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THE ASYMMETRIC PRODUCT OF THREE
HOMOGENEOUS LINEAR FORMS

A. C. WOODS

Let Lt = ΣUi^ij^jf ΐ = l, 2,3, be three linear forms in
the variables xu x2, x3 with real coefficients atj. A theorem
of Davenport asserts that, if | det (aί3) | = 7, then there exist
integers ulf u2, u3, not all zero, such that

π
ΐ = l

< 1 .

Under the same hypothesis, W. H. Adams has asked
whether, given a positive real number u, there exist integers
ul9 u2, uz, not all zero, such that

—vr 1 ^ Li(Ui, u2f u3)L2(ulf u2, us) I L3(ult u2, u3)\ ^u .

Our objective is to prove this conjecture.

Davenport gave several proofs of his theorem [3], and other
proofs have been given by Chalk and Rogers [2] and Mordell [8].
Isolation results, notably those of Davenport [6] and Swinnerton-
Dyer [10], show that Adams conjecture is true for real u in some
open interval containing 1.

The set of points (Llf L2, L3) in j?3, formed as the variables
range over all integral values, is a lattice A of determinant d(Λ) =
|det (<%)!. In terms of A, our result is as follows.

THEOREM. If d(A) — 7, then there exists a point (xu x2, x3) of A,
other than the origin, such that

with the equality sign being necessary only if u = 1.

The method of proof is the protective one due to Davenport [3].

We begin with three lemmas.

LEMMA 1. If x, y, z, t are real numbers with 1 < t2 <£ 1.9, such

that the inequality

(1) -t2 < (n + x)(n + y)\n + z\<l

is not solvable in integers n, then

( 2 ) φ = (x - y)2 + (y - zf + (z - xf > Ut .

We note that this is a generalization of a lemma due to
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Davenport [3].

Proof. We may assume that none of x9 y, z is an integer, for
otherwise inequality (1) is solvable for an integer n. We distinguish
cases according to the comparative sizes of [x]9 [y], [z].

Case 1. Two of [x], [y], [z] are equal.

As x9 y, z may be replaced by x + n9 y + n, z + n respectively,
for any integer n, without altering either the hypothesis or the
conclusion of the lemma, we may assume that two of [x]9 [y\, [z]
are zero. Inequality (1) implies that

(3) \(n + x)(n + y)(n + z)\ < 1

has no solution in integers n.
If [x] = [y] = 0, then xy(l - x)(l - y) £ 1/16. If, further,

I xyz(x — ΐ)(y — l)(z — 1) | < 1, then (3) is solvable for one of the
values n = 0, —1. Hence, we must have \z(z — 1)| ^ 16, whence
z(z — 1) ^ 16, so that either z < — 3.5 or z > 4.5. As 0 < x9 y < 1,
it follows that \x — z\ > 3.5 and \y — x\ > 3.5 and therefore also
φ > 24.5. Thus, if ψ ^ 14ί, then t > 1.75 and t2 > 1.9, contrary to
hypothesis. Hence φ > ltt.

As (3) is symmetric in x9 y, z the other two possibilities follow
by the same argument.

Case 2. Two of [x], [y]9 [z] differ by 1 and no two are equal.

Suppose first [x]9 [y] differ by 1. As we may replace x, y, z by
% + n, y + n, z + n respectively, for any integer n, without altering
either the hypothesis or the conclusion of the lemma, we may assume
that [x] + [y] = — 1. Again, we may replace x9 y, z by —x, —y,
—z respectively, without alternating the lemma, so we may assume
that z > 0. Finally, by the symmetry of x and y in the lemma, we
may assume that — l < s e < O < i / < l .

If z < 1 then — 1 < xyz < 0, contrary to inequality (1). There-
fore z > 1. Putting f(n) = (x + n)(y + n)(z + n)9 we have /(I) ^ 1,
/(0) £ -t2 and / ( - I ) ^ 1, so that /(I) = 1 + elf /(0) = -t2 - e2,
/(—1) = 1 + β3, where elf e29 e3 are nonnegative real numbers.
Introducing the new variables ξ = xyz, η = xy + yz + zx and ζ =
x + y + z9 these equations become

ζ ~~ v e2
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from which it follows that

ζ = l + t* + λβί _ e2 + λe,
Δ A

Hence

hp = ζ2 - Zy = (l + t2 + λe, + e2 + i -* ) ' + β(l - i ^ + i

^ (1 + t2)2 + 3
> 7 ί ,

since the last inequality may be written in the form

(t - l)(ί3 + t2 + Zt - 4) > 0 ,

which is true as t > 1. Thus £> > 14£ as required.
We may therefore assume that [x], [y] do not differ by 1. By

the symmetry of x and y we may suppose that [y], [z] differ by 1.
As before, we may assume that —l<z<Q<y<l. Since we are
assuming that the previous cases do not arise, it follows that either
x > 2 or x < - 1 .

Suppose first that x > 2. Then /(I) = 1 + e19 /(0) = - 1 - e2 and
/(—1) — t2 + ez where elf e29 ez are nonnegative real numbers. As
before, solving these three equations for ζ, η gives

2φ = (2ζ)2 - 6(2)7) = (8 + t2 + βx + 2e2 + ez)
2 + 6(1 + t2 - ex + e8)

^ (3 + ί2)2 + 6(1 + t2)

>28ί ,

since the last inequality may be written in the form

(ί - l)(ί8 + t2 + 18ί - 15) > 0 .

Hence φ > 14ί, as required.
Now suppose that x < - 1 . Then /(I) = - ί 2 - βx, /(0) = ί2 + β2,

/( — I) = — 1 — e3 where en e2, e3 are nonnegative real numbers.
Proceeding as before, we obtain

2φ = (1 + 3ί2 + ex + 2e2 + e3)
2 + 6(1 + t2 + ex - e8)

^ (1 + 8ί2)2 + 6(1 + t2)

>28t ,

since the last inequality may be written as

(t - l)(9ίs + 9ί2 + 21t - 7) > 0 .



240 A. C. WOODS

This completes Case 2.
The preceding two cases imply that each pair of [x], [y], [z]

differ by at least 2. If each pair differ by at least 3, then some
two of x, y, z differ by at least 5, which implies that φ ^ 25 > 14£
since t2 ^ 1.9. Therefore, we may assume from now on that some
pair of [x], [y], [z] differ by exactly 2. The symmetry of x and y
yields three cases.

Case 3. -2 < x < -1, 0 < y < 1, 2 < z.
We have /(I) ^ -t\ /(0) ^ -t\ / ( - I ) ^ 1 and /(-2) ^ 1, i.e.,

( 4 )

(5)

( 6 )

(7)

Inequalities

( 8 )

whereas (4)

( 9 )

Assume

(10)

so that (8)

(11)

By (6) and

(12)

(4) and

and (7)

4ζ;

: - 1 - t2 - η -

- ί 2

^ 9 + 2η - ξ .

(6) imply that

yield

! first that

and (10)

(11),

give

ξ

7 £ ~ | ( * 2 + 3)

.1.(13 + 4ί2 + ί
6

2η — Sζ ^ 1 ,

- " ¥ ( ί + 4 )

—(t* + 10) + v
3

Now if rj ^ -l/3(ί2 + 10), then

λφ = ζ2 - 3̂7 ̂  ί2 + 10 > 11 > It .

Therefore we may assume that

(13) 7] > -i-(ί* + 10) .



THE ASYMMETRIC PRODUCT OF THREE HOMOGENEOUS LINEAR FORMS 241

Then (12) and (13) imply that

ζ2 - 3τ? ^ (η + j(t2 + 10))2 - 3)7

>7t

provided that the quadratic in rj9

) 2 - 87 - 7ί ,

has nonreal roots, i.e., provided that 4ί2 — 28t + 31 > 0. This
inequality holds if t < 1/2(7 - 3l/ΊΓ), which is true since t2 < 1.9.
Hence we may suppose that (10) is false, i.e.,

(14) η < h i + 3ί) .
Δ

We may further assume that

9 + 2η ~ ξ > 0 ,

for otherwise, by (5),

2η^ζ - 9 ^ - ί 2 - 9 < -10 ,

and therefore also

ζ2 - 3)? > 15 > It .

Thus, by (7),

ζ2 — Zv ^ —(9 + 2)7 — f)2 — 3)7 = 0(37) , say.
16

The quadratic g(rj) attains its minimum value at

V = γ( f + 3) > i-(l + 8f) by (5) .

Hence, by (14),

g(V) ^ —(10 + 2f)2 — —(1 + 3f) = h(ξ) , say.
16 2

The quadratic h(ξ) attains its minimum value at ξ = 4. Suppose
first that f ^ -1/3(4 + ί2). Then

since

^ Mi) ̂  ^(11 - ί2)2 + i U 9 + 3 f ) > 7 ί
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ί4 + 32ί2 - 252ί + 283 > 0

when

t2 < 1.9 .

Thus we may assume that

(15) ζ > —i(4 + ί2) .
ό

As #(??) is decreasing η ^ l/2(f + 3), and (15) shows that

- 1 ( 1 3 + 4ί" + 8£) < 1(£ + 3) ,
b Z

so (9) implies that

g{η) ^ 1(7 - 2ί2 - 3f)2 + 1(13 + 4t2 + 3f) - i(f) , say.
ob Δ

But i(<f) has the minimum value 31/4 + £2. Hence

g{η) ^ §1 + f > 7ί ,
4

since 4ί2 — 28ί + 31 > 0, as we have already seen. This completes
the proof for Case 3.

Case 4. - 2 < x < - 1 , 0 < z < 1, 2 < y.
Here / ( - I ) ^ ί2, /(-2) ^ ί2, /(I) ^ - ί 2 , /(0) ^ - ί 2 and these

imply the four inequalities (4)-(7) of Case 3. Therefore the same
argument applies here.

Case 5. y < -1, 0 < a; < 1, 2 < z < 3 .
Here /(I) ^ - ί 2 , /(0) ^ -t\ / ( - I ) ^ 1, /(-2) ^ 1 which yield

the four inequalities (4)-(7) of Case 3. Therefore the same argu-
ment applies here. This completes the proof of Lemma 2.

LEMMA 2. With g(n) = (x + w)(j/ + n)|» + n\, suppose that —t2<
g(ri) < 1 has no solution in integers n. If, further, —2<z< — 1 <
x<0, Ky < 2 ίλera f ^ 2.

Proof. We have ^(2) ^ 1, g{l) ^ 1, flr(O) ̂  - ί 2 , flr(-l) ^ - ί 2 and
ίjr(-2) ^ 1. Now

-3flr(0) + 2<7(1) + g{-2) ^ 3(1 + f) ,

i.e.,
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ζ ^ i - ( l - ί2) .
Δ

Also

2(7(1) - βr(O) + 0(2) ^ 3 + f ,

i.e.,

ζ ;> i (ί2 _ 3 ) .

Hence l/2(f - 3) ^ 1/2(1 - t2) or f ^ 2, as required.

LEMMA 3. With g{n) as defined in Lemma 2, suppose that
— t2 < g(n) < 1 has no solution in integers n when t2 ^ 1.9. Then,
with X = x — z and Y = y — z, the point (X, Y) does not lie in the
plane region given by the two inequalities

XY> - 2 Γ - ^ , | X + Γ | < 8 ,
4

where δ = 5 if t2 > 2 and δ = 4.81 if 1.9 ^ t2 ^ 2.

Proof. Determine an integer nQ such that [n0 + z] = 0 and put
X = n0 + z, so that 0 < λ < 1. Put Fix1) = (X + λ x)(Γ + λ 1 ) ^ 1 ! so
that the condition on g(n) becomes

(16) - t 2 < ^(λ1) < 1

has no solutions in real numbers X1 = X (mod 1).

Put ζ = XY and 97 = X + F and λ1 = λ, X — 1 successively in
(16). It follows that the point (ζ, 77) does not lie in either of the
two strips given by

~ f < ζ + XV + λ2 < —
λ X

and

1 - λ
< ζ + (λ - 1)J? + (λ - I)2 <

Hence the point (ζ, 77) lies in one of four regions, giving four cases,
as follows.

Case a.

-t2

(ai) ζ + XV + λ2 ^
λ
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-ί 2

(aii) ζ + (λ - 1)17 + (λ - I)2 ^
1 - λ

Multiplying (ai) by 1 — λ and (aii) by λ and adding, we obtain

ζ ^ - f ( 1 - χ + λ ) - λ + 2

V λ 1 λ/1 -

Hence if

- λ + λ' <, -2ί 2 - —
~ 4λ 1 - λ / ~ 4

the lemma holds. But this inequality may be written in the form

(λ - — Y(λ2 - λ + 4ί2) ̂  0 ,
\ 2 /

which is true since 0 < λ < 1 and t > 1.

Case b.

(bi) ζ + xy + x2^

(bii) ζ + (λ - 1)37 + (λ - I)

X

^ 1

1 - λ

Subtracting (bii) from (bi), we obtain

V =S + τ - ^ — + — + 2λ - 1 .

Hence the lemma holds if

1 t2

δ ^ ± — - — - 2λ + 1
1 - λ X

i.e., if

(biii) 2λ3 - (3 + <5)λ2 + (ί2 + δ)X - t2 < 0 .

In case 1.9 ^ t2 ^ 2 and <5 = 4.81, (biii) becomes

2λ3 - 7.81λ2 + 6.71λ - 1.9 < 0 ,

which is true for 0 < λ < 1.

In case f > 2 and δ = 5, (biii) becomes

2λ3 - 8λ2 + 7λ - 2 < 0 ,

which also holds for 0 < λ < 1. This takes care of Case b.

Case c.
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(ci) ζ + (λ - 1)5? + (λ - I)2 £ -=£-
L — X

(cii) ζ + XT] + X2 Z —

If we replace λ by 1 — λ and η by —η in (ci) and (cii), we
obtain (bi) and (bii). Hence, by symmetry, \η\ > δ.

Case d.

(di) ζ + XV + λ2 ^ —

(dii) ζ + (λ - l)η + (λ - I)2 ^
1 - λ

Multiplying (di) by 1 — X and (dii) by λ and adding, we obtain

ζ ^ ^ — — + ~ — + λ(λ - 1) ^ 1 .
ΛJ 1 X

Hence ζ = XY > 0 and X, Y have the same sign. If X, Y are both
negative we may change them into —X, —Y respectively, replace
X by 1 — λ and rj by — yj which leaves condition (16) unchanged and
turns inequalities (di) and (dii) into each other. Therefore, there
is no loss of generality in assuming that X, Y are both positive.
Again by the symmetry of X, Y we may assume from now on that

0 < Xrg Γ#

If X + λ ^ F + λ < 2 , then one of the values F(X), F(x - 1) contradicts
(16). Further, i f O < X + λ < l < Γ + λ , then F(X - 1)< 0, contrary
to (dii). Thus, we may assume from now on that 1 < X + λ and
2 < Y + X.

Assume first t h a t l < X + λ < 2 < Γ + λ . Condition (16) wi th
λ1 = λ — 2 becomes

(diii) - ζ - (λ - 2)η - (λ - 2)2 ^

Addition of this inequality to (dii) yields

7] ̂  —L__ + *' + 3 - 2λ
1 - X 2 - λ

(div) ^ — - — + L 9 + 3 - 2λ
1 — ΛJ Δ — X
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if /(λ) = 2λ3 - 4.19λ2 + 1.47λ - .28 ^ 0. Now /(λ) has a local
maximum at λ0 where 0 < λ0 < 1 and

/'(λ0) = βλ2. - 8.38λ0 + 1.47 = 0 .

Hence 3/(λ0) -/'(λ 0) = -4.19λH2.94λ0-.84<0 since the discriminant
is negative. Thus /(λ0) < 0, and as /(0) < 0 and /(I) < 0, it follows
that/(λ) < 0 and therefore also that η ^ 4.81. Hence, if 1.9 ^ t2 ^ 2,
the lemma holds. Now assume that t2 > 2. Inequality (div) implies
that

V ^ T - ^ — + — - — - 2λ + 3
1 - λ 2 - λ

^ 5 if 2λ 3 -4λ 2 + λ ^ 0 ,

which i s j rue if λ ^ 1 — 1/ι/ΊΓ. Thus we may assume that X <
1 - l/l/~2~. If 2 < Y + X < 3, inequality (diii) may be written in
the form

(2 - λ)(X + λ - 2)(Γ + λ - 2) ^ -t2 ,

which is clearly false since t2 > 2. If 3 < Y + λ < 4 then, by
Lemma 2, t2 > 2. Therefore we may assume that Y + λ > 4. By
(16) with λ1 = λ - 4, it follows that

4 - λ

Adding this inequality to (dii), we obtain

3)? > — - — + — - — + 15 - 6λ .
4 - λ 1 - λ

Hence

η > 5 if — = — + — 6λ > 0
4 - λ 1 - λ ~

i.e., if

-2λ3 + 10λ2 - 9λ + 2 ^ 0 .

The left hand side is monotone decreasing for 0 ^ λ ^ 1/3 and has
the value 1/27 at λ = 1/3. As 1/3 > 1 - 1/VT, s o ^ ^ δ i f λ ^ l -
1/l/ΊΓ. Therefore, the lemma is true if 1 < X 4- λ < 2, and we may
assume from now on that X + X > 2.

Assume next that 2 < X + X < 3. In case 2 < Y + X < 3, con-
dition (16) with λ1 taken successively as X — 2 and X — 3 yields

(2 - X)(X + X - 2)( Γ + λ - 2) ^ 1
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and

(3 - λ)(X + λ - 3)(F + λ - 3) ^ 1 .

Multiplying these two inequalities together and observing that

_ J L ^ (X+x- 2)(X+ λ - 3) , ( Γ + λ - 2)(Y+ X - 3)< 0 ,
4

we obtain a contradiction. Thus we may assume that 3 < Y + λ.
Again condition (16) with λ1 taken as X — 2 and λ — 3 yields

ζ + (λ - 2)7] + (λ - 2)2 ^ X

2 - λ

and

- ζ - (λ - S)rj - (λ - 3)
~ 3 - λ

Adding these two inequalities together gives

(dv) η > — - — + f + 5 - 2λ .
2 - λ 3 - X

If f > 2 then ^7^5 provided

1 + — - — - 2λ ^ 0
2 - λ 3 - λ

i.e.,

(1 - λ)(7 - 8λ + 2λ2) ^ 0 ,

which is true since 0 < X < 1. On the other hand, if 1.9 ^ t2 ^ 2,
inequality (dv) implies η ^ 4.81 provided

1 9 5 - 2λ ^ 4.81+

i.e.,

-2λ3 + 10.19λ2 - 15.85λ + 7.94 ^ 0 ,

which is true for 0 < λ < 1, since the left hand side is monotone
decreasing in this range.

We are left with the case 3 < X + λ, Y + λ. Here, if η < 5,
then

X + Y + 2λ < 7

so
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( X + λ - 3 ) + (Γ + λ - S ) κ 1
2 2

hence, by the arithmetic-geometric mean inequality,

( X + λ - 3 ) ( Γ + λ - 3 ) < —
4

and therefore also

(3 - X)(X + λ - 3)(Γ + λ - 3)< A
4

contrary to condition (16) with λ1 = λ — 3. This proves Lemma 3.

Proof of the theorem. Denote by Λ* the set of points of A
other than 0. We may assume that u<l, for otherwise, apply the
transformation T:x1->—x1 so that, if T(Λ*) has a point in the
region

— u ^ xx\x\ <J
u

then A* has a point in the region

<L XχXt I #3 I ^ U .

u

Put μ = inf x^ \ xz \ extended over all points (xu x2, xz) of A for which
#i#2|#3l > 0. Then, either the theorem is true, or μ ^ u. If μ ^ 1,
the theorem follows immediately from Davenport's result. Hence,
we may assume that μ < 1 and that A* has no point in the region
given by

- —

Put μ = 7δ. By a classical argument, using Mahler's compactness
theorem (5), there is no loss of generality in assuming that A*
contains the point (7, 7, 7).

The projection of A* onto the plane xx + x2 + xz = 0, parallel to
the vector (1, 1, 1) is a two-dimensional lattice, A' say, of determinant
d(Af) = 7/τ/ΊPy. |By the classical theory of quadratic forms, there
is a point of A', other than 0, within a euclidean distance l/l4/37 of
0. Hence there is a point (x, y, z) of ./!*, linearly independent of
(7, 7, 7), such that

(x - yf + (y- zγ + ( z - x f ^ .
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Taking t = I/73, if 1 < ί2 ^ 1.9, then by Lemma 1, there is an integer
n such that

n +
7

i.e.

y)\nrr μ

which proves the theorem for the case when 1 < ί2 <; 1.9.
If t2 > 1.9, the projection of A* onto the plane xz = 0, parallel

to the vector (1, 1, 1), is a two-dimensional lattice A" of determinant
d(A") = 7/τ. Taking δ = 5 if t2 > 2, δ = 4.81 if 1.9 < ί2 g 2, by
Minkowski's theorem on linear forms, there is a point (X, Yf 0) of
A", other than 0, such that

\X- Y\< 2jλ/2t2 + 1/4

and

since

4

Therefore, by the arithmetic-geometric mean inequality, there is a
point (X, Y, 0) of A", other than 0, such that

and

XY> -

X

We have X = x — z, Y = y — z for some point (x, y, z) of A*,
linearly independent of (7, 7, 7). Applying Lemma 3, there is an
integer n such that

•ί2 <
7 7

. zn + —
7

i.e.,

< (ny + x)(ny + y)\ny + z\ < μ ,

and the theorem is proved.
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