EMBEDDINGS OF THE PSEUDO-ARC IN E^{2}

Wayne Lewis

Abstract

In this paper, we show that there exists an embedding, P_{s}, of the pseudo-arc in the plane such that any two accessible points lie in distinct composants of P_{s}. We also show that there are $c=2^{\omega_{0}}$ distinct embeddings of the pseudo-arc in the plane, including for each positive integer n, one with exactly n composants accessible. This answers some questions and a conjecture of Brechner.

For definitions and notation of chain (from p to q), link, crooked, etc., see [1] and [7]. The links of our chains will always be the interiors of disks, and if two links of a chain intersect their intersection is the interior of a disk. When a chain D refines a chain C, we shall always require that the closure of each link of D be contained in a link of C.

First we describe the special embedding P_{s}, then prove Brechner's conjecture that any two distinct accessible points of P_{s} lie in distinct composants. Let C_{0} be a chain in E^{2} from point p to point q which runs straight across from left to right horizontally. Let C_{1} be a chain also running from p to q which is crooked in C_{0} and descending, as in Figure 1. If we think of C_{1} as straightened out

with p on the left and q on the right, then C_{2} is a chain from p to q which is crooked in C_{1} and ascending. We continue in this manner, alternating descending and ascending chains, so that C_{i} runs from p to q, mesh $\left(C_{i}\right)<1 / 2^{i}, C_{i+1}$ refines and is crooked in C_{i}, and C_{i+1} is descending (ascending) in C_{i} if i is even (odd). The pseudo-arc P_{s} is $\bigcap_{i \epsilon \omega_{0}} C_{i}^{*}$. (If A is a collection of sets, A^{*} is the union of A.)

Theorem. Any two distinct accessible points of P_{s} are in distinct components.

Proof. We can draw horizontal rays to the left from p and to
the right from q. A top accessible point will be a point of P_{s} which is accessible by an arc lying in the upper complementary domain of P_{s} plus the two rays (except for the endpoint of the arc in P_{s}). A bottom accessible point is defined similarly. We will show that any two distinct top accessible points are in distinct composants. A similar argument will show that any two distinct bottom accessible points are in distinct composants.

Let a and b be distinct top accessible points. Suppose $a=$ $\bigcap_{i \in \omega_{0}} C_{i}\left(a_{i}\right)$ and $b=\bigcap_{i \in \omega_{0}} C_{i}\left(b_{i}\right)$. Let α and β be arcs above P_{s} with $\alpha \cap P_{s}=a$ and $\beta \cap P_{s}=b$. We can suppose without loss of generality that for each $i \in \omega_{0}, \alpha \cap C_{i}^{*}$ and $\beta \cap C_{i}^{*}$ are connected.

Claim. The subcontinuum M of P_{s} irreducible between a and b contains both p and q (i.e., for each $i \in \omega_{0}$ and sufficiently large $j \in \omega_{0}$ the subchain of C_{j} between $C_{j}\left(a_{j}\right)$ and $C_{j}\left(b_{j}\right)$ has links in each of $C_{i}(0)$ and $C_{i}\left(n_{i}\right)$, where $C_{i}\left(n_{i}\right)$ is the last link of $\left.C_{i}\right)$.

Proof of claim. For each $i \in \omega_{0}$ there exists $k \in \omega_{0}$ such that, for $j \geqq k, \operatorname{cl}\left(\left\{C_{j}(n) \mid C_{j}(n) \cap \alpha \neq \varnothing\right\}^{*}\right) \subseteq C_{i}\left(a_{i}\right)$ and $\operatorname{cl}\left(\left\{C_{j}(m) \mid C_{j}(m) \cap\right.\right.$ $\left.\beta \neq \varnothing\}^{*}\right) \subseteq C_{i}\left(b_{i}\right)$. Choose i large enough that there are at least two links of C_{i} between $C_{i}\left(a_{i}\right)$ and $C_{i}\left(b_{i}\right)$, and $k>i$ so that the above condition holds and it takes at last three links of C_{k} to span between nonadjacent links of C_{i} or to reach from $C_{k}(0)$ to $C_{i}(1)$ or to reach from $C_{k}\left(n_{k}\right)$ to $C_{i}\left(n_{i}-1\right)$.

Consider $j>k$ such that j is even. Then $\left\{C_{j}(n) \mid C_{j}(n) \cap \alpha \neq \varnothing\right\}$ and $\left\{C_{j}(m) \mid C_{j}(m) \cap \beta \neq \varnothing\right\}$ are separated by several links of C_{j}. Suppose $\left\{C_{j}(n) \mid C_{j}(n) \cap \alpha \neq \varnothing\right\}$ comes first in C_{j}. Then because C_{j+1} is descending in C_{j} and α, β lie above $P_{s}, C_{j+1}\left(a_{j+1}\right)$ is in the maximal subchain of C_{j+1} with no links reaching past $\left\{C_{j}(n) \mid C_{j}(n) \cap \alpha \neq \varnothing\right\}^{*}$. But $C_{j+1}\left(b_{j+1}\right)$ is not in any of the links of C_{j} up to this point (or in fact at least three links beyond), so by crookedness of C_{j+1} in C_{j} there is a link γ of C_{j+1} between $C_{j+1}\left(a_{j+1}\right)$ and $C_{j+1}\left(b_{j+1}\right)$ with $\gamma \subseteq$ $C_{j}(1) \subseteq C_{i}(0)$.

Similarly, if j is odd, there is a link δ of C_{j+1} between $C_{j+1}\left(a_{j+1}\right)$ and $C_{j+1}\left(b_{j+1}\right)$ with $\delta \subseteq C_{j+1}\left(n_{j+1}-1\right) \subseteq C_{i}\left(n_{i}\right)$. Thus the subcontinuum M of P_{s} irreducible between a and b contains both p and q. Hence $M=P_{s}$, and a and b are in different composants of P_{s}.

Similarly any two bottom accessible points of P_{s} are in different composants. By Theorem 3.1 of [5] if top and bottom accessible points of P_{s} are in the same composant C of P_{s} then either $p \in C$ or $q \in C$. Thus the top and bottom accessible points must be the same and be either p or q. So any two distinct accessible points of P_{s} are in different composants.

It follows from [8] that, though P_{s} has $c=2^{\omega_{0}}$ distinct accessible composants, there exists some component of P_{s} which is not accessible.
2. Other embeddings. We will now show how to obtain $c=2^{\omega_{0}}$ distinct embeddings of the pseudo-arc in the plane. These will be distinguished by use of prime ends and accessibility. First however we will describe $c=2^{\omega_{0}}$ distinct 0 -dimensional closed subsets of the unit circle, S^{1}, which will be associated with these embeddings.

Let $X_{j}=e^{\pi i / j}$ for $j=1,2, \cdots$. (This is the only place in the paper where i is not an integer or finite ordinal. Here of course $i=\sqrt{-1}$. In all later discussion, we return to letting i be an integer or ordinal.) Let $X_{0}=1$. This is a simple sequence which divides S^{1} into a countable number of open intervals. For any subset A of $\{1,2, \cdots\}$, let C_{A} be the closed set consisting of $\left\{X_{i}\right\}_{i \in \omega_{0}}$ together with a Cantor set in the open interval between X_{i} and X_{i+1} for each $i \in A$. We shall describe how to embed a pseudo-arc P_{A} in the plane such that its space of prime ends is homeomorphic to S^{1} by a homeomorphism h, where for each open interval I of $S^{1}-C_{A}$ all accessible points which correspond to prime ends in $h^{-1}(I)$ are in the same composant of P_{A}, and accessible points which correspond to prime ends in different intervals are in different composants of P_{A}. Thus if A and B are distinct subsets of $\{1,2, \cdots\}$ then P_{A} and P_{B} are inequivalently embedded in the plane.

For each basic Cantor set C in $C_{A}, C=\bigcap_{i \in \omega_{0}} C(i)$ where each $C(i)$ is a finite collection of closed intervals in S^{1} and $C(i+1)$ is obtained by removing open intervals from the middle of each component of $C(i)$. Order the set of all endpoints of components of $C(i)$'s such that each endpoint of a component of $C(i)$ comes before each endpoint of a component of $C(i+1)$ which is not also an endpoint of a component of $C(i)$.

Let $\left\{y_{i}\right\}_{i \in \omega_{0}}$ be a well-ordering of the set of all end points of components of $S^{1}-C_{A}$ such that:
(1) $y_{0}=X_{1}$ and $y_{1}=X_{0}$.
(2) For each brsic Cantor set C in C_{A} the restriction of the well-ordering of $\left\{y_{i}\right\}_{i \in \omega_{0}}$ to points in C is the ordering described above.
(3) Both X_{j} and X_{j+1} come before any point of a Cantor set between these two points.

Let C_{0} be a chain in E^{2} running straight across horizontally from a point z_{0} (in link L_{0}) to a point z_{1} (in link L_{1}). (Consistent with our previous notation, subscripts will not indicate adjacent links but will rather indicate points z contained in these links.) Suppose inductively that chain $C_{2 i}$ has been formed with distinct nonadjacent
links $L_{0}, L_{1}, \cdots, L_{i+1}$ specified so that the ordering of the L_{j} 's along the chain corresponds to the ordering of $\left\{y_{j}\right\}_{j \leq i+1}$ in S^{1} going from X_{1} to X_{0} clockwise. Suppose also that points z_{j} have been specified in each L_{j} with $\operatorname{st}\left(z_{j}, C_{2 i}\right)=L_{j}$. We will now describe how to form chains $C_{2 i+1}$ (refining $C_{2 i}$) and $C_{2 i+2}$ (refining $C_{2 i+1}$).

Think of chain $C_{2 i}$ as straightened out horizontally with z_{0} on the left and z_{1} on the right. Let $\left\{W_{n}\right\}_{n \leqq i+2}$ be the ordering of $\left\{y_{j}\right\}_{j \leq i+2}$ induced by the order of the points in S^{1} from X_{1} to X_{0} clockwise. Let μ be a bijection such that $W_{n}=y_{\mu(n)}$ for each $n \leqq i+2$. In $C_{2 i}$ chain $C_{2 i+1}$ is a chain (see Figure 2) from z_{0} to z_{1} which starts

Figure 2
One possible cofiguration of the nerve of C_{3} in C_{2} is shown.
by running straight from L_{0} to L_{1}, then consists of segments D_{n}, for $1<n \leqq i+2$, such that (for $\mu(n) \neq i+2$):
(1) D_{n} runs straight from L_{1} to $L_{\mu(n)}$ above all previous parts of $C_{2 i+1}$, straight back to L_{1} above all previous parts of $C_{2 i+1}$, straight to L_{0} below all previous parts of $C_{2 i+1}$, then straight back to L_{1} below all previous parts of $C_{2 i+1}$.
(2) The bend D_{n} in $L_{\mu_{(n)}}$ contains $z_{\mu_{(n)}}$, where $W_{n}=Y_{\mu_{(n)}}$.
(3) D_{n} intersects only D_{n-1} and D_{n+1}, each of which it intersects in an end link.

If y_{i+2} is a point of a basic Cantor set C of C_{A} and is either the leftmost point of C or the left end one of the intevals removed in forming C (by the $C(i)$'s), then $D_{\tilde{n}}$ (where $\mu(\widetilde{n})=i+2$) satisfies conditions (1) and (3) with L_{i+2} being the link of $C_{2 i}$ immediately after $L_{\mu_{(\tilde{n}-1)}}$. Choose z_{i+2} in the bend of $D_{\tilde{n}}$ in $L_{\mu(\tilde{n}-1)}$ (and not in either adjacent link of $C_{2 i+1}$). Otherwise do the same with L_{i+2} chosen to be the link of $C_{2 i}$ immediately before $L_{\mu(\tilde{n}+1)}$. The chain $C_{2 i+1}$ is the union of the D_{n} 's and the initial straight segment from L_{0} to L_{1}.

To get chain $C_{2 i+2}$ think of straightening $C_{2 i+1}$ out horizontally with z_{0} on the left, and consider the set Γ of links of $C_{2 i+1}$ which are either end links of the D_{n} 's, links where the bends of the D_{n} 's occur, or end links of $C_{2 i+1}$. In each subchain of $C_{2 i+1}$ connecting consecutive elements in Γ, place a crooked descending chain going
between the two ends (and if a z_{n} is in such a subchain place it in the appropriate end link of the crooked chain). This can be done so that the underlying point sets of crooked chains in adjacent subchains intersect exactly in an end link. Chain $C_{2 i+2}$ will be the union of these small crooked chains.

Note that, while $C_{2 i+1}$ is not crooked in $C_{2 i}$, nor is $C_{2 i+2}$ in $C_{2 i+1}$, chain $C_{2 i+2}$ is crooked in $C_{2 i}$. If we do this so that the mesh of the chains gets arbitrarily small, then the intersection is a pseudoarc P_{A} [2]. By construction, each z_{i} is accessible, and different z_{i} 's lie in different composants of P_{A}.

Let h be a homeomorphism between the space of prime ends of P_{A} and S^{1} such that $h\left(\widetilde{z}_{i}\right)=y_{i}$ for each $i \in \omega_{0}$, where \widetilde{z}_{i} is the prime end associated with the accessible point z_{i}. Suppose p and q are accessible points of P_{A} with associated prime ends \widetilde{p} and \widetilde{q}, where $h(\widetilde{p})$ and $h(\widetilde{q})$ lie in the same component I of $S^{1}-C_{A}$. Let a (respectively b) be the accessible point whose associated prime end \widetilde{a} (resp. \widetilde{b}) is mapped by h to the largest (smallest) endopoint of I in the counterclockwise ordering $(0,2 \pi]$ of S^{1}.

Claim. Each of p and q is in the same composant of P_{A} as the point a.

Proof. Let α and β be disjoint rays to infinity which intersect P_{A} only at their endpoints a and b respectively. Let π be a ray, disjoint from α and β, which intersects P_{A} only in its endpoint p. We may assume that, for each $i \in \omega_{0}, \pi \cap C_{i}^{*}$ is connected (as are also $\alpha \cap C_{i}^{*}$ and $\left.\beta \cap C_{i}^{*}\right)$. If $a=y_{m_{1}}$ and $b=y_{m_{2}}$ choose N bigger than both m_{1} and m_{2} and such that the sets $\left\{l \in C_{2 N} \mid \alpha \cap l \neq \varnothing\right\}^{*}$, $\left\{l \in C_{2} \mid \pi \cap l \neq \varnothing\right\}^{*}$, and $\left\{l \in C_{2 N} \mid \beta \cap l \neq \varnothing\right\}^{*}$ are disjoint. For each $n>2 N$, let M_{n} be the minimum subchain of C_{n} containing both $\left\{l \in C_{n} \mid \alpha \cap l \neq \varnothing\right\}$ and $\left\{l \in C_{n} \mid \pi \cap l \neq \varnothing\right\}$. Then for each $n>2 N$, $\operatorname{cl}\left(M_{n+1}^{*}\right) \subseteq \operatorname{cl}\left(M_{n}^{*}\right)$, by our construction of the C_{i} 's (and since there are no other y_{j} 's between a and b). Thus $M=\bigcap_{n>2 N} \operatorname{cl}\left(M_{n}^{*}\right)$ is a proper subcontinuum of P_{A} containing both a and p. Similarly, there is a proper subcontinuum of P_{A} containing both a and q.

By the above claim, the fact that all of the y_{i} 's are in different composants, and Theorem 3.1 of [5], we get that p and q are in different composants of P_{A} if $h(\widetilde{p})$ and $h(\widetilde{q})$ are in different components of $S^{1}-C_{A}$.

If we use the above procedure to construct pseudo-arcs, but stop introducing new z_{n} 's and L_{n} 's at some point, we can obtain for each positive integer i a pseudo-arc in the plane with exactly i composants accessible.
3. Questions. Though our P_{A} 's are all embedded differently in E^{2}, any two contain equivalently embedded subcontinua (e.g., ones containing z_{1}). This leads us to the following question.

Question 1. Do every two pseudo-arcs in the plane contain equivalently embedded subcontinua? (A comparison of subcontinua of P_{S} with subcontinua of P_{A} might be useful here.)

The following is also of interest.
Question 2. Are there $c=2^{\omega_{0}}$ distinct embeddings of the pseudocircle in E^{2} ? of every hereditarily indecomposable plane continuum?

We know that, though there are embeddings of the pseudo-arc with $c=2^{\omega_{0}}$ distinct accessible composants, there are also always inaccessible composants [8]. Of the embeddings we have described, P_{S} is the only one with the property that any two accessible points are in distinct composants. Is there any other embedding with this property?

Michel Smith has recently announced results analogous to these.

References

1. R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J., 15 (1948), 729-742.
2. -, Snake-like continua, Duke Math. J., 18 (1951), 653-663.
3. Concerning hereditarily indecomposable continua, Pacific J. Math., 1 (1591), 43-51.
4. , Embedding circle-like continua in the plane, Canad. J. Math., 14 (1962), 113-128.
5. Beverly Brechner, On stable homeomorphisms and imbeddings of the pseudo-arc, Illinois J. Math., 22 (1978), 630-661.
6. S. D. Iliadis, An investigation of plane continua via Caratheodory prime ends, Soviet Math. Dokl., 13 (1972), 828-832.
7. Wayne Lewis, Stable homeomorphisms of the pseudo-arc, Canad. J. Math., XXXI (1979), 363-374.
8. S. Mazurkiewicz, Sur les poınts accessible des continus indécomposables, Fund. Math., 14 (1929), 107-115.
9. E. E. Moise, An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua, Trans. Amer. Math. Soc., 63 (1948), 581-594.

Received October 24, 1977 and in revised form December 17, 1979.
Tulane University
New Orleans, LA 70118
and
Texas Tech University
Lubвоск, TX 79409

