,4, in 5 AN0N4=¢

if 7 = 5. Notice that if ||f|| =1

g‘i o || pA; = 1,
then

> [l 4,0 B) < 1

and so



262 KEVIN T. ANDREWS

G(A; N By

i A't EZ -
iS in
¢ { ( ) : X’EEZ’E-——:ED#(E)>O, H(X)”Sl},
#E =

a set which is compact by Mazur’s theorem. Thus T has a compact
linear extension to all of L,(#, X). Hence, by Theorem 2, there
exists a Bochner integrable g: 2 — K(X, Y) such that

7(5) = | foar
for all feL/(y, X). In particular, if E is in ¥ and K < E,, then
G(BE)x = T(aky) = Sngd;z :
Since g is Bochner integrable, we have, by [4, p. 47], that

G(E) = | gdn

as required.

Our next result is a generalization of a theorem of D. R. Lewis
[4, p. 88] dealing with the equivalence of weakly measurable and
measurable functions. The proof uses the following result of Amir
and Lindenstrauss [1, p. 43]: If X is a weakly compactly generated
space and X, S X and Y, & X* are separable subspaces, then there
is a bounded projection P: X — X with separable range such that
X, € P(X) and Y, & P*(X™).

PROPOSITION 4. Let X* and Y be weakly compactly generated
Bamnach spaces. If f: 2 — K(X, Y) s a bounded function such that
for each y* im Y* the function y*f(-): 2 — X* is measurable, then
there is a bounded measurable function g: 2 — K(X, Y) such that for
each y* in Y*, y*f(-) = y*g(-)p-a.e., (the exceptional set may depend
on y*).

Proof. We claim that the set A = {y*f(-):y*e Y* ||ly*|| =1} is
compact in L,(#¢, X*). If not, then there is a sequence y} in the
unit ball of Y* and 6 > 0 such that

Ny f () — ynf Oz >0

for m = n. Choose a bounded projection P:Y —Y with separable
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range such that Py} = y for all n. Since each y}f(:): 2 — X* is
measurable and hence essentially separably valued, there is a bounded
projection P,: X* — X* with separable range and sets 2, in ¥ with
pH\R,) = 0 and y*f(2,) S P(X*) for every n. Now, since each f(w)
is a compact operator we have, for all 2** in X**, that f(w)**x**
is in the natural image of Y in Y** and so we may define h: Q2 —
K(X**, Y) by h(w)z** = P,f(w)**PFz**. We claim that for each 2**
in X**, the function A(-)x**: 2 —»Y is measurable. To see this, note
that since P, has separable range, the functions A(:)x** are separably
valued and since

y*h(.)x** — ,y*Plf(')x*Pz*x** — x**sz(')*Pl*yk

and each f(-)Py*: 2 — X* is measurable, the functions A(-)x** are
weakly measurable. An appeal to the Pettis measurability theorem
[4, p. 42] establishes the measurability of A(-)z**. Now if Y, is the
Banach space obtained by taking the closed linear span of P,Y in Y,
then Y, is separable and % can be viewed as taking its values in
K(X** Y,). Moreover, if we define S:Y—Y, by Sy = Py, then
h(w)x** = SP.f(w)**PFx**. Thus, if yf is in Y., then h(w)*ys =
Py* f(w)**P*S*ys is in P,X*, since the range of f(®)*** is in X*
and P;* extends P,. Let Z = P,X* and B={T:T in K(X** Y,),
T*Y#*c Z}. We claim that B is separable. To see this, let U and
V denote the closed unit balls of Z* and Y,* endowed with the weak*
topologies. Since Y, and Z are separable, U and V are compact metric
spaces, and thus, so is U x V. For each T in B, define a function
JT on U XV by JT(u, v) = uT*v. Then the map T — JT is a linear
isometry of B into C(U x V) [8] and so, by [7, p. 437], B is separable.
Since the values of h in K(X**, Y,)lie in B and || M(®,) — M(®,)||zxev) =
| (@) — (@) ]| xery for all ®, ®,in 2, the values of 4 in K(X**, Y)
form a separable set. Now because Ai(-)x** is measurable for each
x** in X**, an appeal to [5, p. 102] establishes that 2 is measurable.
Since & is bounded, k is Bochner integrable and so we may choose
a sequence h, of K(X** Y)-valued simple functions such that

1im§ b — h,|lde =0 .

n 2

Define operators S, and S from L.(#, X**) to Y by
Su(@) = | ghde and S(g) = | ghdp

for g in L.(t¢, X**). Since each h, takes on only a finite number
of values, each S, is a compact operator. Moreover, we have that

1S = S)@il = | gl 15—kl de < gl | IR — haldp
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for all ¢ in L.(g, X**). It follows immediately that the operator S
is compact. The adjoint of S is the operator y* — y*h(-) and hence
by Schauder’s theorem is also compact. But y}h(-)=v}f(-) a.e. This
contradicts

lysf() — y:»f() “Ll(ﬂ,X*) >0

for m #= m and establishes that the set A is compact.

Now choose y¥ in Y* such that y*(-) is dense in 4. If h is
constructed as above for this sequence (y}), then h is measurable
and so, by Egoroff’s theorem, for all 6 > 0 there is a set EF in ¥
with p(Q\F) < 6 such that hX; can be approximated uniformly by
simple functions. Fix 6 > 0 and choose such a set E. It follows
that the sequence y} f(-)Xz= y}h(- )Xz is relatively compact in L.(¢, X*).
Since this sequence is L«(tf, X*)-dense in {y*f(-),,: [|¥*|| =1}, this
set is relatively compact in L.(y¢, X*).

Now define T:Y* — L.(¢t, X*) by Ty* = y*f(-),,- Then T is
compact and as an operator on L (¢, X), T*: L,(¢, X)— Y ** is compact.
Notice that the dominated convergence theorem ensures that T is w*
to w* sequentially continuous. Thus, if y** is in T*(L,(¢, X)), then
y** is a weak* sequentially continuous functional on Y*. But since
Y is weakly compactly generated, this means y** is a w* continuous
functional on Y* [3, p. 148]. Hence, T*(L,(#, X)) is contained in Y.
Theorem 2 now produces a Bochner integrable ¢g: ¥ — K(X, Y) such
that

T*(k) = SEkgd;z

for all ¥ in L,(g¢, X). But, if y* is in Y*, then T**y* = y*g. It
follows that y*g = y*f a.e. on K. Since p(Q\E) < §, this completes
the proof.

Theorem 2 does not hold for weakly compact operators. To see
this, let 2 be the unit interval endowed with Lebesgue measure and
let 7,(-) be the nth Rademacher funection i.e., 7,(®) = signum(sin 2"z w).
Consider the function g: [0, 1] — L(4, 4) defined by g(w)(a,) = (r.(@)a,)
for all (a,) € 4. The function g is not essentially separably valued,
since if ®, and ®, are different numbers in [0, 1] there exists a
Rademacher function », with |7,(®,) — 7,(w.) | = 2 and hence, || g(®,) —
9(@)lipey = 2. Thus, g is not measurable. Define an operator

T: L1(#9 4) — 4 by
() = | fodr

and note that T is weakly compact. If T were representable by a
kernel, then that kernel would be equal to g a.e. and so g would be
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measurable, which is a contradiction. However, we can use Proposi-
tion 4 to obtain a representation theorem for weakly compact
operators by imposing further conditions on X*.

THEOREM 5. Let X* be a separable Schur space. Then there is
an tisometric isomorphism between the space of weakly compact
operators W(L,(¢t, X), Y) and the subspace of L.(tt, W(X, Y)) consisting
of those functions whose essential range ts in the uniformly weakly
compact operators. In fact, T in W(L,(t, X, Y)) and g in L.(t,
WX, Y)) are in correspondence if, and only if,

7(5) = | roar
for all f in Ly, X).

Proof. Let T be in W(L,(¢, X), Y). By the Factorization Lemma
[2, p. 314], there is a reflexive space R and operators S: L,(¢, X) —
R and J: R —Y such that T'=JS. Suppose S is representable by a
measurable kernel h: 2 — L(X, R). Then T is representable by the
measurable kernel ¢: 2 — L(X, Y) given by g(w)x = Ji(w)x for all
2 in X and @ in 2. Hence, without loss of generality, we may
assume that Y is reflexive.

Let G: ¥ — L(X, Y) be the representing measure of T i.e.,

(i) GE)x = TX;) for all x in X and E in ¥

(i) T(f) = §, fdG for all f in Lz, X) and
|GE) |

(iii) IITH=§}}>IJ0 WE

An appeal to [10, p. 845] produces a bounded function g: 2 —
L(X, Y) such that

(1) g(-)x: 2 —Y is Bochner integrable for all x in X and

(2) GEHYx = S g(@)xd(w) for all x in X and E in 2.

It follows quickfy from the density of simple functions in L,(y¢, X)
that

75 =\ grde

for all f in L,(#, X). Consider, for each y* in Y*, the functions
y*g(-): 2 — X*. Since these functions are separably valued and
weak* measurable, they are measurable by [4, p. 42]. Now L(X, Y)=
K(X, Y), since X* is a Schur space and Y is reflexive. Consequently,
Proposition 4 now produces a bounded measurable h: 2 — K(X, Y)
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such that, for each y* in Y*, y*g(-) = y*h(-)pt-a.e. Thus, for all y*
in Y* and f in L,(#, X) we have that

(y*, 9(o)f(w))d(w)

]

s, Ty = |
= |, " h@F@)dp
=Y

Q

(1)

and so
7(f) = | hrdp.

It follows easily that
kw)x = T{f: f in L(#, X), || fll. = 1}

for almost all @ in 2 and all # in X with |[[x]| < 1. Hence, the
essential range of h consists of uniformly Weakly compact operators.
The converse is proved in the same way as in Theorem 2'so we
omit the proof. -
Our final result follows from Theorem 5 in the same way that
Corollary 3 follows from Theorem 2 so the proof is omitted.

COROLLARY 6. Let X* be a separable Schur space and let G: 3 —
K(X;Y) be a p-continuous vector measure of bounded variation. If,
for each E, in 3 with ptE, > 0, there exists an E, in X with E, < E,
and p(E,) > 0 such that

{G(E)x x i X, K in 3, EC B, tE >0, l|x|l<1}

1s relatively weakly compact, then there exists a Bochner integrable
g: 2 — K(X, Y) such that

(B = | gan
Jor each E in 2.
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