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LOCALLY SMOOTH TORUS GROUP ACTIONS ON
INTEGRAL COHOMOLOGY COMPLEX

PROJECTIVE SPACES

KAI WANG

Let X be a HCPn which admits a nontrivial smooth
S1 action. Petrie defined and studied a set functions ĉ (m)
which are important in the study of local representations.
In this paper, we extended Petrie's result to locally smooth
torus group actions on integral cohomology complex pro-
jective spaces.

Introduction* Let X be a closed smooth manifold homotopically
equivalent to CPn which admits a nontrivial smooth S1 action. An
interesting problem is to study the structure of the representations
of S1 on the normal fibers to the various components of the fixed
point set. Let the fixed point set Xs1 consist of k connected com-
ponents Xi9 ί ~ 1, 2, , k. Let ΎJ be the equivariant Hopf bundle
[3]. Choose xteXi and define k integers at by y\Xi(t) = ta*. Then
Petrie [3] proved the following.

THEOREM 0.1. The k integers at are distinct.

Suppose further that Xt = xif isolated points. Let TX\x.(t) =
Σi=i* s < i For each integer m and each i = 1, ••-,&, set

nό{m) — number of j Φ i such that m divides a5 — at

dt(m) = number of j = 1, , n such that m divides xtj ,

δt(m) = n^m) - dt(m) .

Then Petrie [3] proved the following.

THEOREM 0.2. δt(m) ̂  0 and ^(pr) = 0 if p is a prime.

Although so far the actions are smooth, it is not difficult to see
that the numbers α* can be defined in the same way for an S1 action
on an integral cohomology complex projective space and the numbers
Xij are defined if the action is locally smooth [1]. It turns out that
these results are also true for locally smooth S1 actions on integral
cohomology complex projective spaces. The main purpose of this
paper is to extend these results to the category of locally smooth
torus actions on integral cohomology complex projective spaces such
that the fixed point sets do not necessarily consist of isolated points.
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Our approach is different from [3] and is more elementary in the
sense that we do not need equivariant K-theoτy and the Atiyah
Singer Index Theorem. This paper is organized as follows. In §1,
we study the torus actions on principal S^-bunles in a very general
setting and prove an extension of Theorem 0.1. In §2, we study the
upper bound of the dimensions of certain invariant subspace. §3,
we study the functions δ^H) and prove an extension of Theorem 0.2.

!• Torus actions on principal S1 bundles* Let X be a para-
compact space which supports a left Ts action. Let π: P —> X be a
principal S1 bundle. The following result is due to Stewart and Su
[3, p. 126].

THEOREM 1.1. If H\X; Z) = 0, then a Ts action on X lifts to
a Ts action on P which commutes with the principal S1 action on
P' If (t, P) —> t p and (t9 p) —•> t © p denote two liftings of T8 to P,
then there is a homomorphism θ: T8 —> S1 such that

top = t-p θ(t) . •

Let (ί, p) —> tp be a fixed lifting. We define an equivariant
complex line bundle η over X by letting E(η) = PχsιC and t[p, z] =
[tp, z] where t eT8, zeC, p e P. Suppose that the fixed point set Xτs

is the disjoint union of k + 1 components Xif i = 0, ί, , k. For
each i, choose xi e Xt and define a character Xt of Ts by η | ̂ ί̂) =
Xt{t). In this section we will study the general properties of these
characters under the assumption that the fixed point set of any Ts

action on P is connected (including the empty set as usual).

LEMMA 1.2. For each i, there is a lifting of Ts to P such that
the associated equivariant complex line bundle rji satisfies

We will say that 7}i is the normalization of 7] at xt and the
lifting is normalized at xt.

Proof. Define a new lifting (ί, p) —> t°p by top = tpXt(t) and

let rjt be t h e associated equivariant complex line bundle. Let p e

π~\X5) and teTs,zeC,

[p, Vi\φ)*\ = to[p,z] = [Up, z] = [tpXt(t), z] = t[pXt(t), «]

- ipUt), Xάit)z\ = [p, Xj

Hence η^β) = Xό{t)Xλt)-\ •
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For the rest of this section, we will always assume that the
lifting is normalized at x0 and XQ(t) — 1.

LEMMA 1.3. Let HcT8 be a subgroup. Then π~\X3)(Z.PH if
and only if X3{g) = 1 for all geH.

Proof. Suppose that X3(g) = 1 for all geH. Let peπ~\X3).

[gp, A = g[p, A = [p, hWA = h>, A

Now it is clear that gp = p for all geH and consequently, peP11.
Conversely, suppose that π~\X3)aPΠ. Let peπ~\X3).

[p, A = [gp, A = g[p, A = [P, %ά(g)A

Hence X3(g) = 1 for all geH. Π

THEOREM 1.4. The k + 1 characters Xi are distinct.

Proof. If the k + 1 characters are not distinct, we may assume
without loss of generality that Xt = Xo. By Lemma 1.3, we have
XQ U XiCzπ(Pτs). Since we have assumed that Pτs is connected,
π(Pτs) is a connected subset of Xτs. It follows that Xt and Xo are
in the same component of Xτs. This is a contradiction. Hence Xt Φ
X3 for i Φ j . •

COROLLARY 1.5. π~\XQ) = Pτs. •

PROPOSITION 1.6. Let Hc:Ts be a subgroup. If Xt and Xo are
contained in the same component of XH, then Xt{g) — 1 for all geH.
Conversely, if PH is connected and Xt(g) = 1 for all geH, then Xt

and Xo are contained in the same component of XH.

Proof. If Xt and Xo are contained in the same component of
XH, then, for geH,

Conversely, if Xt(g) = 1 for all geH, then π~\X0 U X,) c PH by
Lemma 1.3. Since by assumption, PH is connected, Xo and Xt are
contained in the same component, namely π(PΠ), of XH. Π

2* The dimensions of invariant subspaces* For convenience,
let G = Ts. Let ^ —> EG be the universal principal G-bundle. It is
well-known that H*(BG, Q) = Q[tl9 ••-,«.] where degt, = 2. For the
sake of simplicity, we will write t = (tl9 •••, ί s). For a graded
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H*(BG, Q)-module M, we denote by M[t~ι\ for the localization of M
with respect to the multiplicative system generated by t. For a
G-space A, let AG — AXGEG which the associated bundle over BG

with fiber A. We will need the following result in [2].

PROPOSITION 2.1. Let A be a G-space. Then
( i ) The inclusion j : AG —> A induces an isomorphism

j * : H*(AG, Q^t-1] > H*{AG

ϋ, Q)^1] .

(ii) the top class in H*(A, Q) does not die in H*(AG, Q)^"1] if
A is orientable and AG Φ 0.

Let X be a closed topological manifold of dimension 2n which
is also a rational cohomology complex projective space and which
admits a G action. Write the fixed point set Xσ = Xo U U Xk as
a disjoint union of its components. By a theorem of Bredon [1, p.
378], each Xd is a rational cohomology complex projective space and
the inclusion Xd —> X induces isomorphisms j * : H\X, Q) —> H\Xh Q)
for i ^ dim Xd. Let F c l b e an oriented invariant submanifold and
let C = {i I Xi c Y). In this section, we will study the dimension of
Y under the assumption that YG = \J%eCX% where Gφ 0 . We would
like to point out that the most interesting case is that Y is a
component of the fixed point set of a subgroup of G.

THEOREM 2.2. With the above assumptions.

dimY g 2f Σ — dim Xt +
\ίec 2

Proof. By Proposition 2.1, H*(Yβ, Q)[t-ι]{H*(XGf Q)[t~1}, respec-
tively) is isomorphic to H*(Yg, Q)[t-%H*{XG, Q)[t-% respectively).
Since Yg =YG x BG and Xg = XG x BG.

i=0

and

This implies the rank of H*(YG, Gftt'1] over Q[ί, f1] is equal to
ΣίeσCl/ZdimiLi + 1). Let aeH2(HG, Q) represent the generator of
H\Xy Q) and let aγ be its image in H\Yβ, Q). Since H*(Xσ,
is a free algebra over Q[t, t-1] with basis 1, α, , αΛ, 2?*(ΓG,
is also a free algebra over Q[t, ί"1] with basis 1, av, , αj where
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is easily seen to be Σί6c7 (1/2 dim Xi + 1). Since the top classes in
H*(Y, Q) does not die in H*(Yβ, Q)[t-% we have

dim Y ^ 2fΣ — dimX, + l) .
\iec 2 /

COROLLARY 2.3. With the above assumptions,

dimY ^ 2(rkH*(Y, Q) - 1)

and the equality holds if and only if Y is a rational cohomology
complex protective space.

Proof Since rkH*(YG, Q) ^ rkH*(Y, Q) [see [1, p. 163]), and
rkH*{YG, Q) = l/2Σ iec(dimX i + l), the inequality follows immediately.
If the equality holds then rkH*(Y, Q) = rkH*(YG, Q) and Hodd(Y, Q) = 0.
This implies that Y is totally nonhomologous to zero in YG. Let
a = j*aγ where j : Y-*YQ is the inclusion. It follows that H*(Y, Q)
is generated by α. This implies that Y is a rational cohomology
complex projective space. The converse is obvious. •

REMRAK. Petrie's examples in [4] provide exotic S1 actions on
CP% such that the fixed point set component Y of Zpq c S1 has pro-
perty that d imΓ< 2(rkH*{Y, Q) - 1).

3. The functions δt(H). Let G be a compact Lie Groups and
let V be a enclidian space on which H operates orthogenally. We
say that a G action on a paracompact space X is locally smooth if
for each orbit Y of type G/H there is a linear tube

φ:GXHV >X

about Y in X, i.e., φ is an equivariant embedding onto an open neigh-
borhood of Y in X. Note that X must be a topological manifold
and the components of the fixed point set are topological submanif olds.
If x is a fixed point, then the action in a neighborhood of x is
equivalent to an orthogonal action. See [1] for details.

Let X be a closed integral cohomology complex projective space
of dimension 2w — 2 and let X admit a locally smooth Ts action.
Then X is the orbit space of a free S1 action on a closed integral
cohomology sphere X and the Ts action on X lifts to a Ts action on
Σ which commutes with the free S1 action. Let η be the equivariant
complex line bundle over X associated to a fixed lifting. Then η is
the equivariant Hopf bundle defined in [4]. Let the fixed point set

Xτs = X0ΌX1V --ΌX,
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be the disjoint union its components Xt. Each Xt is a closed integral
cohomology complex projective space of dimension 2ni — 2 and
ΣίUWί — n. Choose α^eX^ Define k + 1 characters X* as in §1.
Since Σ is an integral cohomology sphere, Σ Γ S is connected. By
Theorem 1.4, the k + 1 characters X* are distinct. For each i, let
Pi(t) — Σi^Γ^iiW be the representation in the normal fiber at x{ to Xz.

The following definition is essentially due to Petrie [3].

DEFINITION 3.1. For each subgroup HaTs and each i = 0, 1,
"',k, set at(H) = Σ e.^% wfterβ Aέ = {j Φ i\Ίj(g) = Z€(flr) /or αίί
geH}, βi(H) = card Bt where £, = {i|λιy(flr) = 1 /or αίί geH}. Let
δt(H) = a,{H) ~ β^(H). D

It is easy to see that the function δι(H) are independent of the
choice of the lifting. In this section, we will study the properties of

LEMMA 3.2. Let p be a prime and let HaTs be a subgroup of
order pa. Then XH has no p-torsions.

Proof. Choose a prime q Φ p such that Xπ has no g-torsions.
Let KdTs be a cyclic subgroup of order qb where 6 is so large
that Xκ - Xτ\ It follows from the results of [1],

rkH*(X; Z) = rkpH*(X; Zp) = rkpH*(Xs; Zp) ̂  rkH*(XH; Z)

= rkqH*(XH; Zq) ̂  rkqH*{{XH)κ\ Zq) - rkqH*(XT'; Zq)

= rkH*(Xτt; Z) - rkH*(X; Z) .

It follows that rkpH*(Xπ; Zp) = rkH*(XH; Z) and XH has no p-
torsions. Π

PROPOSITION 3.3. Let HaTs be a subgroup. Then XH is orien-
table.

Proof. Let KczH be a subgroup of order 2a such that H/K
has no element of even order. By Lemma 3.2, Xκ has no 2-torsions.
Hence Xκ is orientable. It has been shown in [1] that the fixed
point set of a locally smooth action of a finite group of odd order
or a torus group on an orientable manifold is always orientable. It
follows that XH is orientable. •

THEOREM 3.4. δt(H) ^ 0 for any subgroup Hc:Ts and δt(H) =
0 if H is a toral subgroup or a subgroup of order pa where p is a
prime.
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Proof. We may assume without loss of generality that i — 0.
Let Y be a component of XR which contains Xo. Let C = {j\X3 c: Y}.
It is obvious that Yτs = U e ^ By Proposition 1.6, C £ Ao U {0}.

It is clear that

±dimY = (nQ - 1) + βo(H) .
Li

By Theorem 2.2, we have

i-dimΓ ^ Σ wy - 1 ̂  Σ % + w0 - 1 - αo(#) + n0 - 1 .
2 jec jeA0

Hence δo(2ϊ) - ao(H) - βo(H) = ao(H) + n0 - 1 - 1/2 dimF ^ 0.
If if is a subgroup of order pα, it follows from P. A. Smith

Theorem that Σ 7 / is connected. Hence C = Ao U {0} by Proposition
1.6. By Lemma 3.2, 7 is a mod p cohomology complex projective
space without p-torsions. Hence Y is a rational cohomology complex
projective spaces. It follows easily from Corollary 2.3 δo(H) = 0.
Similarly, we can prove the case that H is a toral subgroup. •

COROLLARY 3.5. If δ^H) = 0 for i = 0, ••-,&, thenX11 is a disjoint
union of rational cohomology complex projective spaces for any sub-
group HdTs and Σ 7 / is connected for any normalized lifting.

We also include the following properties for future application.

PROPOSITION 3. Let Hc:Ts be a subgroup. If Xt and Xd are
contained in the same component of XH, then δ^H) = δj(H).

Proof. Let Y be the component of XH which contains Xt and
X3: It is clear that a^H) + n, = aά(H) + % and 1/2 dim Y = β^H) +

n i - 1 - βj(H) + ns - 1. It follows that δ^H) = δj(H). •

PROPOSITION 3. Let HaTs be a subgroup. IfllH) = XS(H) = 1
and δj(H) — 0, then δ^H) = 0.

Proof. It is clear from the proof of Theorem 3.4 that δ^H) — 0
implies Σ i f is connected where lifting is normalized at xd. By Pro-
position 1.6, Xi and Xd are contained in the same component of Xπ.
It follows from Proposition 3.5 that ^(JHΓ) - δj(H) = 0. Π

REFERENCES

1. G. E. Bredon, Introduction to Compact Transformation groups, Academic Press, New
York, 1972.



250 KAI WANG

2. G E. Bredon, Fixed point sets of actions on Poincare duality spaces, Topology, 12
(1973), 159-176.
3. T . Petrie, Smooth Sι actions on homotopy complex projective spaces and related topics,
Bull. Amer. Math. Soc, 78 (1972), 105-153.
4. 1 A setting for smooth Sι actions ivith applications to real algebraic actions on
P(Cin)y Topology, 13 (1974), 363-374.

Received October 30, 1978 and in revised form October 17, 1979.

STATE UNIVERSITY OF NEW YORK AT BUFFALO

BUFFALO, NY 14214




