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MANIFESTLY DYNAMIC FORMS IN THE
CARTAN-HAMILTON TREATMENT

OF CLASSICAL FIELDS

RlCHRD ARENS

Our intent is to show that certain differential forms,
which are manifestly closed on the motions of a classical
field system, are Hamiltonic in the sense of generating a
canonical vector field, or are equivalent to Hamiltonic
forms.

l Introduction* Let K be a differential)le manifold of dimen-
sion at least m and let a be a differential form of degree m defined
in K. Familiar considerations from the calculus of variations then
leads to certain m-dimensional submanifolds of K, the extremals for
a[ί\.

For m = 1 this reduces to the Hamiltonian formalism of dynamics,
and in this case a dynamic variable is a function on K which is
constant on the extremals. The generalization to m ^ 1 is to define
an (m — l)-form ψ to be a dynamic form for a if the restriction
dφ\E of its differential to each extremal E vanishes [1, 2, 3, 4, 5,
6, 7, 8].

A special class of dynamic forms are the Hamiltonic forms [4]
[7, 111]. An (m — l)-form φ in K is Hamiltonic if there is a vector
field U on K such that dφ coincides with the interior product
U \ da. For φ Hamiltonic as above and ψ any (m — l)-form, a new
(m — l)-form

{<p, ψ} = U \ dψ

has been defined in [4], and called the Poίsson bracket.
In the theory of Kijowski, the dynamic forms whose support

has a certain compactness property [6, 112] are used to define
observables by being integrated over extremals. Two dynamic forms
whose difference vanishes on every extremal are called equivalent.

Our intent is to give a sufficient condition that a form be
equivalent to a Hamiltonic form. The condition ("manifestly dynamic
form") does not involve the postulation of a canonic vector field U.
The precise definitions require a preliminary discussion of the type
of m-form a to be considered.

The m-form a is required to originate in a Lagrangian [4]. The
a is supposed to be defined on a first-order jet bundle
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14 RICHARD ARENS

where Q is some differentiate manifold. (The integer n is reserved
for the dimension of Q. When m = 1, Q is the configuration space.
Otherwise it can be regarded as the range of a field over space-
time.)

Such an m-f orm is expressible by a formula which we take from
[4, (3.15)], with a change of notation:

(1.1) α = Σ Σ (-ly^pidrfdt1 d Γ ~ W + 1 -- dtm - Hdt1 - - dtm

Although intending the Grassmann product here, we will omit the

sign(Λ) employed in [4].

2* Some formal properties of a and da* Suppose (i, j, , fc)
is an ordered m-tuple of integers 1 <̂  i, j, ---,k ^ m. Let

ϋ^...* = 0 if they are not all distinct

and

EtJ... = ± l / ( m - 1)!

when they are an even (or odd, respectively) permutation of
1, 2, , m. Then we can use the summation convention and write

a = Ei5...kv\dxxdV - - dtk - Hdt1 - dtm .

Repeated Roman indices are summed 1 to m and Greek indices, 1

to n. Thus

da = Eij,...,kdp\dxλdtj dtk - dHdt1 di* .

Let us introduce some 1-forms

(2.1) X1 = dx* - ^ d t l ,
dpi

and some m-forms

(2.2) P λ = E u , . . . , j . p W ••• d t k + ψ-^t1 ' • • d t m .
OX

The vanishing of these forms is the content of Hamilton's canonic

equations when m = 1.

THEOREM.

(2.3) da= -XλPλ.

(2.4) 3 jdα=-ft.
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(2.5) — J da = XλEiό...kdP - - dtk .

These are elementary consequences of 2.1 αm£ 2.2. From 2.5 (me feαs
£foβ following:

THEOREM 2.6. Let Alf —-,An be (m — 1)-forms involving only
dt\ , c££m. TΛew ίfrere ecmίs α vector field U such that

Ul da = X ^ .

A property characterizing extremals E for a is this: £7 is an
m-dimensional submanifold and whenever U is a vector then the
restriction (U1 da)\E is 0 [4], [8, (1.1)].

THEOREM. An m-dimensional submanifold E is an extremal
for a if

(2.7) Xλ\E and Pλ\E are 0 for λ = 1, , n .

Proof. (U\ da)\E= (U \ Xλ)\E A Pλ - X^ |# Λ (£/J P 2)| j0 - 0.

An extremal E shall be called a motion if the forms
(Ei3:..kdtj, dtk)\E are not all 0 at any point (of E). The extremals
met in applications are invariably motions. In fact dt1 dtm isn't 0
on them; moreover, every extremal is a motion when m — 1.

THEOREM. Let E be a motion. Then 2.7 holds.

Proof. We can infer that the forms in 2.4 and 2.5 vanish on
E. Therefore Pλ\E = 0, while 2.5 and regularity yield Xx\E=0.

A different sort of property of a is this.

PROPOSITION.

(2.8)

Then

(2.9)

Suppose that

dtm

d
dtm

= 0

•J a

has, apart from a constant factor, just the form 1.1 with m
diminished by 1.

This form 2.9 is Hamiltonic, when 2.8 holds.
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3* Manifestly dynamic forms* Any m-form which can be
written as

(3.1) AλX
λ + BλdXλ + cλPλ

(where these coefficient-forms are of degree m — 1, m — 2, and 0
respectively) vanishes when restricted to any motion.

If φ is an (m — l)-form where dφ is of the form 3.1 then the
restriction dφ\E to any motion E is 0 and thus φ is manifestly
dynamic. We will define φ to be manifestly dynamic precisely when
dφ is of the form 3.1.

PROPOSITION. [8, 112] A Hamiltonic form is manifestly
dynamic.

Proof. If dφ = U] dφ then dφ = —(Σ7J Xλ)Pλ + Xλ(Uj Pλ),
which is of the form 3.1. The converse is discussed in §6.

Our first theorem is of a local kind.

THEOREM 3.2. Let φ be manifestly dynamic in the neighborhood
of some point. Then in some neighborhood of that point there exist
(m — 2)-forms Fu , F% such that φ — FλX

λ is Hamiltonic.

Proof. We call any form like FλX
λ an X-form. Our method is

to keep subtracting X-forms from φ until we come to a Hamiltonic
form.

We are given that dφ = AλX
λ + BλdXλ + cλPλ.

Clearly d(φ + BλX
λ) is of the form CxX

λ + cΨλ. In other words,
we have reduced our problem to the case dφ — AλX

λ + cλPλ. If the
Aλ here involved only dt\ , dtm, then by 2.6 and 2.4 this φ would
be Hamiltonic.

In the contrary case, write

dφ = aχ...τdxλ dxτ + R

where aλ...τ is a form involving only the dp's and dt's, where the
number of indices λ τ is JV, and R is form wherein each term
has less than N factors dxμ. We take the aλ...τ to be alternating,
and assume that one of them is not 0.

Let dP9 du dx denote exterior differentiations with respect to
the p% the £'s, the x's, respectively. Of course

(dp + dt + dx)(ax...rdxλ dxτ + R) = 0 .

From this one can see that
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dx(dχ...τdxχ ' - dxT) = 0 .

By Poincare's lemma we can write

aλ...τdxλ - dxτ = dxAx...σdxλ dxσ

in some neighborhood of the point in question. Here we may take
the Ax...a to be alternating in their N — 1 indices.

Let

Φ = Aλ...Pσdxλ dxpXσ

= Aλ...σdxλ - dx° + Aλ...tdxλ dxpTσ

where T° = Xσ — dx% a form with no dx. Now

dΦ = αj...r(ZB* dxτ + dβ(AΛ...^d^ dxpTσ) + (dp + dt)Φ ,

whence d{φ - Φ) = R - dx(Aλ...σdxx - - Tσ) - (dp + dr)Φ. The form on
the right has degree less than N in the dx1. By induction we may
therefore assume

dφ = XλAχ + CλPχ

where Aλ is a form involving only the dp's and dt's. We break up
Ax in the manner

Aλ = NAλ + N_,Aλ + + 0Aλ

where όAλ is homogeneous of degree j in the dp's (and hence of
degree m — 1 — j in the dt9s). We assume specifically that some

NAχ is not 0. Anyway

dφ = dx\NAλ + + (A) + cΨλ .

For greater brevity, write

dφ = dx\aλ + bλ+ - -) + cΨλ .

So

0 = —dx\dpaλ + dtaλ + d ^ + djbλ + dtbλ + d ^ + •)

+ (dpc
λ + dl.ĉ  + dxc

λ)Pχ - cλ(dpPχ + dtPλ + d^P^) .

Now dxλdxaλ has 2ώ's and nothing else does, so dx{dxxaλ) = 0.
Next consider that dxxdpaλ has N + 1 dp's, and one eta. If iSΓ ̂  1,
then d ^ c ^ and dxPλ haven't enough dp's to cancel dxxdpaλ. So
dp(dxxaχ) = 0.

Denote ώ^αλ by ψ. So (c2x + ίZp)̂  = 0. I declare that there is
a form ω in a neighborhood of the point in question such that
ψ — dxdpω. This is really a general lemma with hypotheses:
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{dp + dx)ψ = 0 and ψ is homogeneous of degree N ^ 1 In dp and
homogeneous of degree M :> 1 in c£x. Locally, then,

where the suffixes show the degree of homogeneity in dp, dx
(respectively) of each term. Thus ψ is the sum of the entries of
the matrix

0

Here δ = dpf θ = dx, and the two entries of each column agree in
their homogeneity. From the first column we obtain M+N_2(ϋ0 — δbx.
From the second column we see that δM+N_2ω1 + θδbt = 0. Observing
θδ — —δθ we conclude M+N-2®I — θbt = δb2. We continue thus until
we have dealt with the iVth column, from which we obtain M&>N-I —
θbN_x = δbN. Then we begin at the other end, and work backwards,
introducing forms cJm The final result can be guessed by interchang-
ing M and JV, δ and θ: M-IO)N ~ δcM_γ = θcM. Now we observe that
φ is the sum of the (N + l)th column:

= δ(δcM__1 + θcM) -f- Θ(βbχ^ι — δbjsr)

- δθ(cM + bN) .

Thus in our particular case

ψ = dxdpω = dxλ—-dpω
dxλ

where d/dx of any form means simply differentiate each coefficient.
The result is

aλ = — j d p ω .

Define

λ ~ dxλ

and let Φ = X;ft)A. Recall ϊ \ Then

(ZΦ = (dXλ)ωλ + Xλ(dpo)λ + c2tα>̂  + d ^ )

λ + dx{dtωλ{dtωλ + ^ ^
V dxμdx

α)2 + d
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Therefore

d(Φ -<p) = d(- Tλ)ωλ + dx\dtωλ)

- τ{dtωλ + dx^-^Λ - cΨλ .\ dxμdxλ I

We must now examine the dx terms on the right and see that
their degree in dp is less than N. Here we keep in mind that ω
is of degree N — 1. Thus we can arrive at a "new" φ with

dφ = XλAλ + GxPλ

where Aλ has no dp. As already remarked, this ultimate φ is
Hamiltonic. Thus ends our proof of 3.2.

4* Changes of coordinates* We show next that changes in
the coordinates for Q used in 3.1 leave unchanged the manifestly
dynamic forms.

If we choose new coordinates y\ , yn in Q and adopt them in
J(1)(Q, Rm) then we have even there

dy* = ^dx> .
dxλ

For the "momenta" associated to the yζ, which may be called
qi, the chain rule gives

Qi = pψ, ,
dyξ

whence the simple relation

oq\ ox

The chain rule also gives

JL = §ΞL _L _ Mis* —
dyζ dyζ dxx dxλ ζv

where

As a result

α = EiSt...thq\dy*dts -- dtk - Hdt1 dtk .
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P R O P O S I T I O N .

(4.2) Yξ = ^-
dxλ

We give a proof for m = 3. Taking i = 1 in 2.4 gives

d ] da = [daλ - —-dt1

oϊ \ dpi

From this you get at once that

3f 3ί2 dp\ dp\

Taking also i = 2 or 3 gives

Ji~~dFJ w^W^Wi dpi

Now

Xλ - J5? - Jidtf - Js'ώf .

From here we get an expression for Xλ in terms of the d/dp in
which these d/dp are the only things that change, and from which
we can see that 4.1 implies 4.2.

THEOREM 4.3. The class of manifestly dynamic forms is the
same for any two coordinate systems.

Proof. Say φ is manifestly dynamic in the x coordinates. Then
φ — FλX

λ is Hamiltonic. From 4.2 one can obtain G> such that
φ — GμY

μ is the same Hamiltonic form. Hence φ is manifestly
dynamic in the y coordinates.

We note the following, to emphasize in difference from 4.2:

Qξ = ̂ P a + %£s*vχ*EtJ...Jt' --dtk .
dyζ dxλ

5* A global version of T h e o r e m 3*1* A grobal version of 3.1
would follow from 3.1 if one could assert that the FλX

λ computed
in one coordinate neighborhood to make φ — FλX

x Hamiltonic had to
be the same as the GμY

μ computed in some other neighborhood (on
the overlap, of course).

We surely could assert this if the following were true.

5.1. H is such that when φ is of the form FλX
λ and dφ is of
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the form U} da, then φ must be 0.
For m = 2, n — 1 we know precisely for which H (5.1) holds.

In more general cases we can give examples where it holds.
Before examining when 5.1 holds we will show that it certainly

does not always hold. We will deal with the case m = 2 and Q = R.
So n = 1. We abbreviate p\ by p, pi by q, t1 by s, f by t and so

(5.2) α — pdxdt + #ds<2# — Hdsdt .

THEOREM 5.3. Lei i ί be analytic and satisfy the four partial
differential equations

Hpp = Hpq — Hqq = Hqs — Hpt + HpHqx — HqHpx = 0 .

Then every dynamic form is Hamiltonic.

Sketch of proof. With these hypotheses, the H is linear in p,
q, and

H — α(s, t, x)p + 6(8, t, x)q + c(s, t, x)

where α, 6, c satisfy the partial differential equation

(5.4) b8 - at + αδs - δα^ = 0 .

I now claim

5.5. Let P, Q, R, S be four numbers such that

P + Q + axp + bxq + cx = 0

at some point To of J\R, R2). Then there is an extremal p = p(s, t),
q = q(s, t), x = x(s, t) which passes through To and, makes hold at
To: ps = P, qt = Q, pt = S, qs = R.

Proof. It will suffice to find only those motions wherein x, p, q,
are expressed in terms of s, t. In such cases, the relevant differential
equations are just the Euler equations for

& + q
ds dt

namely

(p) ψψ-
ds dp

dt dq
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In the present notation these are

dx dx T

_ =
 a
 , — = 6

and (using subscripts for derivatives)

(5.6) Ps + Qt + axp + bxq + cx = 0 .

Let To have coordinates (p0, #0, s0, t0, x0). The integrability con-
ditions for the first two equations are precisely (5.4). Thus we can
find x with x(s0, t0) — x0.

We replace all x's in (5.6) by our solution x(s, t). We replace q
in (5.6) by q0 + Rs + Qt. Now we solve the resulting equation for
p using the initial data p = pQ + St for s = 0. Thus (5.4) is proved,
and we have found a 3-parameter family of motions.

We continue to describe our proof of the theorem. We look for
all pairs U, V of vectors at To tangent to these motions. These
pairs form a 3-parameter family. We now calculate conditions on
an arbitrary 2-form Φ that (Φ; U, V) = 0 for such pairs U, V. We
also calculate the condition that Φ have a representation as Fo J (da)To

with some vector FQ at To. We find that these conditions coincide.
If φ is dynamic, let Φ = dφ. At TQ it has the form Fo J (da)To.

Varying Γo gives us a vector field F such that dφ — F] (da). The
vector field JP is smooth because, m being greater than 1, it is
unique. This establishes (5.3).

When m = 2 and n = 1, the four quantities iϊ^, iϊ^, iϊ ί g, iϊg g —
Hpt + ΐiΓpiϊ^ — .ffgiϊpx mentioned in (5.3) lie at the heart of problem
(5.1). If these four quantities have no common zeros, then (5.1)
holds.

We omit the proof of this statement. The proof is easy. How-
ever, its generalization to other m, n is not known.

We can prove weakened versions of this statement. We prepare
the notation for presenting one such weakened version.

Let v\ p\y tι be coordinates as discussed in §2 and let H be the
function H appearing in the given m-form a. Define

for a fixed i and j (1 <£ ΐ, j ^ m) we have an n x n matrix Hί3

whose entries are these H}j>.
Let T be a point of this coordinate neighborhood. We will say

that condition H holds at T if for each index i there exist numbers
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clf "-jCm and integers klf - ,km such that Σ i U M ^ i is 0 while
Σ U M ^ is invertible.

We will say that an m-f orm a of the sort considered on J(1)(Q, Rm)
satisfies condition H if at each point there is a coordinate system
such that H holds.

THEOREM 5.7. // a satisfies condition H, then (5.1) holds.

We judge that a proof just with m — 3 will adequately indicate
the method of proof for the general case.

We start the proof by pointing out that if φ is a 2-form ex-
pressible as FλX

λ then

Φ = aλμX
λXμ + tyλdpμX

λ + CodVX1 ,

and

dφ = daλμX
λX^ - 2aλμdHidtiX'ί

+ dbf-λdp\Xλ + dciλdtίXλ + Cad

Here the order is not quite the natural one and is intended to
exhibit as the last term the term which shall be discussed first.
This term is a sum of several terms, of which one is

(5.8) WxHtidpμdptdtj

and one can see that this is the only term in dφ of the type dpdpdt.
We will now show that U J da has no term of the type dpdpdt, so
that (5.8) must vanish. Recall that

da - ~XλPλ = -X\Eijkdp\dt5dtk + H^dt'dfdtf) .

Let U be a vector field. Let <C7, dί«> = U\ (U, dpi) = U\, and let
(U, Xλ} = V\ Then

Uj da = - VλPλ + Xλ{Eijk(Uidtjdtk + 2Wdp\dtk)

+ HAU'dfdf ~ U'dt'df + U'dt'df) .

Indeed, there are no dpdpdt terms, so (5.8) is 0. Consequently

bξxHh - blM - 0 .

Let k = kίf multiply by the cQ- given by hypothesis, and sum on j .
Therefore

δ& Σ eyfljϊ, = WλK
λ» = 0

ύ

where K is invertible. Thus the ba are all 0.
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We now look for dpdtdt terms in dφ, and equate with those in
U1 da. This yields

' = - VλEίjkdp\dtjdtk .

From this

-caΈί% + cjλH% = -2VEijk .

We sum the values of this for (ijk) = (123), (231), (312). The left
hand sides yield 0 and the right hand side —12 P4, because Em = 2.
So the V*8 are 0. Using our hypothesis as before, we obtain ciλ = 0.

We examine the remainder of dφ for dpdtX terms, and equate.
This yields

fi = 2XλEίύkWdp\dtk .

For the components one obtains

aλμHii= -EhjiUWμ.

Pick μ. Then there exists a v Φ μ unless n = 1 (and then there
would be no aλμ\). So

aXμHii = 0 ,

and

axμ Σ cMit = 0 .

This forces aλμ = 0 for all λ. Thus φ = 0.
An easy way to obtain condition H is to let H be the sum of

the squares of all the p\.
Let me repeat that I don't think condition H has any deep con-

nection with (5.1). It just happens to be a condition which is rather
easy to satisfy, and through (5.7) shows that (5.1) is a reasonable
way to obtain a global version of (3.2), as follows:

THEOREM 5.9. Suppose (5.1) holds. Let φ be a manifestly
dynamic form. Then there exists a form ψ which in each coordinate
system can be expressed as FλX

λ such that φ — ψ is Hamiltonic.

We repeat, forms like this ψ vanish on all motions.

6* Are all dynamic forms manifestly so? When m = 2 and
n = 1, all dynamic forms are manifestly so. To show this, we use
a Theorem 6.1 presented below. We mention its generalization to
general m, n in (6.2). However, (6.2) does not enable us to prove
that all dynamic forms are manifestly so for all m, n. In fact, this
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is false for m = 3, n — 1 and m = 2, w = 2. Examples are given
below.

Let us use the notation of (5.2) and (5.3).

THEOREM 6.1. Let (p0, g0, 0, 0, xQ) be a point T of Jω(R, R2).
Suppose that the rank of the Hessian

(6.11) [*" H™
\Hpq ±lqq

is at least 1 at T. Suppose H is analytic. Let Uλ and U2 be two
vectors at T, with p, q, s, t, x components as given in the array

(6.12)
la b 1 0

\u v 0 1

Suppose X, dX, P vanish on the subspace of the tangent space T\K)
at T. Then there is an extremal submanifold which is tangent to
T, and T2.

Proof. By a rotation in the s — t plane we can arrive at the
case where Hpp Φ 0 at T. The hypotheses now yield that c = Hp,
w = Hq, a + v + Hx — 0, and

(6.13) Hpp{-u) + Hpq(-v + a) + Hqqb + Hqs - Hpt - Hpxw + Hqxc = 0 ,

are true at T.
Let p(s) = p0 + as, a(s) = q0 + bs, and solve the system

dx
—- = Hp(pQ + as, qQ + bs, s, 0, a?) ,
as

x(0) = x0 .

According to [10, §7], we can pose a Cauchy problem with p(s),
q(s), x(s) as the data for t — 0, and

(6.14) ψ = Hj^ = Hq,ψ + dΛ=-Hxds dt ds dt

as the differential equations. Because of the analyticity, we can
solve this system. As in (5.5), if (6.14) is solved, then the sub-
manifold p = p(s, t), q = q(s, t), x = x(s, t) is extremal. Let us call
it A.

Now we show that Uγ is tangent to A. Let s increase by ε, but
keep t = 0. Then approximately p increases by as, q by be, and x
by Hpe — cε. Thus the tangent for the section t = 0 is the given
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Next, keep s = 0 and let t grow. Then x grows by Hqε = we,
q grows by ( — Hx — a)ε = vs. More precisely, dx/dt — Hq, dq/dt = v,
dp/ds — α, dqjds — b and a + v + Hx = 0.

One must now write down in full the consequences of

at ds

The result resembles (6.13) to such an extent that it, together with
(6.13), forces dp/dt = u. Thus U2 is tangent to A and the proof of
(6.6) is complete.

The generalization of (6.1) for general m, n may be of interest.

THEOREM 6.2. Let T be a point of Jω(Q, Rm). Let Uu ••-, Um

be vectors at T such that the tι component of U$ is δj . Suppose that
the forms X\ dXλ, and Pλ all vanish on the linear space spanned
by these U5 at T. Suppose also that the rank of the matrix

(6.21) d*H

dpχdp'μ

is at least n(m — 1) where dim Q — n. Suppose H is analytic. Then

there is an extremal for (1.1) to which Ulf •••, Um are tangent.

COROLLARY 6.3. Let μ be an m-form in J ( 1 ) (Q, Rm) which

vanishes on all motions in the sense that μ\E = 0 for each motion

E. Let the hypotheses of (6.2) concerning T, Ulf , Um and H hold.

Then (μ; Ulf ••-, Um) = 0.

This is obviously a consequence of (6.2).

THEOREM 6.4. Consider an a as in (5.2), where H is as in (6.1).
Then every 2-form which vanishes on all motions can be expressed
as

μ = AX + bdX + cP

where A is a 1-form, b and c are sealars, while X and P are the
forms (2.1), (2.2) (m = 2, n = 1).

Proof. As in the proof of (6.1), we can easily bring it about
that HP9 Φ 0.

If μ and μ' are two forms such that μ — μ' can be written as
AX + bdX + cP we will write μ — μf.

If μ ~ μf and μ vanishes on all motions then so does μ\
From P = dqds — dpdt — Hxdsdt we see that dpdt ~ a form
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with only dqds and dsdt. Let us use dp, dq, ds, st, and X itself
as a basis for forms. Now X ~ 0. So given any μ, we can write
μ ~ μf where X and dpdt do not appear in μ\ More can be said
by examining dX. dX contains — Hppdpds. Therefore dpds ~ a
form with no X, no dp dt. Hence we may assume that μf has no
X, no dpds, and no dpdt.

Therefore assume

/* = μPqdpdq + μqsdqds + μqtdqdt + μ8tdsdt .

As (6.3) suggests, consider U1 and U2 with dp, dq, ds, dt com-
ponents given by the rows of

a b 1 0

c d 0 1 ,

and X components. The relation (P; Ulf U2) — 0 imposes —d —a
— Hx = 0. We calculate dX and replace efo by X + Hpds + Hqdt,
obtaining

<ZX = Hppdpds + Hpqdqds + Hqpdpdt + Hqqdqdt

+ JX + kdsdt .

Therefore

which is supposed to be 0, when the previous relation and

<Λ; Ulf U2) = μpq{ad - be) + ^ s ( - d ) + μqtb + jE£.f ,

hold. From this the reader can easily deduce that μ = 0.
We now come to the counterexample. The first one is in

J{1)(R3, R) and is based on the following

PROPOSITION 6.5. Let H = MCP1)2 + (PΎ + (p3)2]. Then a Z-form
vanishes1 on all the motions if and only if it is of the type

AX + BdX +cP + fdφ

where

φ = pXdp'dt1 - dp2dt2) ,

and A, B, c, f are forms of appropriate degree.

The proof is very routine and we leave it to the reader. Of
course (6.5) implies that φ is dynamic. The counterexample is

By vanishes on a motion E we mean the restriction to E is 0.
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provided by the following:

PROPOSITION 6.6. φ is not manifestly dynamic.

We omit the proof here also.

We now turn to J{1)(R2, R2).

PROPOSITION 6.7. Let H = M(PD 2 + (pΐ)2 + (pi)2 + (pϊ)2]. Then a
2-form vanishes on all the motions if and only if it is of the type

AxX
ι + A2X

2 + BλdXι + B2dX2 + c'P, + c2P2 + fdφ

where Al9 , g are forms of appropriate degree and

φ = v\dp\ - p\dp\ , ψ = p\dp\ - p\p\ .

The counterexample consists in the observation, which is easily
proved, that φ and ψ here are not manifestly dynamic.

There is an observation about the α(and H) in (6.5) which is
relevant to a question not yet raised in this paper. The observation
is as follows.

PROPOSITION 6.8. A 2-form vanishes on all the motions if and
only if it is of the type

AX + bdX

where A and b are forms of appropriate degree (one less than in
(6.5)).

Such a form is manifestly dynamic2. We have therefore the
following, which destroys a natural conjecture.

THEOREM 6.9. There exists a dynamic form ψ for which there
cannot be found a Hamiltonic ψf such that φ — φf vanishes on every
motion.

The ψ we have in mind here is that of (6.5).

7* Transformation theory* It seems fair to say that the
"transformation theory" of classical dynamics [9] is concerned with
choosing new coordinates so that a — Pidx1 — Hds takes the form

a - PdX* - HdS
2 This assertion concerns only the example of (6-5).
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where H is constant, as promised by Darboux' theorem.
It is easy to see that such a transformation theory is not pos-

sible when m ϊ> 2.

THEOREM 7.1. Suppose H is as in (5.7). Suppose also H is
analytic. Then it is not possible to find coordinates P, Q, S, T, X
in K and a function Z on K such that {see (5.2))

(7.2) a = PdXdT + QdSdX - ZdSdT

where Z is 0, or even where merely

Zlpp — Zlpq = ZlQQ — ^QS Z'PT ~^~ ZpJUqx Ziq/ipχ = 0 .

Proof. If a had the form (7.2), then, by (5.3) every dynamic from
would be Hamiltonian, whereas if H is as (5.7) this would not be true.

Lest one be tempted to think that if two Hamiltonians both
satisfy the hypothesis of (5.7) then their 2-forms differ only up to
a change of coordinates, we offer the following.

THEOREM 7.3. Suppose H — pHp + qHq. Then one cannot find
P, - , X and Z such that (10.2) holds but Z Φ PZP + QZQ.

Proof. Let .Fhave p, q, s, t, x components α, δ, u, v, w. Then
a calculation shows that

a A (FJ da)

= dqdsdtdx[(H — qHq)a + pHqb — pw]

— dpdsdtdx[qHpa + (H — pHp)b — qw] .

The rank of the matrix

Ή — qHg pHq — p

qHp H - pHp - q

is therefore invariant under changes of variables. This rank is 1
if and only if H = pHp + qHq. This suffices to prove (7.3).
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