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SPECTRAL SYNTHESIS IN PRODUCTS AND
QUOTIENTS OF HYPERGROUPS

AJAY KUMAR AND AJIT IQBAL SINGH*

In this paper we first discuss the coset spaces K/H and
K//H of left cosets and double cosets respectively of a hyper-
group K by a compact subhypergroup H. This development is
then used to obtain some results connecting spectral synthesis
for LY(K/H) to that for L'(K) when K is commutative. We
also indicate that some of the results for quotient group carry
over to K/H when H is a subgroup of the center Z(K) of K.
Finally we discuss how Malliavin’s theorem fails in a strong
way in many hypergroups and further show that for certain
closed sets of the form E,xE, in K’IXI{}, where K,=R*, Z*
etc. and K, is a locally compact commutative hypergroup such
that the dual K’z of K, is a o-compact hypergroup, £, x E, can
inherit various properties of E; such as being nonspectral,
non ultra-strong Ditkin for the respective hypergroup algebras.

1. Introduction. The propose of this paper is to discuss
spectral synthesis for quotients and products of hypergroups. The
basic development of harmonic analysis for hypergroups can be
found in ([10], [11}, [13], [20] and [21]). Spectral synthesis for
hypergroups has been developed in ([9], [7] and [8]). The motivation
for all this has been the fact that hypergroups arise in a natural
way as a double coset space, the space of conjugacy classes of a
compact group and harmonic analysis on them is closely related to
that of the groups, a survey of this can be found in ([18] and [6]).
Our main reference for the basic theory of hypergroups will be
[13] and most of the further notation and terminology is as in
([12], [9] and [7]). Throughout this paper K will denote a locally
compact hypergroup (same as ‘convo’ in [13]) possessing a Haar
measure m, L'(K) = L'(m) the convolution algebra and H a compact
subhypergroup of K. In §2 we discuss the quotient hypergroup
K//|H of double cosets and the Weil’s formula for L'(K//H), also we
briefly describe the situation for the left coset space K/H as well.
In the next section we confine our attention to those commutative
hypergroups K for which the dual Kisa hypergroup under pointwise
operations. We first identify the dual of K/H as the subhypergroup
H* of K and relate spectral synthesis of L'(K/H) with that of L'(K).
In particular, we show that 4Cc H* is spectral for L'(K/H) if it is so
for L'(K) and 4 is strong Ditkin for L'(K/H) if and only if it is so
for LY(K). In §4 we again take K to be a commutative hypergroup
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whose dual K is a hypergroup and prove similar results for the coset
space K/H, when H is a subgroup of the center Z(K) of K [19].
In the last section we discuss spectral synthesis for the hypergroup
algebra LK, X K,), where K, can be one of the R+, Z*, Naimark
example ([13], 9.5) and the dual F of the hypergroup F of conjugacy
classes of the compact group SU(2) ([13], 15.4 and [9], 4.7) and K,
is any commutative hypergroup whose dual 122 is a o-compact
hypergroup under pointwise operations. In particular we obtain
methods to find various nonspectral sets, non ultra-strong Ditkin
sets in K, X I@. In this process we also show how Malliavin’s
theorem fails in a strong way in many hypergroups. We just
remark that the analogues for Segal algebras of some of the results
on spectral synthesis in this paper can be easily formulated and
proved based on [7].!

2. Quotient hypergroups. In this section K will be a locally
compact hypergroup with Haar measure m and H a compact sub-
hypergroup of K with normalized Haar measure o. As shown in
([13], §14) the quotient map 7n on K onto the double coset space
K//|H = {HxxxH: x € K} gives rise to maps «,, on M(K) to M(K//H)
and 7#* on M(K//H) to M(K) defined by

Ty (1) = pow™ and T (Ppugen) = O#P,*0 .

Further K//H can be made into a hypergroup with convolution
defined by

L FaDmws i = | A P 7 Do)
K//H K//H
= S fomdp,x0+p,
K

for all fe B*(K//H). A Haar measure on K//H is given by m =

Pasppm(dx). Since the mapping & = Hxx+«H — 0*p,*o is the recom-
position of 7 consistent with m([13], 14.2H), we have the following
result.

THEOREM 2.1. (Weil’s formula) The Haar measure m on K//H
can be so chosen that

SK//HSH(O'*f)(x*E)dO'(S)dm(w') = §dem, for fin LK)
or equivalently

(A) SK//HSK fdowp,codin(d) = SK fdm .

1 The present paper along with [7] and [8] forms a major part of [23].
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REMARK 2.2. The reason why we call the above theorem the
Weil’s formula is that in case H is strongly normal in the sense
that p,x0 = oxp, for all 2 in K we have that x+«H = Hxx = Hxx+H
for each z in K and (A) takes the form

SK/HSHf (w+&)do(&)drn(t) = SKf(w)dm(m)

which is the natural analogue of Weil’s formula in the group case.

LemMmA 2.3. Let F, be a compact subset of K//H then there
exists a compact subset F, of K such that n(F,) = F',.

Proof. Follows from ([13], 13.2A).

THEOREM 2.4. Let T, be the mapping defined by T, f(H+x+«H)=
Sfda*px*a, felLK). Then
(i) for ge L(K//H) we have (3) f = gom € LX(K).

(b) fp=x=) = f(x) for all »,s€¢ H and x € K.

© | g@adit) = | ger@am@.

(ii) Ty is a bounded linear map of LK) onto L'(K//H) with
norm 1.

(iii) T, induces the isometric isomorphism =n*~' on the sub-
space of H-invariant functions in L'(K) onto L'(K//H).

(iv) In case H 1is strongly normal, T, is an algebra homomor-
phism.

Proof. For ge L'(K//|H), gom is Borel measurable ([13], 13.2G).
Using Theorem 2.1 simple computations show that gow e L'(K). Also
gom(nxaxg) = gom(x) for all xe K and 7, £€ H and Ty(gow) = ¢ with
llgem|l, = |lgll;. Thus we have (i) (a), (b) and (iii) and (i)(c) follows
from ([13], 18.2H). (ii) can be proved using Theorem 2.1. For (iv)
let us assume that p,x0 = o=p, for all x€ K. Simple computations
show that (Tyf); = Tyf, for all x € K, further this fact can be used
to prove that T, is an algebra homomorphism using ([13], 5.1D)
and the fact that (fxg), = f.*g.

REMARK 2.5. Mackey [14] and Bruhat [5] generalized Weil’s for-
mula for quotient space of a locally compact group G by a closed
subgroup H (not necessarily normal) which is also discussed as the
formula of Mackey-Bruhat for quasi-invariant measures m ([16],
VIII). In case H is compact the quotient space G/H can also be
thought of as the semi-convo of cosets with convolution given by
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Doerr*Dyerr = X Deyu@0(t), where ¢ is the Haar measure of H. It can
¢4

be shown th;t the measure w in ([16], VIII, 1.1) is left invariant
and therefore is the Haar measure on G/H ([13], 5-2, 8.2). Thus
Weil’s formula of Mackey and Bruhat fits well as Weil’s formula in
the hypergroup setting.

Now if K is a hypergroup with Haar measure m and x, is the
quotient map on K onto K/H, then we can show that K/H is a
semi-convo (using 2.3H, 10.3B, 13.2A, B, C and analogues of 14.1A,

14.1D of [13]) with Haar measure 7 = S Dam(dx). Since H is com-
K

pact using 5.3C of [13] we have that 4,(H) and 4,(H) are compact
subgroups of the multiplicative group of positive real numbers and
therefore 4,(H) = {1} = 4x(H). This helps us in showing that the
map x+«H — p,x0 is a recomposition of x, consistent with m or equi-
valently we have the Weil's formula in the following form

S/HKSHf (@x8)do(&)dm(E) = Sdem )

3. Spectral synthesis for L'(K/H). In this section we consider
only those K which are commutative and for which K is a hyper-
group with pointwise operations. Then every compact subhypergroup
H of K is strongly normal and thus gives rise to the quotient
hypergroup K/H which is commutative and therefore has a Haar
measure by ([21] or [13], 14.2). As in §2 above the Haar measure
m of K/H can be so chosen as to satisfy Weil’s formula. In this
case the convolution algebra L'K/H) is commutative and we can
discuss spectral synthesis for this algebra. For the sake of unifor-
mity we further assume that K = %,(K), eventhough for some of
the results it can be replaced by weaker conditions such as the
regularity of L'(K) on X,(K) ([9], [7]).

LEMMA 3.1. Let x, yc K, x«H = y+H implies that

§K fdpo = SK fdp,«o for all feCyK) .

Proof. By ([13], 3.2G), g fdp, =0 = S fdp,xo and now modify
14.1B of [13] using compactness of (x+H) U (y*H) and ([9], 2.5).

THEOREM 3.2. For @ in H*, ¢'(xxH) = p(x) defines an element
of (K/H)", @ — ¢’ is a one-to-one map of H* onto (K/H)".

Proof. We first note a fact often used in the proof namely for
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® in H*

S@dozg odo =1 .

K pis

Let x€ K and yex+H. Then ([13], 10.3A) gives a+H = y=H. By
Lemma 3.1 S PAY, 0 = g ®dp,xc, so using ([13], 3.1E) and the homo-

morphism property of @, we have that ¢(x) = @(y). Hence ¢’ is
well defined. Now using ([13], 4.2H) at appropriate places it is
easy to show that @'((w+xH)x(y+H)) = @'(xxH)p'(yxH). Clearly @' is
hermitian and ([13], 10.3B) implies that @’ is continuous and there-
fore o' e (K/H)". Obviously @ — @ is a well defined map. Using
([13], 8.1E, 10.3B) again we have that if e(K/H)" then @(x) =
w(x+H) defines an element in H* such that @’ = .. Thus 7 given
by 7(@) = " maps H* onto (K/H)" .

If F, is a compact subset of K/H then by Lemma 2.3 there
exists a compact subset F, of K such that =n(¥,) = F,. Consider
W(F, X, ) ={pe(K/H): |[X(x+H) — px=H)| < e for all xxHekF}
and W(F, X, &) ={yeK: | X(x) —v@)|<e for all xecF)nH".
Clearly n(W(F,, X', ¢)) = W(F,, X, ¢) and hence the result.

COROLLARY 3.3. (K/H)" 1is a commutative hypergroup under
pointwise operations.

COROLLARY 3.4. For each xc K ~ H there exists € H" such
that +r(x) # 1.

Proof. Apply Lemma 2.1 [19] to K/H.

LemMMA 3.5. The Fourier transform of T,fe L' (K/H) is the
restriction of the Fourier transform f of f to H*.

Proof. Apply Theorem 2.4 and ([13], 5.1D).
REMARK 3.6. We just note the algebra homomorphism property

of T, can be deduced from the above lemma using the uniqueness
of Fourier transform for the special K considered in this section.

REMARK 3.7. It is clear that from the proof of Theorem 3.2,
that X(K/H) = (K/H)” = H*.

LemmA 3.8. If H is compact or open then H* is open or com-
pact respectively.
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Proof. 1f H is compact then H is discrete. Since the restric-
tion map M K — H ([19], [10]) is continuous and H* = A1} we
have that H* is open in K. The other part follows using Theorem
3.2 since K/H is discrete and therefore (K/H)" is compact in this
case.

Lemma 3.9. The space of H-invariant functions in L'(K)
forms an ideal in L'(K).

Proof. Follows using ([9], 2.4) and ([13], 5.5A).

LEmMMA 3.10. ECK is a strong Ditkin (respectively, ultra-
strong Ditkin) set if and only if there exists a met {t}.s 0f finite
measures 1n M(K) such that

(@) (i) for each «, fi, has compact support and equals 1 in a
neighborhood of FE.

(ii) for each fek(E), ||pfll, — 0.

(b) There is a C = 0 such that for all feJ(E) (in L(K)) with
11 =1 we have || f=t, ], < C for all a.

(Respectively, we have an M = 0 with ||z.)] £ M for all «.)

Proof. Modify ([17], 2.2(b)).

TuEOREM 3.11. Let H be a compact subhypergroup of K and
4c H-. Then

(1) 4 is spectral for LNK/H) +f it 1s so for L'(K).

(ii) 4 s wultra-strong Ditkin (respectively, strong Ditkin,
Calderon) for L'(K/H) +f and only if it is so for L'(K).

(iii) 4 1s sequentially strong Ditkin for L(K/H) if it is so
Jor LNK). If K is first countable and 4 is sequentially strong
Dithin for LNK/H) then it 1s so for L'(K).

Proof. We shall only prove the ultra-strong Ditkin part of
(ii) and indicate a proof for the strong Ditkin case. It will be
clear how to formulate proof of the rest of the theorem.

Let 4 be ultra-strong Ditkin for LI(K) Then there is a net
{fulees in Ll(K) such that for each «, f, = 0 on a neighborhood V,
of 4 in K and 7, has compact support further M = sup {||f.ll: @€
A} < oo and for all fe LA(K) with £ =0 on 4 we have || f,xf — fl,—
0. Let feL'(K/H) be such that /=0 on 4. Then by Theorem 2.4
there exists f in LK) such that T,f = f, so for ved, F(7)=F(7)=
0 by Lemma 3.5. Let g, = T,f.(aed). Then by Lemma 3.5 again
for each «, g, vanishes on the neighborhood V,N H*' of 4 in H-
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and has compact support. Applying Theorem 2.4 we have that
{g.} serves as the required net.

Conversely, let 4 be ultra-strong Ditkin for L'(K/H), applying
Lemma 38.10 there exists a net {f.}.., in M(K/H) such that for
each q, [Za =1 on a neighborhood V, of 4 in H- and ﬁa has com-
pact support, further M = sup {||/%.|: @ € 4} < o= and for fe L(K/H)
with f zero on 4, ||fsft.|, —0. Let {us};., be an approximate unit
for L'(K) such that for each g, #i; has compact support U, and
lusll, =1 ([9], 2.8). Let W, = U, H*. Then W, is compact so
by ([9], 2.5) there exists §, e L'(K/H) such that §, =1 on W,. Let
f'a,ﬁ = ft,#J;. Then there exists f,,€ L'(K) such that T,f.; :fa,,g
and f, s(x«f) = f,s(x) for all xe K and 2e H. Let D be the directed
set Bx 4. For p= (B, a)eBx A, let h,=us — ugxf,; so that
h, = W51 — .5 and therefore h, is zero on V, and has compact
support contained in U;. Now

Wholly = lluslly + Hupsfasll = 1 + Hugsfosll: .

To estimate ||uif,:|l, we use Thujidg, = Tyu, which follows easily
using uniqueness of Fourier transform and the fact that QA@(’Y) =1
for ve W, and (T,u;)(v) =0 for yeH* ~ U, = H* ~ W,. This
equality will be used in further computations as well. Now using
Lemma 3.9 and Theorem 2.4 and ([13], 6.2B).

W fasllh = [ Tu(wpsfap) [l = || Tuwps T fusls
= || TI[uﬂ*gﬂ*ﬂam
= [[Tyugtelly = [| Tusli] 1]l = gLl el = M .

So |[hyll, =1 + M for all p. Fix any fe L'(K) such that # vanishes
on 4. Then for each meN there exists g,€B such that ||f—
f#ugll, <1/n for all 8 =4, Also for all n there exists a, such
that

| Tufrttll, <+ for all @ = a, .
n

Let ¢ > 0 be arbitrary. Let n,e N be such that 1/n, < ¢/2. Then
for (0 2 (00 = (,Bnoy ano)

Wb, — Fll = [ f*us — Fll + 1 xupfsls

<L i Frusfasll,
U2

Further using Lemma 3.9 and Theorem 2.4 again
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”f*uﬁ*fa,ﬁ|l1 = | TIIf*TIIu,B*g.ﬁ*/’.‘aHl
= || T, f* Tll“ﬂ*ﬂa”l
1

= Tyusll |l T/If*ﬂa”l <
n

0

So Hf*hﬂ - f”l < 2/m, < e.
) Hence {,},., serves as a required net. Now we note that for
he L'(K/H).

sup {|| =g, g € J(4) in L'(K/H) and [|g|], = 1}
= sup {|| h=Ty(gom)|;: g € J(4) in L(K/H) and ||§]/,=1}
< sup {|| hom=gor||;: g € J(4) in LN(K/H) and ||g]l, <1}

< sup {|| hemxg|l;: g € J(4) in LK) and [|g|, =1} .

So the proof for the ultra-strong Ditkin can be appropriately
changed to show that if 4 is strong Ditkin for L*(X) then it is so
for L'(K/H). For the converse part we choose h, as above using
strong Ditkin version of Lemma 3.9 and note that for feJ(4) in
LK) with [[f|l; =1 we have T, f €J(4) (in L((K/H)) and || Tuf|l,=
1 by Theorem 2.4 and Lemma 3.7; further we perform obvious
computations to show that || f=h,||, < C for all p.

COROLLARY 3.12. Let ECH' and veZK). Then E is
Calderon (respectively, strong Ditkin, wultra-strong Ditkin) for
LYK/H) +f and only if vE is so for L'(K).

Proof. It follows immediately from ([9], 3.7).

4. Quotient by subgroups of the center Z(K). In this section
H will be a closed subgroup of the center Z(K) of K where K is
a commutative hypergroup such that its duval K is also a hypergroup

under pointwise operations. As shown in ([9], 4.1) K/H = {zH: x ¢
K} is a commutative hypergroup with convolution defined by

S fdpxll*pyll - S fon-dpz*py .
K/H K
Let 0 be the Haar measure of H.

THEOREM 4.1. The Haar measure m on K/H can be chosen so
that

| sendoein = | sam sor att ser:x).

Proof. Define T, on Cun(K) by T,f(t)= Slf(xg)da(s). Then
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proof for the group case ([16], 1II, 3.2, 4.7) or ([12], 28.54) can be
modified to have the required result.

THEOREM 4.2. Let T, be as in proof of Theorem 4.1.

(i) FEwvery function fin LY (K/H) has the form T,f for some
fe LK) with |[f]l, = [ £l

(ii) Ty LYK)— L"(K/H) is an algebra homomorphism with
norm 1.

Proof. (i) for g e Cy(K/H) select feCy(K) as in ([16], III, 4.2),
(ii) involves simple computations.

THEOREM 4.3. For pe H*, 9o (xH) = p(x) defines an element
of (KIH)", » — @" is a one-to-one map of H' onto (K/H)". Hence
(K/H)" is also a hypergroun under pointwise operations.

Proof. (]12], 5.24(b)) can be modified using ([13], 10.3B, 3.2B)
again to give an analogue of Lemma 2.3 in this case also. Hence
the techniques of ([19], 4.4) can be used to have the required result.

LEMMA 4.4. The Fourier transform of T,fe L' (K/H) 1is the
restriction of the Fourier transform f of fto H*.

THEOREM 4.5. Let A4C H"'. If 4 1is spectral (respectively,
Calderon, strong Ditkin, sequentially strong Ditkin, ultra-strong
Ditkin) for LK) then 4 is so for LNK/H).

Proof. The proof is similar to that of the corresponding parts
of Theorem 3.11. We just note that analogues of other parts of
Theorem 3.11 are not available since we do not have an ideal I in
LK) (corresponding to the ideal of invariant functions in L'(K))
such that T, is an isometric algebraic homomorphism on I onto
LY(K/H).

5. Spectral synthesis in products of hypergroups. In [15]
Reiter gave an example of a function f in L'(R")(n = 3) and a - in
L=(R") such that f =0 exactly on the unit sphere S*! in R" and
{fyy ¥ # 0 for some y € R” but {(f*f)., v» = 0 for all ze R* which
in turn gives that f and f=f generate different closed ideals in
L)(R") but have the same zero set S"'. Malliavim proved that
every nondiserete locally compact abelian group G contains a non-
spectral set for A(G). It is well known that Malliavin’s theorem
is not true for hypergroups because every closed subset in K is
even strong Ditkin for the hypergroup K = Z. related to p-adic
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numbers ([11], [9] and [7]). However it was shown in [8] that not
every closed subset of Z} is ultra-strong Ditkin thus showing that
we have a weaker form of Malliavin’s theorem for Z.. In this
section we first show that Malliavin’s theorem fails even for Z, x
K,, K, being a compact abelian group with countable dual and on
the other hand we develop methods to find nonspectral and non
ultra-strong Ditkin sets for hypergroups of the type K = R+ X K,
or K =7, x K, respectively, where K, is a locally compact hyper-
group such that its dual K, is a o-compact hypergroup. We begin
with a few lemmas. As in ([13], 10.5) K, X K, can be made into a
hypergroup in the following way, if (s, ¢) and (x, y¥) are in K, X K,
then

Do Dy = (D50,) X (pD,), (5,8)7 = (3, t)

where K,, K, are locally compact hypergroups.

LemMmA 5.1. Let K, K, be locally compact commutaiive hyper-
groups. For every (X, X)eK, x K,, let [X, %] denote the function
(x,, x,) — L(x)X(x,) defined on K, x K,. Then the mapping 6: (X,
X) — [X, %] is a ome-to-one map of K, x K, onto (K, x K,)*. If
K, Kg are hypergroups then so is (K, X K,) .

LeMmA 5.2. Let K, K, be commutative hypergroups such that
Kl, K, are also hypergroups, fie LK) and f,e LNK,). If flz,y) =
filx) filly) for (x,y)e K, X K, then

(1) Fln, 7)) = FOFfre) for all (v, v.) e K, % K.

(i) f=f(, y) = fixfi@)fosfoy)-

LEMMA 5.3. Let K, K, be as in Lemma 5.2, fe LYK, X K,)
and %eK}. There exists fr,€ L'(K,) such that Fers, s = f,(7) for
each v, € K,.

Proof. Repeated applications of Fubini’s theorem give that f,
can be defined as f (x,) = g [y, x)v(w)dm(x,), m being the Haar
K,

measure of K.

The following results can be deduced from Theorem 3.11 and
4.5 above and ([9], 3.7 and 3.8).

THEOREM 5.4. Let K= K, X K,, K, and K, be as in Lemma
5.2.

(i) If K, is compact or a locally compact abelian group then
if ECK, is mot a spectral (respectively, Calderon sequentially
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strong Ditkin, wltra-strong Ditkin) set for LYK,) then Ex{l,} s
not a spectral (respectively, Calderon, sequentially strong Ditkin,
ultra-strong Ditkin) set for LK) where 1, is the identity of I@.

(ii) If K, is compact, (v, 7,) € Z(K,) x Z(K,) = Z(K, x K,) then
E c K, is Calderon (respectively, strong Ditkin, ultra-strong Ditkin)
Jor LYK)) if and only if v.E X {v,} is Calderon (respectively strong
Ditkin, wltra-strong Ditkin) for L'(K).

(iii) If K, is a compact abelian group with K, countable, K, is
discrete except at a countable subset S, and every point of S, is
Calderon (in particular when S,C Z(K.)) then every closed subset of
K, x K, is Calderon for L'(K).

REMARK 5.5. Theorem 5.4 (iii) gives us that Malliavin’s theorem
fails for more hypergroups such as Z, X T", T being the circle
group and % any positive integer.

The basic lemmas of this section, ([9], 2.5) and the techniques
of ([22], p. 419) can be further used to modify the proof of ([14],
3.8) and hence have the following generalizations to hypergroups
for p = 1* see also ([3], 2.5.5 (f)) ([1], p. 307) and ([2], p. 240).

THEOREM 5.6. Let K, K, be as in Lemma 5.2 with further
assumption that K, is o-compact. If E,C K, is a nonspectral set,
then E, X K, is a nonspectral set for LK, X K,).

THEOREM 5.7. Let K = R" X K,(n = 3) where K, 1s such that
122 18 a o-compact hypergroup and let E be a nonempty closed open
subset of K,. Then there is an fe L\(K) such that the closed ideal
generated by f«f does mot contain f and Z(f) = S x E.

Proof. Let f, in L*(R") and +, in L* (R") be the same as f,
in ([15], §2, Theorem 1) and g, be a rotationally invariant function
in L'(R™) such that §, > 0. Using ([9], 2.5) and techmques of ([22]
p. 419) there are f,, g, < L(K,) such that Z(§,) = E, Z(f,) = K,~E
and §,=0, f,=0. Since E = @ and the zero set of I,,, the closed
ideal in L'(K,) generated by g, is K, we have that f,¢ I,,. So there
exists 4, € L”(K,) such that (f;, ¥,y # 0 but <k, 4> =0 for all he I,,.
Define f on R X K, by

S, @) = filx)fe(x) + 9.(0)g:(:)

Let + be defined on R* X K, by (x,, 2,) = %(xl)cjréxg). Then €
L*(R* X K,). Clearly S*»! x E is the zero set of f. Consider (y,

* For p-spectral synthesis in hypergroups see [23] and [24].
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9,) € R* X K, where y, is the identity of K, and ¥, is an element of
R* with the first coordinate between 0 and 1/2 and with other
coordinates zero. Then f, = (f),/f; + (9.),,9.. Since {f;, ¥, # 0 and
{gs, ¥») = 0, Reiter’s computations in ([15], § 2, Theorem 1) can be
modified to give that (f,, v» # 0. But for any z = (¢, 2,) e R" X K,
using Lemma 5.2 and ([9], 2.2, 2.4),

<(f*f)z’ "/’> = <(f1*f1)z1y "lf1> <(f2*f2)z2, "/r2>
+ 2<(.f1*gl)zl, "k1> <(.f2*g2)227 ¢2>
+ <(gl*gl)z1, ¥ <(gz*g2)z2; ¥ =0,

because <k, ¥,y =0 for all & in I, I, contains (f;xg.).,, = (f2),*9:
and (g:+0s)., = (02).,0: using ([9], 2.4, 2.11) and ((fi+f)., ¥ is zero.
Hence f and fxf generate different closed ideals in L'(R" X K,).
The proof of ([15], §2, Theorem 2) can be used in the same
way to obtain the following generalization of the above theorem.

THEOREM 5.8. If T is an arbitrary closed set in R" such that
S*t~T+® and E is as in Theorem 5.7, then for m = 3 there
exists f in L'(R" X K,) whose zero set is (S U T) X K and f, f*f
generate different closed ideals in L'(R" X K,).

THEOREM b5.9. Let K, be as in Theorem 5.7. For n =3 (S*'U
T) X K is a nonspectral set in R™ X IZ} for LNR" X K,) where E 1s
a nonempty closed open set in R, and T is as in Theorem 5.8. In
particular S™* X K is nonspectral.

Proof. Follows from Theorem 5.8.

Now we consider R* = [0, ) viewed as the hypergroup R+ =
G; of B-orbits in G = R*(n = 8) where B is the compact group of
rotations in G. See the discussion in ([18], §3) and ([9], 4.3).

THEOREM 5.10. {u,} X E is a nonspectral set in R+ x K, where
2, = 0 is any point of R* and K, and E are as itn Theorem 5.7.

Proof. 1t follows immediately from Theorem 5.7 since f, and
g, are rotationally invariant.

REMARK 5.11. In the above theorems £ can be a subset of
L(K,) if we assume the regularity of LYK, on X,(K,), the hyper-
group R* can be replaced by a hypergroup K, whose dual K, is a
o-compact hypergroup and the set {x,} by a set E, in K, if there
exists a function f; in L'XK,) such that f, and f,xf, generate
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different closed ideals in L'(K,) and the zero set of f, is exactly E..
Now we discuss another method to obtain nonspectral sets for
certain hypergroups whose obvious generalizations can be easily
formulated in view of discussion in ([9], 4.3).

THEOREM 5.12. Let K = K, X K, where K, is as in Theorem
5.7 and K, is the dual F of the hypergroup F of conjugacy classes
of the compact group SUQ2) ([13], 15.4) and ([9], 4.7). Then {X,} X
E is a momspectral set in K, x K, where 0e€(0, ) and K is as in
Theorem 5.7.

Proof. Let f,, g,€ L'(K,) be as in Theorem 5.7 and g, € L'(K,) be
such that §, > 0. Let m({n}) = a, for ne K, so that a, > 0 for all
ne kK, For 6¢(0,n) let g, be as in ([9], 4.7). Then g, L°(K)).
For a function & on K vanishing outside {0, 1, 2},

AL = 1O, + h(1)a, cos 6 + h(2)a2<1 - _g-sinm)

and <h, gy = —h(l)a, sin 6 — (8/3)h(2)a, sin 6 cos . Taking fi(0)a, =
sin 20, f(Da, = —25sin 6, fi(2)a, = 0 we have f,(X;,) = 0 but {f,, g, +*
0 and f.(X,) = 2sinf(cos 0 — cos &) = 0 for 6 = ¢'. Also taking

—é— + %coszﬁ, ?.Da, = ——g— cosd and

I

P:(0)ax,
P,2)a, =1, we have ¢,(X;) = 0 = {(p,, gy
but ¢,(Xy,) = 4/3(cos @ — cos §')* # 0 for 0 + ¢'. Let
S, v) = fio)f(y) + 9.(@)g.(y)

and

P, ¥) = P(x)f(y) + 9.(x)g:(y) -

Clearly the zero set of f as well as that of & is {X,} x E. Define
Lovo(x, y) = Zp(x)v:(y) and g,7:(x, y) = go(x)7.(y) and let B, = {X;7,: 7, €
E} and F, = {gs7.: 7.€ E'}. Then in view of discussion in ([9], 4.3
and 4.7) I ={h:<h,y) =0, veE;} and J = {h: <h, ) =0, r e B, U
F,;} are distinet closed ideals with the same zero set E, since peJ
and fel~ J. Hence {X;} Xx E is a nonspectral set for LY(K,Xx K,).
In view of ([9], 4.3 and 4.7) the same conclusion also follows when

we take @(, y) = (fixf)(@) f£(¥) + 9:(2)g9:(¥).

REMARK 5.13. Let K, =[0, ) be the hypergroup named as
Naimark’s example ([13], 9.5)([9], 4.8) and K,, E be as in Theorem
5.7. Fix any b >0 and let a = b* then {X,} X E is a nonspectral
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set for L'(K, X K,). Let f, and ¢, be as in Theorem 5.7 and for
any fixed ¢ > 1 take g,(x) = f.(x) = ¢e*“/sinh x ([13], 9.5), we have
g, > 0. Select f, and @, in LYK,) as follows

@) = —L  for 0 < @ = 2%
sinh x b
=0 otherwise ,
1 — bx T
() = for 0 = —
Pi@) sinh % orbsws 2b
=0 otherwise

and define

[, y) = filx) fi(y) + 9.(x)9-(¥)
Pz, ¥) = P(2) fo(y) + 9.(2)g.(y)

The zero set of f and & is {4} X E. Let

Pr(x) = M for all xe K .
b sinh «

For 7v,eE let «(x, y) = ¥(x)7.(y). Then L™K, X K,). Also
{fi, v =0 and (P, 4,y # 0 and therefore {f, ) =0 and (@, ) #
0. As argued in Theorem 5.12 in view of discussion in ([9], 4.8)
we have that f and @ generate different closed ideals.

REMARK 5.14. Let K, be R, F or Naimark’s example and K,
be the hypergroup Z.([11], [8]). Then K, is a o-compact hyper-
group. If FE, is a closed set in K’g, which is finite and does not
contain the identity or is the complement of a finite set (and there-
fore contains the identity) then FE, is open. Even though by ([8],
Example 10) it is ultra-strong Ditkin for L'(K,), the above results
can be applied to have that {v} X E, is nonspectral for L' (K, X K,)
where ve K, ~ Z(K,). Our next result further shows that if K, is
an infinite closed set in Z; which is not open (and hence has an
infinite complement and therefore by ([8], Example 10) it is not
ultra-strong Ditkin for L'K,)), then {v} X E, is not ultra-strong
Ditkin for LYK, X K,).

THEOREM 5.15. Let K= Z, X K,, where K, is as in Lemma
5.2 and Z. is the hypergroup considered in ([11], [8]). Then E, X
E, is a mon-ultra-strong Ditkin set for L (K) where K, is (as in
[8]) an infinite closed subset of Z* such that its complement is
also infinite and E, is a nonempty closed subset of K,.

Proof. Let @ = g, in A(Z¥) be as in ([8], Example 10(ii)(c)).
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Also there exists ¢,€ L'(K,) such that §,+ 0 on X, Define f on
Z. x K, by f(x,y)= g/(x)g,(y). Clearly f belongs to k(E, x E,).
Suppose E, X K, is an ultra-strong Ditkin set then as in [8] the
Banach algebra k(F, X E,) has a bounded approximate identity and
therefore it has factorization by Cohen’s factorization theorem. So
there exist ¢, hek(E, X E,) such that f = gxh. Fix v,€ E, such
that §,(v,) # 0and without loss of generality we may take §,(v,) =1.
So for all v,e€ Z} using, Lemma 5.3,

g1(71) = f(71, 72) = g<'\/1; 72)3(71, 72)
G (1) (1)

I

that is g, = g,,*h,,. Since g, hek(E, X E,), g, and h;, belongs to
k(E,)) which is a contradiction to the proof of ([8], Example 10(ii)(c)).
Hence E, x E, is a non ultra-strong Ditkin set for L'(Z, X K,).

We thank the referee for his comments and suggestions.
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