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HARMONIC FUNCTIONALS ON OPEN
RIEMANN SURFACES

MITSURU NAKAI AND LEO SARIO

We denote by H(R) the linear space of harmonic func-
tions on an open Riemann surface R with the topology of
uniform convergence on every compact subset. A continu-
ous linear functional on H(R) is referred to as a harmonic
functional on R; the totality of such functionals is the
dual space H(R)* of the locally convex space H(R). A point
evaluation u-+u(z)9 with z a fixed point of R; and a period

I *du, with γ a fixed cycle on R, are the most common

examples of harmonic functionals frequently occurring in
the theory of functions. We denote by ζu, h*> the value
of a harmonic functional h* on R at u in H(R). The main
purpose of the present study is to establish the following
representation of harmonic functionals:

REPRESENTATION THEOREM. Every harmonic functional
h* on an open Riemann surface R can be represented by
means of a function h harmonic at the point at infinity
of R as

(1) ζu, h*y~ \ u*dh—h*du

for every u in H(R), where W is any relatively compact
subregion of R such that the relative boundary dW is smooth
and h is harmonic on R~W. If hλ and h2 are functions
representing h* in the above sense, then h-i—h* can be con-
tinued harmonically to all of R.

Denote by H(ooB) the linear space of germs of functions
harmonic at c^Bf the point at infinity of R (i.e., the Alexandroff
ideal boundary point of R). The above theorem can be rephrased
as the harmonic duality theorem:

a harmonic version of an algebraic part of the theorem of Kδthe
[4] and Tillmann [12] (see also Gauthier-Rubel [1]). A closely
related treatment of H(R)* when R is a subregion of the Euclidean
space Rm of dimension m ^ 3 is found in Tillmann [11]; this corres-
ponds to our case of a hyperbolic Riemann surpace R. For complete
bibliographical information, including a general result of Grothen-
dieck [2], on the Kothe-Tillmann duality, we refer the reader to
the monograph of Kothe [5; p. 378].
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If we denote by H(ooB'9 0) the linear space of germs of functions
harmonic at oô  and "vanishing" at °oR9 and by e an Evans-Selberg-
Kuramochi potential, which may be viewed as a function harmonic
at co^ with ideal boundary values e(oo5) = +°°> then (2) is made
precise by the following isomorphisms:

(H(R)* ~ H(ooR; 0) (R hyperbolic) ,

{H(R)* ~H(OOR; O)/Λ = R[e] (R parabolic).

Here R is the field of real numbers and [e] is the germ at coβ

which contains e. A typical example of a hyperbolic surface is the
unit disk R: \z\ < 1; in this case H(ooB-9 0) is nothing but the space
of harmonic functions on (the neighborhood of) the unit circle \z\~
1 which vanish on \z\ = 1. A point evaluation u\-*u(z) is repre-
sented, in this case, by the normalized Green function

2π

A typical example of a parabolic surface is the finite complex plane
R:\z\ < +00; here H(°°B;0)/R is the space of harmonic functions
at 00 B = 00 with values zero at °o f and we can take for e(ζ) the
function log|ζ|. A point evaluation uv-+u(z) is represented, in this
case, by the normalized Evans function

h{Q = 2^ l ° g JC^J\ = ~~tc l 0 g
2ττ

where the first summand on the right belongs to H(o°R;0)/R, and
the second to R[e\. Thus (3) may be interpreted as a generaliza-
tion of the integral representation of harmonic functions (Poisson's
formula).

For the sake of simplicity we restrict our attention to Riemann
surfaces, but the entire discussion in the present study applies
verbatim also to Riemannian manifolds of any dimension ^ 2 . The
essence of the proof of the representation theorem lies in the
harmonic approximation theorem of Pfluger [7]. We will also give
to the Pfluger theorem a proof which is valid not only for Riemann
surfaces but also for Riemannian manifolds.

1* Harmonic approximation*

1.1. A subregion Ω of an open Riemann surface R is referred
to as a regular subregion if Ω is relatively compact and the relative
boundary dΩ consists of a finite number of disjoint simple analytic
closed curves. A normal subregion Ω of R is a regular subregion
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Ω of R such that R — Ω has no compact component. We shall make
use of the following "Approximationssatz H" of Pfluger [7, pp.
192-195]:

HARMONIC APPROXIMATION THEOREM. Let R be an arbitrary
open Riemann surface, Ω a normal subregion of R, and F a com-
pact subset of Ω. For any harmonic function u on Ω and any
positive number e, there exists a harmonic function uξ on R such
that I u — uξ I < ε on F.

The purpose of the present section is to give a seemingly
simpler and shorter proof of this theorem, although it may be less
elementary in the sense that we make use of some results outside
of function theory proper. Nevertheless, our proof has the merit
of wider applicability: we can replace R by any m-dimensional
(m ^ 2) noncompact separable connected C°° manifold, and the
harmonicity by the corresponding property defined by any second
order linear elliptic partial differential operator invariantly defined
on R such that the Dirichlet problem is solvable for every relatively
compact subregions of R with a smooth boundary. The proof in
this general case is identical with that in the case stated in the
above theorem; it will be given in 1.2-1.5.

1.2. We denote by H(D) the linear space of harmonic functions
on an open subset D of R. For a closed subset K of R, we
designate by H(K) the linear space of harmonic functions on K, i.e.,
on neighborhoods of K. For a regular subregion Ω of R let H? be
the harmonic function on Ω with continuous boundary values / on
dΩ. If D is the union of a finite number of disjoint closed regular
subregions and / is a continuous function on 3D, we define Hf in
the natural fashion.

To prove the harmonic approximation theorem, we may assume,
by enlarging F if necessary, that F is the closure of a normal
subregion of R. We denote by C{F) the Banach space of continu-
ous functions on F with the supremum norm.

First we prove the theorem for a normal subregion R of a
larger open Riemann surface. We set X = H{R)\F = {h\F;heH(R)}
and Y = {Hf; f eC(dR)}\F={Hf

R\F;fe C(dR)}. Since

it suffices to prove that u\F belongs to Ϋ, the closure of Y in
C(F). Suppose the contrary. Then, by the Hahn-Banach theorem,
there exists a μ e C(F)*9 the dual space of the Banach space C(F),
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such that (y, μ) = 0 for every ye Y and (u\F, μ) = 1. By the
Riesz representation theorem, μ can be viewed as a signed regular
Borel measure on F, and the above conditions take the form

(4) H?(z)dμ(z) = O
JF

for every / in C(dR) and

( 5 ) \ u(z)dμ(z) = 1 .
JF

1.3. Take the Green function g(z, ζ) on R normalized to have
the flux 1 across dR and consider the Green potential v(z) = gμ(z)
defined by

v(z) = \ 9(z, Qdμ(ζ) .
JF

On each side take the normal derivative d/dn on dR toward the
interior of R, multiply by an arbitrary f(z) continuous on dR, and
integrate along dR with respect to the line element ds on dR. The
Fubini theorem and the Poisson type formula yield

dn

As a consequence of (4) we have

ί f{z)^Φ)ds = \ H?(z)dμ(z) .

\ f(z)-f-v(z)ds = 0
J3B dn

for every / in C(dR), and a fortiori dv/dn = 0 on dR. Clearly the
Green potential v has boundary values zero on dR. Therefore v is
the function in H(R — F) with the boundary data

v = A-v = o
dn

on dR. By the uniqueness of the solution of the Gauchy problem,
v = 0 on R — F, i.e.,

(6) [
JF

for every z in R — F.

1.4. Let W Z) F be a normal subregion of the region Ω of the
theorem, and denote by ύ the harmonic function on R — W with
boundary values zero on dR and w on dW. Consider a signed
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measure

dv{z) = —(u(z) — u(z))ds
dn

on dW, with d/dn the inner normal derivative on dW with respect
to the open set R — W. A simple application of the Green formula
gives

( 7 ) ..

on PF. Since dW is contained in R — F, we may integrate each
side of (6) along dW with respect to dv. By the Fubini theorem
and (7),

u(ζ)dμ(ζ) = 0,

in violation of (5). In view of 1.2 we conclude that u\FeH(R)\F
considered in C(F). This completes the proof in the case of a normal
subregion R of a larger open Riemann surface.

1.5. The general case can be deduced from the above special
one by a standard approximation method. For the sake of comple-
teness we carry it out. Take a normal exhaustion (iO_lsίΛ<+oo of R,
i.e., the Rn are normal subregions of R, Rn_1aRn (n = 0, 1, •)» and
R = U-i^<+~ R*> s u c h t h a t -β-i = -P7 a n d #o = Ω. Set ^0 = u. If
un_! in H(Rn_^) (n ^ 1) has been chosen, we select un in H(Rn) such
that

max^_21 un_± - uj < ε/2n

this is possible in view of the above special case. The sequence
(iOos»£+eo is uniformly convergent on every compact subset of R to
a wε, say, in H(R). From

I nQ - un I ̂  Σ I %-i - % I < e

on F, we draw the desired conclusion on letting n -> + °°.
The proof of the harmonic approximation theorem is herewith

complete.

1.6. Let R be a noncompact Riemannian manifold, Δ the
Laplace-Beltrami operator on R, V the gradient operator on R, b a
C1 vector field on Rf and c a locally Holder continuous nonpositive
function on R. The operator
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Lu = Δu + b Vu + cu

is invariantly defined on R. Viewing H(D) = {uβC\D); Lu — 0 on
JD} as the linear space of "harmonic" functions on an open set D
of R, the entire discussion in 1.1-1.5 remains valid in the present
setting. Since the existence of sufficiently many harmonic functions
is assured locally, the "harmonic" approximation theorem gives:

BEHNKE-STEIN TYPE THEOREM. There exist sufficiently many
solutions of the elliptic equation Lu = 0 on R.

2* Spaces of germs •

2.1. We denote by oo^oo^ the point at infinity (i.e., the
Alexandroff ideal boundary point) of an open Riemann surface R.
The class N of normal subregions Ω of R forms a directed set by
inclusion, exhausting R, i.e., R = [JΩeNΩ. We call a subset U of R
containing some R — Ω(Ω e N) a neighborhood (actually a punctured
neighborhood) of oo. Let U be an open neighborhood of oo, and
heH(U). We call h, or more precisely (h, U), a harmonic function
at oo. Let [7y, j = 1, 2, be open neighborhoods of oo f and hό =
(hj9 Uό) harmonic at oo. We say that hx and h2 are equivalent if
hx = h2 on an open neighborhood of oo contained in UΊΠ U2. An
equivalence class [h] of harmonic functions h at oo is called a germ
of harmonic functions at oo. We denote by H(ooR) the set of germs
of harmonic functions at oo. By defining addition by [/&J + [h2] =
[hx + h2] and scalar multiplication by X[h] — [Xh], with λ a real
constant, we endow H(ooB) with the structure of a linear space
over the field R of real numbers.

Consider a mapping h\-+[h] of H(R) to H(ooR). We maintain
that it is injective. In fact, if [h^ = [h2] for h5 e H(R) (j — 1, 2),
then hλ — h2e H{R) vanishes on a neighborhood U of oo and there-
fore on iϋ. Thus we may identify the germ [h] containing an h e
H(R) with h. In this sense we can view H(R) as a linear subspace
of H(ooR), We wish to determine the quotient space H{ooB)jH{R).

2.2. For WeN, we denote by AΓW the class of regions ΩeN
which contain W. For a function ψeC(dW) and a region ΩeNw

we denote by ^ the function in C(d(Ω — W)) with ^ 13 W — ψ and
τ/τβ I dΩ = 0. It is easy to see that the limit

LR_Tvf = Lψ= lim H^JV

exists on R — W and the convergence is uniform on each compact
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subset of R — W. The mapping ψ ι-» Lψ defines a linear operator
from C(dW) into H(R - W) Π C(# - flf) such that Lf = f on
and

min (min3IFα/r, 0) ^ Lo/r ^ max (max3ιFf, 0)

on R — W. Intuitively speaking, Lψ is the harmonic function on
R — W with boundary values ψ on dW and "ideal boundary values
zero" at oo. We say that a harmonic function h = (fe, Z7) at c>o
vanishes at oo, ft(oo) = 0, if LR_γvh = h on R ~ W for one and
hence for every PΓeiV with ΫFID-R — £7. If [Λ] contains an h with
ft(oo) = 0, then every ue[h] satisfies u(°°) = 0. Such an [h] may
be said to vanish at co? [/&,](oo) = 0. The class £Γ(coβ; 0) of germs
[h] with [h](oo) = 0 is a linear subspace of H{^B).

2.3. Observe that 0 < I ^ ^ l ^ 1 on R ~ W and either LΛ_ΪP1Ξ=

1 or LR_Tvl < 1 on i? - f. If L ^ 1 < 1 on R-W for some TFeiV,
then the same is true for every WeN. In this case R is said to
be hyperbolic, otherwise parabolic. The parabolicity of R is char-
acterized by the existence of a harmonic function e(z, ζ) for any
ζ 6 R, called an Evans-Selberg-Kuramochi potential, on R — {ζ} such
that e(z, ζ) —> + °° as s —> oô  and e(z, ζ) — (l/2ττ) log \z — ζ| —> 0 as
^->ζ for a local parameter 2 at ζ (cf. e.g., Sario-Noshiro [10; p. 98],
Sario Nakai [9; p. 351]). We shall establish the following decom-
positions:

ίff(ooΛ) = H(ooR; 0) + H(R) (22 hyperbolic) ,
( 8 ) (H(ooR) = ^(oo^; 0) + JEΓCB) + JB[e] (i2 parabolic) ,

with e an Evans-Selberg-Kuramochi potential. Here

r(ooΛ; 0) n H(R) = {0} (22 hyperbolic) ,
r(oo a; 0) ΓΊ H(R) = Ry H(R)f]R[e] = H(ooR; 0) n B[e] = {0}

(R parabolic) .

To prove these relations, take an arbitrary h = (h, U) e [h] in
H(ooB). Suppose first that R is hyperbolic. Consider the equation

L(p — h) = p — h ,

where L = L .̂TΓ for a VΓeiV with Wz)R — U. It has a unique
solution p 6 H(R) (cf. Nakai [6]), and h ~ p = g e [g] e ^ ( ^ ^ 0). This
gives the first decomposition h = q + p in (8). If u e H(ooR; 0) Π
_ίf(i?), then Lu — u e H(R), and the maximum principle implies that
u Ξ c, a constant, on iϋ; since LI < 1, Lc = c gives c = 0.

Next suppose R is parabolic. Choose a TFeiV with Wz)R — U
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and ζe W. Since 1 *de(>9 ζ) = 1, we can choose a λ e i ί with

( 9 ) ( *ds = 0 (s = h - λ e ( , 0 ) .
J3TF

The parabolicity of R entails

*dLB_wψ = 0

for any ΩeNw and ψeC(3TF). In fact, by the Green formula, we
have

1 (LB_QΪ)*dLs-.wψ — (LR_w'f)*dLR_Ql — 0 ,
J dΩ

and LR_Q1 = 1 gives the above assertion. Therefore L = LR_^ is
a normal operator in the terminology of Rodin-Sario [8], and (9) is
a necessary and sufficient condition for the equation

UP - s) = p - s

to have a solution peH(R) (cf. e.g., Rodin-Sario [8; p. 42]). Thus
s — p = q 6 [q] 6 H(ooB 9 0) and we obtain the second decomposition
h = g + fc + λ£ in (8). Clearly ff(oo,; 0) Π R[e] = fΓ(Λ) Π Λ[e] = {0}.
Let u e H(ooR; 0) Π £Γ(i?). By the maximum principle, Lu = u e ίf(i2)
implies that ueR. This completes the proof of (8) and (8)'.

The decomposition (8) serves to determine the quotient space
H(ooR)/H(R)f which is the main topic of the present section. We
repeat here (3) with a view of (2):

(H(ooB)/H(R) s H(ooB; 0) (R hyperbolic) ,

[H(ooB)/H(R) = H(OOR; O)/Λ = Λ[β] (B parabolic) .

3* Harmonic duality*

3.1. Let C{R) be the locally convex space of continuous (not
necessarily bounded) functions on R with the topology of uniform
convergence on every compact subset of R. We shall make use of
the following well-known property of C(R):

The dual space C(R)* of C(R) is the set of signed regular Borel
measures μ on R with compact supports Sμ in R.

For the sake of completeness we include a proof. Let C0(R) be
the normed space of functions ψ in C(R) with compact supports Sψ
in R and with the supremum norm on R. The dual space C0(i2)* of
C0(R) is the set of signed regular Borel measures μ on R (cf. e.g.,
Halmos [3; pp. 243-249]). Take an arbitrary ieC(i?)*. Its restric-
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tion to C0(R) is continuous with respect to the supremum norm.
Thus we can view I as an element of CQ(R)*9 so that

for every ψeC0(R). Let (i2J~=1 c AT be such that ΩnczΩn+1 and
R = USU£» If lj"ICR - ^ ) > 0 f or all n, where \μ\ is the total
variation of μ, then there exists a ψneCQ(R) with support inϋ?—<£?„
such that

for each n. Since (ψv)£U converges to zero uniformly on each
compact subset of R, the continuity of I on C(R) implies that
(ψn, ΐ) —* (0, ΐ) — 0 as n —> + oo. This is, however, impossible since

A fortiori, Sμ is compact. For any ψ in C(i2) we can find a
sequence (α/rJSU c C0(JB) converging to ψ uniformly on each compact
subset of R and in particular on Sμ. Therefore

(ψ, I) = lim (ψn, I) = lim ί ψndμ = \ψdμ

for every ψ in C(i2), and the assertion on C{R)* follows.

3.2. Since H(R) is a subspace of the locally convex space C(R),
any continuous linear functional on H(R) (i.e., leH(R)*) can be
extended to one on C(R) (cf. e.g., Yosida [14; p. 108]). Therefore,
leH(R)* can be expressed as a signed regular Borel measure μ on
R with compact support Sμ by

(11) <u, I) = [ udμ

for every u in ffCK). If H(R)λ is the family of measures μ in

C(i2)* such that \udμ = 0 for every u e fl"(i2), we have

(12) H(R)* = C(R)*/H(Ry .

For each μeC(R)* the set Sμ = f\QeNtΩz>sμ is compact and Sμi)Sμ.
Let μeH{R)L and PΓeiV with WztSfi. For any ^eJΪ(TF) the
harmonic approximation theorem guarantees the existence of a
sequence (hn)n=i a H(R) such that hn-+u uniformly on Sμ as w->oo.
Hence
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I udμ = lim \hndμ = 0 ,

i.e., μeH(W)1. Let gw(z, ζ) be the Green function on W and ζe
W — £7,. There exists an Ω e i\Γ with Ωz) Sμ and ζ g iλ Since μ e
iϊOβ)1 and ^ ( , ζ)eH(Ω), we have 1 0T7(z, ζ)dμ(z) = O, i e > the Green
potential

vanishes indentically on W — Sμ.
Conversely, let μeH{R)L and WeN with SμczW and suppose

(gw)μ = Q on W - Sμ. Let Ω e N with S . c f i c f l c W , For any
heH(R) we can find, as in 1.4, a measure v with SvadΩ such that

= ί , Qdv(ζ)

on β. On integrating both sides over Sμ with respect to dμ{z) and
on using the Fubini theorem we obtain

hdμ = \ (\ gw(z, ζ)dμ(z))dv(ζ) = \ (gw)μ(ζ)dv(ζ) - 0 ,

i.e., μeH(R)1. Thus we have the following characterization of

H(RV = {μe C(R)*; (gw)μ = 0 on W - Sμ

for any WeN with Wi)Sμ} .

We give here an example of a μ in H{R)L which is not zero.
Let ζ be a fixed point in R and WeN with ζe W. Denote by dζ

the Dirac measure at ζ and set

dμ(z) = dδz(z) + ^ *dgw(z, ζ) ,

where the second term on the right is viewed as a measure on 3 W.
Then μ 6 C(R)* with S, = {ζ} U dW and, for every / e C(R),

\ fdμ=\ fdδ, + M f(z)*dgw(z, ζ) = /(ζ) - ^7(ζ) ,

which is zero for / 6 H(R), i.e., μ e H(R)L. As this example suggests,
the structure of H(R)L is quite complicated and therefore the
representation (12) does not supply much information on H(R)*. To
gain more clarity we will try to "sweep" the measure μ to the
ideal boundary of R. This is the basic idea we are going to follow
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in the sequel.

3.3. Let u and h be harmonic at ooΛ and WdeN such that u

and h are defined on R - W3 (j = 1,2). Take a T^eΛΓ with

WίUWidW and set α = u*dh — /&*dw. The Green formula gives

\ α — I α = \ _ (ud*dh — hd*du) = 0 (ΐ = 1, 2) .

This means that \ a is independent of the choice of WeN such
JdW

that u and h are harmonic on R — W. Therefore we can define

S u*dh — h*du = lim \ u*dh — h*du ,
dR WeN, W->R JdW

which can be regarded as a "line integral along the ideal boundary
of R".

Take an arbitrary [h] eH(°°B) and an he[h]. The linear func-
tional

u i > \ u*dh — h*du
JdR

on H(R) is clearly independent of the choice of h e [h] (cf. 3.6 below),
which we denote by τ[h]:

(14) (u, τ[h]) = [ u*dh - h*du (u e H(R)) .
JdR

The relation [ f e ] π φ ] defines a mapping r: H(o°B) —> H(R)*, which
is clearly linear.

3.4. We maintain that r: Jϊ(ooB) -> H(R)* is surjective. To see
this let ϊ be an arbitrary element in H(R)*. We wish to find an
[h] 6 H(°oB) with τ[fc] = Z. By (11) there exists a signed regular
Borel measure μ on R with compact support Sμ such that

z> = f ^(ζ)dMQ (ueH(R)).
)8μ

Let TΓ be an arbitrary element of AT with Wz>Sμ and denote by
2, ζ) the Green function on W with flux 1. The Green potential

(15) hw{z) = - ί gw(z, ζ)dμ(ζ)
isμ

is harmonic on W — Sμ and vanishes on 9W. Fix an arbitrary ΩeN
with SμaΩaΩ a W. The Green formula and the Fubini theorem
yield
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S u*dhw — hw*du = I u*dhw — hw*du
dΩ J dΩ

= 1 ^*d/&ΐF = - \ u(z)*dλ gw(z, Qdμ(ζ)
JdW J dW J S^

= ί ( - ( u{z)*dgw(z, ζ))dμ(ζ) = \ udμ = {%, I)

for every ueH(R). We have obtained

(16) (u, I) = \ u*dhw — hw*du (u e H(R)) .
J3Ω

If R is hyperbolic, then on letting W->R in (15) we see that
fo>F converges to

uniformly on each compact subset of R, where g(zf ζ) is the Green
function on R with flux 1. From (16) we obtain on letting W->R
and then Ω->R,

(u, 0 = 1 u*dh — h*du .

Here h is harmonic at oo^ and the equivalence class [h]eH(oos)
containing h gives the representative τ[h] which, by (14), is identical
with I.

If R is parabolic, then there exists a divergent directed net
(fiw)w*N of real numbers such that (gw(z, ζ) — cw)weN forms a normal
family on R x R less its diagonal set (cf. Tsuji [13; pp. 449-456]).
Thus we can choose a sequence (TΓJ»=1 c JV which forms an exhaus-
tion of R such that (gWn(

zf 0 ~~ ew%)Z=i converges to a g(z, ζ)
uniformly on each compact subset ofRxR less its diagonal set.
Using the constants kn = cWnμ(Sμ) we set

(17) hn(z) = hWn(z) -K= -\ gn(z, Qdμ{Q ,

where gn(z, ζ) = gWn(z, ζ) - cw%. Since I *d^ = 0, (16) implies
J dΩ

(18) (u, I) = ( ^*ώfo% - fe%*du (w e H{R)) .

On letting w—> + oo in (17) we see that feΛ converges to
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uniformly on each compact subset of R. From (18) we obtain on
letting n—> + °° and then Ω —• R

(u, I) = \ u*dh — h*du (u 6 H(R)) .

As in the hyperbolic case, we also conclude that τ[h] = I.

3.5. We append one more proof of the existence of an [h] e
H(°°R) with z[h] = I for a given leH(R)*, valid simultaneously for
a hyperbolic and parabolic R. We fix a normal exhaustion (Wn)n=i
of 72 and set vn = Λ^. We start from (16):

, ΐ) = \ u*dvn — vn*du (u 6 H(R)) ,

where i2 is any element of N with Sμcz Ω (Z Ω cz W%. Let wy =
^m+v-i ~ vm+u for y = 1, 2, . Clearly wv e fί( l?m+v). By the
harmonic approximation theorem, there exists an sv e H{R) such
that I wv - sv I < 2~v for v = 1, 2, . The functions

converge uniformly on each compact subset of R. Observe that

on Wm+V — Ww for each v — 1, 2, . All three terms on the right
are harmonic on Wm+V — Wm, and the same is true of h. Since v
is arbitrary, we conclude that heH(R — Wn). In particular, if we
set h = vm+i + p, then p = Σ^=i (w» ~ K) i s harmonic on Wm+1 and

\ u*dh — h * du = \ u*dvm+1 — vm+1* du + \ ^*dp — p*du

for every ueH(R). The first term on the right is (u, I) and, in
view of u, peH(Ω), the second term is zero. Thus

(u, V) = I u*dh — h*du (u e H(R))
J d Ω

and on letting Ω—>R we infer that I = τ[h],

3.6. We denote by Ker τ the kernel τ~~\0) of the linear surjec-
tive mapping τ: H(ooR) —> H(R)*. We claim that

(19) Ker τ = H{R) .

If this has been shown, then H(R)* = H{ooB)jH{R)f and the repre-
sentation theorem ensues.
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To prove (19), take an arbitrary heH(R). Then

(u, τ[h]) = I u*dh — h*du — \ (ud*dh — hd*du) = 0
JdR }R

for every ueH(R), i.e., τ[h] = 0. This means that Ker τ z>H(R).
Conversely, let h = (h, U) e [h] e Ker τ, WeN with R — WcU, and
Λjr = iff. Then from

%*d/& — h*du = \ u*dh — h*du — (u, τ[h]) — 0 ,

u*dhw — hw* du = \ (ud*dhw — hwd*du) = 0
v JTF

for every u e JEf(iϊ) it follows on setting v — h — hw that

(20) ί u*dv = 0 (ue H(R)) .
JdW

Observe that v vanishes on dW, is harmonic on W near dW, and
therefore can be extended to a neighborhood V of dW, i.e., ve
ff(F). Since each component of dW is conformally a unit circle,
H(dW) is dense in C(3TF) on 3W with respect to the supremum
norm. From φ — HJ = 0 on 3ΐ^ for any <peH(dW) we see that
H;veH(W) for any ^eiϊ(9W), and H(W) is dense in C(dW0 ondW
with respect to the supremum norm. The harmonic approximation
theorem assures that H(R) is dense in H(W) on W with respect to
the supremum norm. Therefore H(R) is dense in C(dW) on dW
with respect to the supremum norm and (20) is valid not only for
ueH(R) but also for ueC(dW). This implies that *dv = 0 on dW.
In view of dWd V, veH(V), and

v = *dv = 0

on 3TΓ, we conclude that v = 0 on F. Therefore the function p
on i? defined by

is harmonic on R, and [fe] = [pjeiίίi?), i.e., Ker τaH(R). We have
established (19), and the proof of the representation theorem stated
in the introduction is complete.
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