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SEQUENCINGS AND HOWELL DESIGNS

B. A. ANDERSON AND P. A. LEONARD

We show that if p is a prime, p>5, the cyclic group Z2p

has a strong symmetric sequencing. It follows that if p is any
prime, there is a Howell design of type H*(2p, 2p+2).

l Introduction* Suppose X is a set such that \X\ = 2n. A
Howell design on X of type H(s, 2n) consists of a square array of
side s such that (1) each cell is either empty or contains an
unordered pair of elements taken from X, (2) each element of X
appears exactly once in each row and each column of the array
and (3) every unordered pair appears at most once in a cell of the
array. It is easy to see that existence requires n ^ s ^ 2n — 1.
If YdX such that | Y\ = 2n — s and no pair of elements of Y
occupy a cell of the design of type H(s, 2n), we will denote this
fact notationally by writing H*(s, 2n).

For information concerning the existence of Howell designs,
see [2, 3, 4, 5, 6, 9]. Howell designs of type H*(2n — 1, 2ri) are
often called Room Squares. Room Squares are now known to exist
for all n except n = 2, 3 [10]. In this paper we deal with the
existence question for designs of type H*(2n — 2,2ri), or equi-
valently, of type if *(2m, 2m + 2).

It is not difficult [9] to show that there is no design of type
if*(2, 4). However, it now seems certain that this is the only
case in which a design of type if*(2m, 2m + 2) fails to exist.
Indeed, in [4] the existence question for these types of designs is
reduced to the following.

(A) Are there designs of type if*(2p, 2p + 2), p prime?
(B) Are there designs of type if *(6p, 6p + 2), p prime?
(C) Are there designs of type H*(24,26), if *(48, 50) and

if *(54, 56)?
In this paper, we give an affirmative answer to (A).

Our argument for settling (A) depends upon the following
ideas. Suppose G is a finite group of order n with identity e. A
sequencing of G is an ordering e, a2, , an of all the elements of
G such that the partial products e, ea2, ea2az, , ea2- -an are distinct
and hence comprise all of G. Gordon [8] characterized sequenceable
Abelian groups as those Abelian groups with a unique element of
order 2.

DEFINITION 1. Suppose G is a group of order 2n with identity
e and unique element g* of order 2. A sequencing e, a2, "*,a2n
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will be called a symmetric sequencing iff αn + 1 = g* and for 1 <̂  % <^

^ 1, Q>n+ι+i = ( # % + l - i )

If βf* is the unique element of order 2 in G, then g* is in the
center of G. Thus, symmetric sequencings

S: e,a2, , αΛ, 0*, α;1, , α3~
1, o^1

have the associated partial product sequence

P: eyb2y , 6%, 6^*, bn_γg*:, , δ2g*, #* .

There is a natural way [1] to use P to partition G into 2-element
sets. The element that is paired with e in this partition is denoted
m; m is bn if n is even and bn+1 otherwise. Since we will consider
the cyclic groups Z2p, p ^ 3, p prime, m will always denote bp+1 in
this paper. The remaining partition elements coming from P form
what is called a (left) even starter and m is the nonidentity ele-
ment of G "missing" from the pairs of the starter.

DEFINITION 2. Suppose G is an Abelian group of order 2n and
S is a symmetric sequencing of G. S is strong iff in the associated
partial product sequence P

( i ) . 1 <^ i < j tS* n — 1 implies δi&i+1 =£ ί>A+i a n ( i
(ii) 1 <̂  i <; w — 1 implies bj)i+1 g {β, m2}.
The sequencings of Gordon are symmetric but not strong [1],

It is known [1] that a strong symmetric sequencing on an Abelian
group of order 2n will induce a Howell Design of type H*(2n, 2nJ

Γ2).
Thus, since [3, 9] give designs of type iϊ*(4, 6) and iϊ*(6, 8), in
order to show that designs of all types H*(2p, 2p + 2) exist (p
prime), it will suffice to show that when p ^ 5, p prime, Z2p has a
strong symmetric sequencing. This will be done in the next section.
We note in passing that apparently the only other known family
of strong symmetric sequencings occurs on the cyclic groups Zp_19

when p > 3 is prime and p = 5 or p = ± 3 , ±13 (mod 40) [3].

2Φ The construction* Suppose p ^ 3 is a prime, Z2p is the
additive cyclic group of order 2p and x = 2y e Z2p. Note that since
x is even, the subgroup (x) generated by x has p elements. Our
candidate for a strong symmetric sequencing of Z2p is defined as
follows.

- l)a(mod 2p); 1 ^ i ^ (p

S: α4 = 2(ΐ - 1) - p; (p + 3)/2 ^ i ^ (8p

.(i - l)aj(mod 2p); (3p + 3)/2 ^ i ^ 2p .

With this definition it is easy to compute the corresponding partial
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sum sequence (note again that things are written additively in this
section). The notation βx will be used for b{p+v/2 = [(p2 — ΐ)/S\x and,
as mentioned previously, since p is odd, mx = bp+1.

ja(mod 2p); 1 £ i ^ (p

(i - 1)1 + p ^ m o d 2p); (3p + 3)/2 ^ i ^ 2p .

Although S is not always a strong symmetric sequencing, it is
not difficult to show that S and P do always have many of the
properties required. Before delineating these properties, we give
two examples to facilitate understanding. In each case S is the
sequence of α/s and P is the sequence of δ/s. The elements βx

and mx are starred in each case, G contains the set mentioned in
Definition 2(i) and the underlining will be explained shortly.

EXAMPLE 1. p = 11, x = 6, arithmetic mod 22.

S: 0, 6, 12, 18, 2, 8, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 14, 20, 4, 10, 16

P: 0, 6, 18, 14, 16, £ f 3, 6, 11, 18, 5, 16f , 7, 0, 17, 14, 13, 5, 3, 7, 17, 11 = p.

C: 6 2 10 8 18 5 9 17 7 1 21

EXAMPLE 2. p = 13, cc = 4, arithmetic mod 26.

S: 0, 4, 8, 12, 16, 20, 24, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 6, 10, 14, 18, 22

P' 0, 4, 12, 24, 14, 8, 6̂ , 7, 10, 15, 22, 5, 16, 3*, 18, 9, 2, 23, 20, 19, 21, 1, 11, 25, 17, 13 = 2)

C: 4 16 10 12 22 14 13 17 25 11 1 21 19

THEOREM 1. Suppose p ^ 3 is a prime, x = 2y e Z2p and S
and P are as defined above. Then

( i ) {at: 1 ^ i <Ξ 2p} — Z2p {we will write this as S = Z2p);
(ii) a1 = b1 = 0f ap+1 = b2p = p;
(iii) 1 <L k ^ p — 1 implies ap+1+k = — (αp+1_ f t);
(iv) 1 ^ i ^ 2p implies bό Λ- p = 62p_(i_1);
( v ) 2<; i<j>* <;#> + ! implies bt^ + bt Φ bά_γ + 6,- (mod
(vi) 2 ^ i <= p + 1 implies δ^j. + δ̂  ̂  0 (mod

Proof. The verification of statements (i) through (iv) is straight-
forward. Note that (v) and (vi) are slightly stronger statements
than appear in Definition 2, although one part of that definition is
not covered by these statements. We proceed with the proof of
(v). For 2 ^ i ^ p, let
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f(ΐ - l)2x(mod 2p); 2 ^ ΐ ^ (p

It is easy to see that if 2 <; i ^ (p + l)/2, then c« is even while
the remaining c4's are odd. Thus it will suffice to show that there
is no duplication in either half above.

Suppose 2 <; i < j ^ (p + l)/2. Then

(i - Ifx = (j - l)Mmod 2p)
iff [(ΐ - I)2 - (i - I)2]?/ = 0(mod p)

iff either i = ^(mod p) or i + j1 = 2(mod p) .

Since neither of these conditions is possible, the even c/s are
distinct.

Similarly, the other half reduces to showing that if 0 ̂  i < j <̂
(p - l)/2, then

i2 + (i + I)2 ^ [i2 + (i + I)2] (mod 2p) .

If we assume the contrary, then there are i and j within the
specified limits such that

i2 + (i + I)2 = [j2 + (i + I)2] (mod 2p)
iff ί(i + 1) = i(i + 1) (mod p) .

Let j = i + k and the above reduces to

either fc = 0(mod p) or 2ί + & + 1 = 0(mod p) .

But since fc ^ (p — l)/2 — i it follows that 2i + k + l^p— 1 and
(v) is verified.

Finally, in order to show (vi), it suffices to show that 2 ^ i ^
(p + l)/2 implies Ci ̂  0(mod 2p) since the other c/s in the given
range are odd numbers. But if 2 <; i ^ (p + l)/2,

cέ = (ί — l)2x(mod 2p) .

Thus

Ct = 0(mod 2p)

iff (ΐ - I)2?/ Ξ 0(mod p)

iff (i - I)2 = 0(mod p) ,

and this is clearly false.
Note that in the two given examples, the rows labelled C show

the c/s in each case.
Now, it is clear from Theorem 1 that if S is a sequencing, it
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is symmetric and that it has several of the properties of strong
symmetric sequencings. Thus, we would like to answer two ques-
tions. First, when is it the case that S is a sequencing? Clearly
S will be a sequencing precisely when {b^ 1 ^ i ^ 2p) — Z2p; that
is, when P = Z2p. The next result will show exactly when this
happens. Second, when is it true that 2 m ^ ci(mod2p), 2 <̂  i^p +
1? We are also able to settle this point. Certainly if we can
choose x so that P — Z2P and 2m misses all the c/s, we will have a
strong symmetric sequencing.

Let N = {1, 2, • , 2p), let Q = {{j, 2p - (j - 1)}: 1 ^ j ^ p} and
suppose 7 is a set with exactly p elements such that every member
of Q has exactly one element in V. If x = 2y e i?2ί> is given such
that {&/. r e 7 } = <x>, then by Theorem 1 (iv) {bt: teN\V} = <ίc> +
p, and in such a case, P = Z2p.

DEFINITION 3. Suppose D = {1, 2, ••-,(# + l)/2} and # = {(p +
l)/2 + 2k: l^k^(p~ l)/2}. Then let V = DDE.

It is easy to see that V contains exactly one element of each
member of Q. In Examples 1 and 2, the underlined elements in P
are {br: r e V}.

DEFINITION 4. Suppose x = 2y e Z2p and S and P are constructed
as usual. Then

Σ* = {(0 + 1 + + ίMmod 2p): 0 ^ i ^ (p - l)/2}

and

^ = {[β* + (2&)2](mod 2p): 1 S k ^ (p - l)/2} .

Note that Σ , U TFX - {δr: r e F} and Σ . U Wa c <α;>.

THEOREM 2. // x = 27/eZ22,, ίfcew |Σ*I = (P + l)/2 <x̂ rf IW Î =

Proof, An argument very much like that used in the second
half of Theorem l(v) shows that | Σx \ = (p + l)/2 and it is straight-
forward to see that | Wx \ = (p — l)/2.

Thus, P = Z2p exactly when Σ^ Π Wx = ^. In the following
result we use the Legendre symbol (α|p).

THEOREM 3. Suppose p^Z is a prime, x — 2y e Z2P and S and
P are defined as usual. Then

( 1 ) (y I p) — — 1 iff Σ * U Wx = (x> iff S is α symmetric sequenc-
ing,
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(2) (y\p) = l iff Σ.\{&}= W..

Proof. Notice first that YkXΓ\WxΦφ is equivalent to saying
that there exist ί, 0 <£ i <; (p — l)/2 and fc, 1 ̂  fc <̂  (p — l)/2 such
that

[(p2 - l)/8]2y + 4fc2 = [i(i + l)/2]2i/(mod 2p) .

This is equivalent to

( * ) IQV = (2£ + iγy(moά p) .

In this form it is clear that since 16 ¥ & 0(mod p) for any k in the
allowed range, i Φ (p — l)/2.

It is now very easy to prove (1). If (y\p) — — 1 then (*) fails
to hold so that Σ* Π WX = φ and hence Σ* U Wx = (x). Conversely,
if Σ*U Wx = <£>, then the cardinalities force Σ« Π Wβ = ̂ . If
(y\p) = 1, then any permissible choice of £ would allow the solution
of (*) for a permissible k. Thus (y\p) = —1. It is apparent that
Σ* U Wx = <ίc> is equivalent to S being a symmetric sequencing.

Now suppose (y\p) = 1. As above, given a permissible i, there
is a unique permissible k such that (*) holds. Since different values
of i lead to different values of k, one solution to (*) implies (p —
l)/2 solutions. Since i — (p — l)/2 has been eliminated from con-
sideration, it follows that ΣΛί/3*} = W*. Conversely, if Wx —
ΣΛ(/3χ}, then Σ , Π Wx Φ φ so that by (*) and the properties of the
Legendre symbol, (y\p) = 1.

It is clear from Theorem 3 that if p ^ 3 is a prime, we can
choose x = 2y such that S is a symmetric sequencing. In fact, it
is not much harder to insure that S is a strong symmetric sequenc-
ing. In what follows, let

C = {&,_! + 6,: 2 ̂  ί ^ p + 1} = {c,: 2 ̂  ΐ ^ p + 1} .

THEOREM 4. Suppose p ^>3 is a prime, x = 2y e Z2P and S and
P are constructed as usual. The following statements holds.

(1) If p = I(mod4), then 2m$C iff (y\p) Φ (y - l\p).
(2) If p ΞΞ 3(mod4), then 2m$C iff (y\p) = (y - l\p).

Proof. Certainly 2m is even so that we need only concern
ourselves with {c€: 2 <; i ^ (p + l)/2}. Thus 2meC iff there is an
i, 2 ̂  i ^ (p + l)/2 such that

+ [(p + l)2]/2)(mod2p) .

This is equivalent to each of the congruences
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(i - ΐfy = ([(p2 - l)/4]» + [(p + l)2]/4)(modp)

and

4(i - 1)V = (-l)fo - l)(modp) .

Since the limits on i allow (i — I)2 and hence 4(i — I)2 to be any
quadratic residue, 2m eC iff (y\p) = ( — l\p)(y — l\p) and the result
follows immediately.

THEOREM 5. Suppose p ^ 3 is a prime, x — 2y e Z2P and S and
P are constructed as usual. The following statements hold.

(1) If p Ξ I(mod4), then S is a strong symmetric sequencing
iff (y\p) = — 1 and (y — l\p) = 1.

(2) If p ΞΞ 3(mod 4), then S is a strong symmetric sequencing
iff (y\p) = - 1 and (y - l\p) = - 1 .

Proof. This is clear from Theorems 3 and 4.

THEOREM 6. If p ^ 5 is a prime, then Z2P has a strong sym-
metric sequencing.

Proof. This follows immediately from Theorem 5 and facts
about consecutive quadratic residues (e.g., see [7, p. 132]).

If p = 3, then our process gives a symmetric sequencing of ZQ

but it fails to be strong.
We conclude by applying the methods of this paper to the

construction of a Ho well Design of type iϊ*(14, 16). Let p — 7 and
2y = x = 12. Then p ΞΞ 3(mod4) and (y - l\p) = (y\p) = —1. Thus
JS is a strong symmetric sequencing.

S: 0, 12, 10, 8, 1, 3, 5, 7, 9, 11, 13, 6, 4, 2

P: 0, 12, 8, 2, 3, 6, 11, 4, 13, 10, 9, 1, 5, 7 - p

C: 12 6 10 5 9 3 1

Now the results of [1] tell us that

E = {{12, 8}, {2, 3}, {6, 11}, {13, 10}, {9, 1}, {5, 7}}

is a "strong even starter" on Zu and that if a and β are ideal
elements added to Zu,

a, 0 6, 11 — 2, 3 12, 8 — β, 4 13, 10 9, 1 — 5, 7 —

is the first row of a starter-adder defined iϊ*(14, 16).

Added in proof. P. J. Schellenberg and S. A. Vanstone have
shown, in a paper to appear in the Proc. Eleventh S.E. Conf. on
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Combinatorics, Graph Theory and Computing, that the design types
mentioned in (B) and (C) exist.
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