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C*-ALGEBRAS ASSOCIATED WITH
IRRATIONAL ROTATIONS

MARC A. RIEFFEL

For any irrational number a let Aa be the transformation
group C*-algebra for the action of the integers on the circle
by powers of the rotation by angle 2πa. It is known that
Aa is simple and has a unique normalized trace, τ. We show
that for every β in (Z + Za) Π [0,1] there is a projection p
in Aa with τ(p) = β. When this fact is combined with the
very recent result of Pimsner and Voiculescu that if p is
any projection in Aa then τ{p) must be in the above set,
one can immediately show that, except for some obvious
redundancies, the Aa are not isomorphic for different a.
Moreover, we show that Aa and Aβ are strongly Morita
equivalent exactly if a and β are in the same orbit under
the action of GL (2, Z) on irrational numbers.

0* Introduction* Let a be an irrational number, and let S
denote the rotation by angle 2πa on the circle, T. Then the group
of integers, Z, acts as a transformation group on T by means of
powers of S, and we can form the corresponding transformation
group C*-algebra, Aa9 as defined in [8, 19, 30]. If we view S as
also acting on functions on Γ, and if C(T) denotes the algebra of
continuous complex-valued functions on T, then S acts as an auto-
morphism of C(T). This gives an action of Z as a group of auto-
morphisms of C(T), and Aa is just the crossed product algebra for
this action [19, 30]. A convenient concrete realization of Aa consists
of the norm-closed *-algebra of operators on L\T) generated by S
together with all the point wise multiplication operators, Mf, for
feC(T). It is known [8, 19, 22, 30] that Aa is a simple C*-algebra
(with identity element) not of type I, and that Aa has a unique
normalized trace, τ. In fact, on the dense *-subalgebra Ce(Z, T, a)
consisting of finite sums of the form ΣMfnS

n the trace is given by

where dt is Lebesgue measure on the circle normalized to give the
circle unit measure. (We remark that Theorem 1.1 of [27] can be
used to show that this dense subalgebra itself is also simple.)

Little else has been known about the Aa. In particular, it has
not been known whether or not the Aa are isomorphic as a varies.
An interesting question raised in 7.3 of [8], and again recently in
[22], is whether the Aa contain any projections. But in fact, shortly
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after [8] appeared, R. T. Powers showed in unpublished work that
there are self-adjoint elements in the Aa which have disconnected
spectrum, from which one can infer that the Aa contain proper
projections.

The main contribution of this paper is to show how to describe
very explicitly some projections in the Aa—so explicitly that it is
then obvious what value the trace has on them. Specifically, we
show:

THEOREM 1. For each βe(Z + Za) Π [0, 1] there is a projection
p in Aa such that τ(p) = β.

This result was announced in [26], together with the conjecture
that the trace of any projection in Aa must be in (Z + Za)C)[0, 1].
I was essentially through writing up this work when I received the
fascinating preprint [20] of M. Pimsner and D. Voiculescu in which
they show that the above conjecture is true. Their ingenious method
of proof consists of showing that Aa can be embedded in one of the
special AF algebras constructed by E. G. Effros and C. L. Shen [10]
whose KQ group is Z + Za, ordered as a subgroup of the real line
R. This fact, together with the results of the present paper, show
that the range of the trace on the projections in Aa is exactly
(Z + Za) Π [0, 1]. And this, in turn, settles the isomorphism question.
Specifically, as also stated in [20]:

THEOREM 2. If a and β are irrational numbers in the interval
[0, 1/2], and if Aa and Aβ are isomorphic, then a = β. If a is any
irrational number, with fractional part {a}, let β = {a} or 1 — {a}
depending on which is in [0, 1/2]. Then Aa and Aβ are isomorphic.

In § 1 we also point out that a trivial modification of the result
of Pimsner and Voiculescu also settles the isomorphism question for
the algebras of n x n matrices over the Aa. Specifically, if Mn

denotes the algebra of complex n x n matrices, then:

THEOREM 3. Let a and β be irrational numbers in [0, 1/2], and
let m and n be positive integers. If Mm (x) Aa is isomorphic to
Mn (x) Aβf then m = n and a = β.

Finally, in § 2 we show how our results together with those of
Pimsner and Voiculescu can also be used to settle the question of
when the Aa are strongly Morita equivalent, as defined in [24].
The main result is:
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THEOREM 4. The algebras Aa and Aβ are strongly Morita equi-
valent if and only if a and β are in thesame orbit of the action of
GL(2, Z) on irrational numbers by linear fractional transformations.

We conclude this paper by pointing out the implications of these
theorems for the transformation group C*-algebras for flows on the
torus at irrational angle, and also a curious consequence for func-
tions of a real variable.

There still remains much that is unknown about the Aa. Among
the few other facts which are known, are that the Aa are strongly
amenable, hence amenable and nuclear—see [28] by J. Rosenberg.
I am also familiar with unpublished work of P. Green in which he
shows that the group of invertible elements in an Aa is not connected,
so that the Aa are not themselves AF algebras. This result also has
just appeared at the end of [3]. During second corrections of this
paper I received the preprint [21] of Pimsner and Voiculescu in
which they show that the Ko group of Aa is Z + Za. They also
compute the Kλ group1. Also, a very recent combination of argu-
ments of S. Popa and myself [34] show that the strong Ext group
of Aa is Z + Z.

The Aa occur in a variety of situations. They are exactly the
C* -algebras generated by any pair of unitary operators U and V
which satisfy UV — XVU where λ = exp( — 2πia). They can be
defined as the C*-algebras corresponding to appropriate cocycles on
Z x Z as in [30]. They are exactly the simple C*-algebras on which
the torus group T2 has ergodic actions [1, 18, 33]. They occur as the
simple non-finite-dimensional quotients of the group C*-algebra of the
Heisenberg group over Z, that is, the group of 3 x 3 upper triangular
matrices with entries in Z and ones on the diagonal [16]. They
occur as the quotients by the commutator ideal of certain C*-algebras
associated to one-parameter semigroups in [7] (see also [11]). They
are Morita equivalent to the transformation group C*-algebras for
flows on the torus at irrational angles. (It was Phil Green who
pointed out to me that this is one consequence of the main theorem
of [24], and his results in [15] can be used to give more information
about the relation between these algebras.) Consequently, the Aa

are strongly Morita equivalent to certain simple quotients of the
group C*-algebras of various solvable Lie groups (see closing com-
ments in [12, 14]). The Aa are also related to the work of A. Connes
[5] concerning operator algebras associated with foliations2.

I am very indebted to R. T. Powers for having pointed out to
me at an early stage the benefits of being able to calculate the

1 See also [32].
2 See also [31].
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trace on projections, namely that if B is a separable C*-algebra with
unique normalized trace, then the range of the trace on the projec-
tions in B is a countable subset of the interval [0, 1] which is an
isomorphism invariant of B. I would also like to thank B. Blackadar
and P. Green for helpful comments.

1* Projections* For ease of notation we will view the elements
of C(T) as continuous functions on the real line, R, which are periodic
of period 1. Thus S just becomes the shift S(f)(t) = f(t - a) for
feC(T) and teR. Notice that SMf = M8{f)S. We will say that an
element of Aa is supported on { — 1, 0, 1} if it is of the form

MhS~ι + Mf + MgS
g

for h, f, g eC(T). We have the following slight refinement of The-
orem 1:

THEOREM 1.1. For every βe(Z + Zά) Π [0, 1] there is a projection
p in Aa9 supported on { — 1, 0, 1}, such that τ(p) = β.

Proof. Suppose that p is a projection supported on { — 1, 0, 1},
and expressed, as above, in terms of h, f, g. Then from the fact
that p is self-ad joint it is easily seen that / is real-valued, and that
h = S*(g). Combining this with the fact that p is idempotent, one
obtains:

(1) g(t)g(t - a) = 0,
(2) flr(ί)[l-/(ί)-/(ί-α)] = O,
( 3 ) /(ί)[l - /(«)] = I g(t) |2 + I g(t + a) \\

for teR. Conversely, it is easily seen that if / and g are elements
of C(T) which satisfy these equations, and if we let h = S*(g), then
the corresponding element of Aa will be a projection. Closer examina-
tion then shows that there are myriad choices of / and g which
satisfy these relations.

Since translation by a is the same on C(T) as translation by
the fractional part of α, we assume now that a e [0, 1], Furthermore
since S* is translation by 1 — α, so that Aa = A^a9 we can assume
that a 6 [0,1/2]. With this assumption, let us show first how to
construct a projection p such that τ(p) = a. For this, let / be
almost the characteristic function of [0, ά\, but rounded at the ends
in a somewhat careful way. Specifically, we notice that equation
(3) says that if f(t) is not 0 or 1, then either g{t) or g{t + a) is non-
zero (while equation (1) says that not both can be nonzero simul-
taneously). Then equation (2) says that if g(t) Φ 0, then f(t) +
f(t — a) = 1. Choose any ε > 0 such that ε < a and a + ε < 1/2.
On [0, ε] let / be any continuous function with values in [0, 1] and
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with /(0) = 0 and /(e) = l. On [a, α + ε] define / by f(t) = l-f(t-a)t

while on [ε, a] and [a + ε, 1] let / have values 1 and 0 respectively.
Finally, on [a, a + ε] define g by

g(t) = (/(ί)(l - /(«)))" ,

and let g have value zero elsewhere on [0, 1], Then / and g satisfy
relations (1), (2) and (3) above and so define a projection, whose trace

is [f(t)dt = a.
Jo

To handle the general case, note first that, for any positive
integer m, the algebra C{T) contains the algebra Cm(T) of continuous
functions on R periodic of period 1/m. On Cm(T) the shift by a
looks like the shift on C(T) by {ma}, the fractional part of ma.
What this means is that A{mcc] is embedded as a subalgebra of Aa,
with the same identity element. The restriction to A{ma] of the trace
on Aa will be the trace on A{ma}, and so a projection in A{mα} of trace
{ma}, constructed as above, will be a projection in Aa of same trace.
Furthermore, elements of A{ma} which are supported on { — 1, 0, 1}
will also be supported there when viewed as elements of Aa.

Finally, we must treat values of form { — ma} for m positive.
But for these it suffices to find projections of form 1 — { — ma} = {ma},
and this is handled above. Π

If we combine this theorem with that of Pimsner and Voiculescu
[20] described earlier, we obtain:

THEOREM 1.2. The range of the trace on projections in Aa is
exactly (Z + Za) D [0, 1].

To view this result in a wider context, let p and q be projec-
tions in a C*-algebra A. We say they are unitarily equivalent if
there is a unitary u in A such that q = upu*. It can be shown
that if \\p — q\\ < 1, then p and q are unitarily equivalent [19]. If
A is separable, it then follows that there is only a countable number
of unitary equivalence classes of projections in A. Now any trace
on A will be constant on unitary equivalence classes, and so the
range of the trace when restricted to projections will be a countable
set of positive numbers. If A has a unique normalized trace, then the
range of this trace on projections will be an isomorphism invariant
for A. All of this was pointed out to me by Robert T. Powers.

Now if (Z + Za) n [0, 1] = (Z + Zβ) Π [0, 1], with a, β e [0, 1], then
a quick calculation shows that β = a or 1 — a. Since, as noted
above, Aa = Ax_a (and, of course, Aa = Aa+n for all neZ), we see
that we have arrived at a proof of Theorem 2.
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We turn now to the proof of Theorem 3. Let Ba denote the
AF algebra constructed by Effros and Shen [10] whose KQ group is
Z + Za, and into which Pimsner and Voiculescu [20] show that Aa

can be embedded (with same identity element). As they emphasize,
Ba has a unique normalized trace whose range on projections is
(Z + Za) Π [0, 1]. Now Mn (x) Ba will have the same Ko group as Ba,
and will also have a unique normalized trace, but this trace is easily
seen now to have {n~\Z + Za)) Π [0, 1] as its range on projections.
Since Mn 0 Aa can be embedded in Mn(x) Bβ, it follows that the
range of the trace for Mn (x) Aa on projections must be contained in
(n~\Z + Za)) n [0, 1]. But if 0 < j + ka < n, and if we let m denote
the integer part of j Λ- ka, then (j — m) + ka is in [0, 1] so that
there is a projection, q, in Aa with τ{q) = (j — m) + ka. Since m < n,
we can form a projection in Mn (x) Aa which has q as one diagonal
entry, Γs in m other diagonal entries, and 0's elsewhere. It is clear
that the normalized trace for Mn (g) Aa on this projection will be
n~x{j + ka). Consequently:

PROPOSITION 1.3. The range of the normalized trace for Mn (g) Aa

on projections is exactly (n~\Z + Zα))Π[0, 1].

Proof of Theorem 3. The range of the trace of Mn (x) Aa and
Mn 0 Aβ on projections must clearly contain 1/m and 1/n respectively.
From Proposition 1.3 it follows that m = n. Then again from Propo-
sition 1.3, n~ιa = n~\p + qβ) and n~xβ = n~\r + sa). It follows that
a = β. Π

For the purposes of the next section, let us now interpret the
above results at the level of Ko groups, as defined in [9]. Let A
be a C*-algebra which has a faithful trace, τ. Then K0(A) will be
a partially ordered group for the reasons given in [6, 12]. Further-
more, τ defines an evident homomorphism, τ, from K0(A) to R, and
τ will be order preserving. From the earlier results one quickly
obtains:

PROPOSITION 1.4. As ordered group, τ(K0(Aa)) is just Z + Za
ordered as a subgroup of R.

As mentioned in the introduction, Pimsner and Voiculescu have
gone on to show [21] that τ is in fact an isomorphism of K0(Aa) with
Z + Za.

2. Morita equivalence* Let G be a locally compact group, and
let H and K be closed subgroups of G. Then G acts by translation
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on G/H and G/K, and we can restrict this action to K and H respec-
tively, so that K acts on G/H while H acts on G/K. The main
theorem of [24] then says that the corresponding transformation
group C*-algebras C*{K, G/H) and C*{H, G/K) are strongly Morita
equivalent.

If we apply the above to the case in which G = R, H — Z and
K = Za, we find that C*(Zα, R/Z) is strongly Morita equivalent to
C*(Z, R/Za). Now the first of these algebras is just Aa. But if we
apply the homeomorphism t —»tar1 to JB, we find that the second
of these algebras is isomorphic to C*(Za~\ R/Z). That is, Aa is
strongly Morita equivalent to A(β-i>. (Of course, if we want to
restrict to a in [0, 1] we need to take the fractional part of a~\
but for present purposes it is simpler not to make this restriction.)

As indicated earlier, Aa is obviously isomorphic to A{a+n) for any
neZ. Let GL (2, Z) denote the group of 2 x 2 matrices with entries
in Z and with determinant ± 1 , and let GL (2, Z) act on the set of
irrational numbers by

a b\ _ aa + b
fi d)a ~~ ca + d

It is well-known (see Appendix B of [17]) that GL (2, Z) is generated
by the matrices

0 Λ A

i o) a n d Gί)
But these are just the matrices which carry a to a~\ and a + 1
respectively. It follows that if a and β are irrational numbers which
are in the same orbit of the action of GL (2, Z), then Aa and Aβ are
strongly Morita equivalent. We will now see that by using the
results of Pimsner and Voiculescu we can show the converse, thus
obtaining a proof of Theorem 4.

If A and B are C*-algebras with identity elements which are
strongly Morita equivalent, then they are stably isomorphic [4], and
from this it is known that A and B will have isomorphic Ko groups.
Now, as mentioned earlier, traces on a C*-algebra define homomor-
phisms from the Ko group of the algebra into R. For C*-algebras
which are strongly Morita equivalent and have unique traces, the
ranges of the corresponding homomorphisms from the Ko groups will
be isomorphic as groups. But note from Proposition 1.4 that the
τ(jfiLo(Aβ)), as abstract groups, are all isomorphic anyway for different
a. So in order to gain significant information, what we need to show
is that for algebras which are strongly Morita equivalent, the iso-
morphisms which one obtains between the τ(K0(Aa)) are in fact order
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isomorphisms for the order obtained from being subgroups of JB.
To do this we must carefully relate traces to Morita equivalence.

Recall [4] that by a corner of a C*-algebra C with identity
element we mean a subalgebra of form pCp where p is a projection
in C, and that a corner is said to be full if it is not contained in
any proper two-sided ideal. Now for C*-algebras with identity ele-
ments, strong Morita equivalence is essentially the same as purely
algebraic Morita equivalence. In particular, in analogy with 22.7 of
[2], we have:

PROPOSITION 2.1. // C and D are C*-algebras which are strongly
Morita equivalent, and if they both have identity elements, then each
is a full corner of the algebra ofnxn matrices over the other, for
suitable n.

Proof. Let X be a C-D-equivalence bimodule (i.e., imprimitivity
bimodule—see 6.10 of [23]). By the definition of X, the range of
< , ) D spans a dense ideal of D. But since D has an identity ele-
ment, this range must in fact coincide with D. Consequently, we
can find 2n elements, xl9 , xn, yu , yn of X such that

Let Mn denote the algebra of n x n complex matrices and let E =
Mn (x) C. Consider Xn as an i£-jD-equivalence bimodule in the evident
way, and let x — {xu •••,#„} and y = {yu , yn}, which are elements
of X*. Then (x9 y)D = 1. Consequently, {y, x)D = 1 also, so that

i = (χf y)D{y, X)D = <P, y(v, %)D)D

= (x, <y, y)Eχ)D = <z, z)D f

where z — (y, y)ψx. Then

(z, z}E(z, z)E = ««, z}Ez, z)E

= (z(z, z)D, z)E = O, z)E ,

so that (z, z)E is a projection, which we will denote by p. Simple
calculations show that the map φ of D into E defined by φ(d) =
(zd, z)E is a *-homomorphism which is injective and into the corner
pEp. Finally, since the range of < , ) E is dense in E, the corner
pEp will be densely spanned by elements of form p(xf y)Ep for x,
yeXn. But a simple calculation shows that

Thus the range of φ is exactly the corner pEp. By reversing the
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roles of C and D one finds in the same way that C is isomorphic to
a corner in matrices over D. It is easily seen that the corners must
be full. •

Now if C and D are C*-algebras and if X is a C-D-equivalence
bimodule, then every trace on C can be induced by X to give a
trace on D. For the general case of possibly unbounded traces, this
is implicit in Proposition 28 of [14]. But in the present case of C*-
algebras with identity elements and of finite traces, the situation is
very simple:

PROPOSITION 2.2. Let C and D be C*-algebras with identity ele-
ments, and let X be a C-D-equivalence bimodule. Then there is a
bijection between the (nonnormalized) finite traces on C and those
on D, under which to a trace on C there is associated a trace τx on
D satisfying

(x, y)D) = τ((y, x)c)

for all x, y e X.

Proof. Since the span of the range of < , ) D is all of D, it
is clear that, if τx exists, then τx is uniquely determined by the
above condition. Let n, z, E and φ be defined as in the proof of
Proposition 2.1. Let τ also denote the corresponding (nonnormalized)
trace on Mn®C = E, and let τx be the trace on D defined by
τx(d) = τ{φ{d)). We show that τx satisfies the above condition. Let
x, y e X, and view them as the elements (x, 0, , 0) and (y, 0, , 0)
of Xn, so that

τ«V, X)E) = τ((yf x)c) .

Then

Tχ«P, V>D) = τ«z<>, y)Df Z>E)

= τ(«z, x}Ey, z)E) = τ«z, x)E(y, z)E)

, z)E(z, x)E) = τ((y(z, z)D, x)E)

/, x)E) = τ((y, x)c) . •

Let C, D and X still be as above, and let A be the linking
algebra for X as defined on page 350 of [4]. If τ is a trace on C
and if τx is defined as in Proposition 2.2, then a straightforward
calculation shows that the functional on A defined by using τ and
τx to evaluate on the diagonal of elements of A will be a trace. In
fact one quickly sees in this way that:
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PROPOSITION 2.3. Let C, D and X be as above, and let A be
the linking algebra for X. Then each trace on C has a unique ex-
tension to a trace on A. The restriction to D of this trace on A
will be τx.

By construction, C and D sit as complementary full corners of
the linking algebra A. We recall that if ψ is any homomorphism
between C*-algebras (possibly not preserving identity elements), then
ψ induces a homomorphism between the corresponding Ko groups.
This homomorphism is described in [9], and is denoted by ψ*. We
now need the following fact, which is undoubtedly familiar to other
workers in this area:

PROPOSITION 2.4. Let A be a C*-algebra with identity element,
let pAp be a full corner of A, and let ψ be the injection of pAp
into A. Then ψ* is an isomorphism of K0(pAp) with K0(A).

Proof. View X = pA as a pAp-A-eqxxivalence bimodule (6.8 of
[23]). Then, as in the proof of Proposition 2.1, we can find au ,
aneA such that Iafpat = 1. Let φ be the corresponding map of A
into Mn(pAp), so that φ(a) = (p(iiaafp)itj9 and φ maps A onto the
corner of Mn(pAp) defined by the projection (paia*p)i>j = P. Let V
be the element of Mn(A) whose first column consists of palf , pan,
and all of whose other entries are 0. Then a simple calculation shows
that F F * = P, while F* V is the matrix with 1 in the upper left
corner, and 0 elsewhere. Thus, "conjugation" of Mn{A) by V carries
φ(A) onto the corner of M%(A) consisting of the matrices all of whose
entries are zero except that in the upper left corner. If we view
ψ as giving also the inclusion of Mn(pAp) into Mn(A), we see in this
way that ψ*°φ* is the identity map on K0(A). (We use here the
fact that, as remarked in [9] immediately after the proof of Lemma
3.6, it does, not matter whether one uses unitary or Murrey-von
Neumann equivalence in defining KQ.) It follows that ψ* is surjec-
tive. Thus we have shown that the inclusion map of a full corner
into an algebra induces a surjection of Ko groups. But φ(A) is a
full corner of Mn(pAp), and φ is an isomorphism of A with φ(A).
It follows that φ* is surjective. Since ψ*°φ* is an isomorphism, it
follows that ψ* must be injective, and so is an isomorphism. •

Now let again X be a C-D-equivalence bimodule, and let A be
the linking algebra for X. Let ψ* and #* denote the isomorphisms
of K0(C) and K0(D) with K0(A) obtained from the inclusions of C and
D as corners of A. We will let Φx denote the isomorphism (θ^oψ^
of KQ(C) with K0(D). (We remark in passing that by this means
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one can see that the Picard group of a C*-algebra B, as defined in
[4], will act as a group of automorphisms of K0(B).)

PROPOSITION 2.5. Let C and D be C*-algebras with identity, let
X be a C-D-equivalence bimodule, let τ be a finite trace on C and
let τx be the corresponding {nonnormalized) trace on D defined
above. Let Φx denote the isomorphism of KQ(C) onto KQ(D) determined
by X as above, and let τ and τx be the homomorphisms of K0(C) and
K0(D) into R determined by τ and τx. Then

τχoφx = £ .

Proof. This follows immediately from the definitions and the
fact that τx is the restriction to D of the unique extension of τ to
the linking algebra. •

COROLLARY 2.6. Let C, Ό and X be as above, let τ be a trace
on C, and let τx be the corresponding trace on D. Then the ranges
of t and τx are the same.

Proof of Theorem 4. Suppose that Aa and Aβ are strongly
Morita equivalent, with equivalence bimodule X. Let τ be the nor-
malized trace on Aa, and let τx be the corresponding (nonnormalized)
trace on Aβ, so that τx(K0(Aβ)) = τ(K0(Aa)). Now τx differs from the
normalized trace on Aβ only by a scalar multiple. From this and
Proposition 1.4 it follows that there is a positive real number r such
that Z + Zβ — r(Z + Zά). In particular, there are j , k, m, neZ
such that j + kβ = r and 1 = r(m + na). On eliminating r from
these equations one finds that a and β are in the same orbit of
GL (2, Z). This is a special case of the fact that if Z + Za and
Z + Zβ are isomorphic as ordered groups, then a and β are in the
same orbit of GL (2, Z), as mentioned in [7, 10] and shown in Lemma
4.7 of [29]. •

We remark that the situation described in the first two para-
graphs of this section is also interesting at the von Neumann algebra
level. Specifically, let M and N denote the von Neumann algebras
on L\R) generated by C*(Za, R/Z) and C*{Z, R/Za) respectively.
Then M and N are finite factors which are each other's commutants.
Thus the coupling constant between them is defined, and a simple
calculation shows that this coupling constant is just a. I plan to
discuss this matter and its generalizations in a future paper [35, 36].

Let R act on the torus T2 by the flow at an irrational angle,
α, and let Ca denote the corresponding transformation group C*-
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algebra. As mentioned in the introduction, Philip Green pointed out
to me some years ago that one consequence of the main theorem of
[24] is that Ca is Morita equivalent to Aa9 if the bookkeeping is done
correctly. It is well-known that the flow at an irrational angle is
the "flow under the constant function" corresponding to the rotation
on T by angle α, and Phil Green has shown, in as of yet unpublished
work, that quite generally the transformation group C*-algebra for
the flow under a constant function is strongly Morita equivalent to
that for the original transformation3. Moreover, from the results in
[15] he can conclude even more, namely that the C*-algebra for the
flow is isomorphic to the tensor product of the algebra of compact
operators with the C*-algebra for the transformation. In particular,
Ca will be stable [4]. It follows then from [4] that if Ca and Cβ

are strongly Morita equivalent, then they are in fact isomorphic.
Now the group of automorphisms of T2 is GL (2, Z), via its

evident action as automorphisms of Z2, the dual group of Γ2. Fur-
thermore, the corresponding action of GL (2, Z) on the one-parameter
subgroups of T2 of irrational slope is according to the action on
irrational numbers by fractional linear transformations described
earlier. It follows that Ca and Cβ are isomorphic if a and β are in
the same orbit under the action of GL (2, Z). With hindsight, this
might be viewed as the reason that the corresponding Aa and Aβ

are strongly Morita equivalent. Now if a and β are not in the same
orbit of GL (2, Z) then we have seen that Aa and Aβ are not strongly
Morita equivalent. Consequently:

THEOREM 2.7. The algebras Ca and Cβ are isomorphic if and
only if a and β are in the same orbit of GL (2, Z). If a and β
are not in the same orbit, then Ca and Cβ are not even strongly
Morita equivalent.

We conclude with a curiosity. By specializing the formulas of
[24], the strong Morita equivalence of Aa with A(α_1} can be described
quite explicitly. Specifically, CC(R), the space of continuous functions
of compact support on R, forms the natural equivalence (i.e., im-
primitivity) bimodule between the pre-C*-algebras Cc(Za, R/Z) and
CC(Z, R/Za). The actions of these algebras on CC(R) come from the
corresponding "covariant representations" obtained from translation
on CC(R) by Za and Z, and pointwise multiplication by functions of
period 1 and a respectively. If we denote the above algebras by C
and D respectively, as in [24], then the algebra-valued inner products
are given by

(F, G}c(m, r) = ΣnF(r - n)G(r - n - ma)

See also [37].
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(F, G)D(m, r) = ΣnF(r - na)G(r - na - m)

for F, Ge CC(R), meZ, r eR, where we write /(m, r) instead of the
/»(r) used earlier in this paper.

Let us consider projections in C which are of the form (F, F)c.
First, notice that there are many of them. For according to Proposi-
tion 2.1, D can be embedded as a corner in n x n matrices over C.
But in the present situation something special happens, namely that
in one direction matrices of size l x l will work. To see this,
assume that a e [0, 1], and let G be any nonnegative function in
CC(R) which is supported in an interval of length strictly smaller
than 1, but is strictly positive on an interval of length greater
than α. Then from the first of these conditions it follows that
(G, G)D(m, r) = 0 if m Φ 0, whereas from the second condition it
follows that <G, G)D(0, r) > 0 for all r e R. In other words, <G, G)D

is in the (Cartan) subalgebra C(R/Za) of D, and is invertible there.
Let H = G*«G, G)D)-m. Then He CC(R) and <#, H)D = U As seen
earlier, it follows that (H, H)c is a projection in C. In fact, it was
exactly this observation which led me to discover the projections
described in § 1. Now, again as seen earlier, the map /—> <iί*/, H)c

will be an isomorphism of D onto a corner of C (except for the fact
that C is not complete). In particular if p is any projection in D>
then (H*p, H*p)c will be a projection in C. Since we saw in § 1
that D contains many projections, of different sizes, it follows that
many (F, F)c are projections, of many sizes.

There is a simple abstract characterization of those F which
give projections:

PROPOSITION 2.8. Let X be an A-B-equivalence bimodule and let
xeX. Then <x, x)A is a projection iff x(x, x)B = x.

Proof. Suppose this last equation holds. Then from the fact
that x(x, Xs) B— (x, x)Ax it is easily seen that {x, x)A is idempotent,
and so is a projection since it is self-adjoint. Conversely, suppose
that (x, x)A is a projection. Then a simple calculation shows that

(x(x, x)B - x, x(x, x)B - x)A = 0 ,

so that x(x, x)B = x. D

Now the trace of (F, F)c is given by

, F)c) - [ΣnF(r - n)F(r - n)dr
Jo

= ί" \F(r)\*dr .
J
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Putting together this observation with Theorem 1.2 and Proposition
2.11 we obtain:

PROPOSITION 2.9. Let a be an irrational number, and let F be
an element of CC{R) which satisfies the functional equation

F(r) = Σm>nF(r - m)F(r - m - na)F{r - na) .

{There are many such F.) Then

I F(r) \2dr e (Z + Zd) n [0, 1] .

It is an interesting challenge to find a proof of this result con-
cerning functions of a real variable which does not use C*-algebra
techniques.
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