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CLOSED ULTRAFILTERS AND REALCOMPACTNESS

TAKESI ISIWATA

We introduce some conditions which are closely related
to closed ultrafilters and establish interconnections among
these conditions and characterize realcompactness, almost
realcompactness, c-realcompactness and weak-eδ*-ness •••.

We introduce some conditions which are closely related to closed
ultrafilters and establish interconnections among these conditions and
characterize realcompactness, alomost realcompactness, c-realcompact-
ness and weak-c6*-ness, •••.

Throughout this paper, by a space we mean a completely regular
Hausdorff space and all functions are continuous and we assume
familiarity with [3] whose notation and terminology will be used
throughout. For a given space X, we denote by βX (or υX) the
Stone-Cech compactification (or realcompactification) of X. In § 1, we
give definitions and preliminaries and introduce some conditions which
are closely related to closed ultrafilters. In §2, we establish inter-
connections among conditions introduced in §1. In §3, we characterize
realcompactness, almost realcompactness c-realcompactness and weak-
eδ*-ness and give some examples in §4.

Notations and terminologies. N — the set of positive integers,
nbd = neighborhood, ω = the first countable ordinal, Ω = the first
uncountable ordinal, C(X) = the ring of all continuous functions on
χ9 Z(f) = the zero set of / 6 C(X) where we assume 0 £ f ^ 1,
Z(X) = the set of all zero sets, X* = βX — X. &~{& or & resp.) =
a free closed (open or regular closed resp.) ultrafilter. ^Γv{%"9) — a
free closed (Z) ultrafilter converging to p e X * . % = the set of
all ^ (similarly define <UV, tt and 31 resp.), c l ^ = {cl*7; Ue^} and
{^Jci I ({Fn}d I 0 ) — a decreasing sequence of closed sets (with the
empty intersection). Similarly we define {Rn}rc | and {Zn}ze j
where "re" and "ze" denote "Rn is a regular closed set" and "Zn is
a zero set" respectively.

1* Definitions and preliminaries* A family J ^ of subsets of
X is said to be stable if for any / e C(X) there is A e *S%f such that
/ | A is bounded. Mandelker ([10], Th. 5.1) has proved that X is
realcompact iff any stable closed family Jϊf with the finite intersection
property has non-empty intersection and Hardy and Woods ([4], Lemma
2.6) have obtained that & is stable iff there is p e υX — X and
& ~> p. We say that %f or & has CIP if Π cl An φ 0 for any
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An e <%s or & respectively.

1.1. (1) J^ e% (or IX) is stable iff *s>/ converges to some point
of υX - X.

(2) X is realcompact iff no J?~ is stable.
(3) For p 6 βX — υX, no prime closed (resp. open) filter j y

converging to p has CIP.

Proof. (1) From the same method used in the proof of Lemma
2.6 in [4]. (2) From (1). (3) Let peβX-υX. Then there is
/ 6 C(βX) with p e Z(f) c βX - υX. Since Sv? is prime, J / 9 f Λ =
{x e X; f(x) S l/w}(resp. Un = {x e X; f{x) < 1/n}) and hence J^ does
not have CIP.

The following are well known (e.g., p. 649 line 4 in [4]).

1.2. (1) U 3 ^ => &} = cl <& e 3t. If ^ has CIP, so has &.
( 2) ?HB^=^ <%f(R) = {U mtRczU for some Re^ and U is

open}eU. If & has CIP, so has
( 3 ) ix 9
( 4 )

1.3. We will divide X*, especially υX — X, into three do-
mains.

3(0) - { p e l * ; any J ^ p has CIP}.

3(0, Δ) = { p e Γ ; there are j ^ ? with CIP and <β^p without CIP}.

S(Δ) = {peX*; no ^ has CIP}.

8(0, Δ) - 8(Δ) Π (wX - X).

Similarly we define 11(0), 11(0, Δ), U(Δ), U(υ, Δ), 3t(0), 91(0, Δ),
St(Δ) and at(y, Δ)- From 1.1(3) and 1.2 we have 11(0) - 31(0), U(0, Δ) =
91(0, Δ), U(Δ) = 3l(Δ) and

1.4. As generalization of realcompactness, almost realcompactness
[1], c-realcompactness [2] and α-realcompactness [2] are introduced.
X is said to be almost realcompact if any open ultrafilter <%s with
CIP is fixed, that is, Π cl ^ ^ 0[1]. X is a-realcompact (= closed-
complete) if any closed ultrafilter ^ ^ with CIP is fixed [2]. We say
that X is c-realcompact if for each point p e βX — X, there exists
{Rn}rc i 0 with pef) c\βxRn [5]. From 1.2 and the definition we
have

(1) X is almost realcompact iff 1X(O) U 11(0, Δ) = 0
(2 ) X is c-realcompact iff 11(0) = 0 .
( 3 ) X is a-realcompact iff 8(0) U 3(0, Δ) = 0
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From these results and 1.2, it is natural to introduce the notion
of wα-realcompactness, that is, we say that X is wa-realcompact if
g(0) = 0 . Since %(0, Δ) = 0 for a normal space, a normal wa-
realcompact space is α-realeompaet. If X is either e-realcompact
or α-realcompact, then X is wα-realcompact (cf. 2.1(1) below). The
converse is not necessarily true (see 4.1 and 4.2 below). As another
generalization of cb (weak-cδ)-ness, we introduced the notion of cb*
(weak-cδ*) spaces [8]. X is said to be cb* (weak-cb*) if Π c\υZFn —
0(Π clυxRn = 0) for any {FJcl j 0({Rn}re I 0) . In [8] we proved that
X is cb* iff any perfect map onto X is hyper-real. The following
are easily seen by 1.1(3), 1.3 and the definitions.

(4 ) X is weak-cb* iff U(υ, Δ) U tt(0, Δ) = 0 .
(5) X is cb* i # 8(u, Δ) I) 8(0, Δ ) = 0
(6) X is realcompact iff X is wa-realcompact and cb*.
(7) X is countably compact iff §(0, Δ) U §(Δ) = 0 .
( 8 ) X is pseudocompact iff ΐt(0, Δ) U U(Δ) = 0 .

DEFINITION 1.5. g is said to be countably paracompact (= cp)
{weakly countably paracompact (= wcp)) if for any { F w e ^ ) l 0
there are {EneF} I 0 and {Z7Λ}OPen i such that EnczFn, EnaUn(En(Z
cl Ϊ7J and Π cl Un = 0 . Obviously we have

(1) // .J^ is either unstable or has CIP, then it is cp.
( 2 ) A cp ^ is wcp.

DEFINITION 1.6. For j ^ (or ^ ) , we denote by UC^H (or
the set of open (or closed) ultrafilters containing {U; U z> F for some
Fe^ (or cl ̂ ) } . In the sequel, "§(^O "^ 3>" means "any &~e%(&)
converges to p" and similarly we use "%(&) has CIP" and so on.
Then we have

(1) ^ -> p implies U{^) -> p and cl U{^) c ^T 1/ ^ " feαs
C/P, so ftαs 1I(^").

( 2 ) ^ ->p implies %(&) -* p. If %f does not have CIP, then
any ^e%(^) is wcp but does not have CIP.

( 3 ) For a given <Zf, <%f e ΐt(J^) for any S*" e

Proof. (1) and (2) are obvious. (3) Let ^ e g ( ^ ) and let W
be an open set containing some F e ^ If Wg %f, then there is Ue
<fί with Uf]W= 0 , so . ^ a i ^ n c l ί J ^ 0 , a contradiction. Thus

/ and hence ^

DEFINITION 1.7. We consider the following conditions.
(α)((/3)) For any peX*, ί/̂ βre is a wcp(cp)^p.
(sa)((sβ)) For any peX*, any ^ v is wcp{cp).
The following (1) and (2) follows from the definitions and the
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fact that if X is normal, then the closed ultrafilter converging to
p e X* is only one.

(1) (sβ) — (β) =- (a) and (sβ) => (sa) =* (a).
(2) If X is normal, then (β) => (sβ) and (a) ==> (sa).

From βX- υXaU(A), 1.1(3), 1.4(5), 1.6(1) and the result that X is
countably paracompact iff for any {Fn}cl j 0 , there is {Un; Fn c Un}oven[
0 with Π c\Un = 0 [7], we have

(3) If X is either countably paracompact or c&* then X has
(sβ).

There is a normal space which has neither (a) nor (β) (see 4.1
below).

1.8. As one of the nice property of the zero sets, it is known
that a Z-ultrafilter ^ has CIP iff ^ contains a prime Z-filter with
CIP. Unfortunately this is not necessarily true for closed ultrafilters.
N. Dykes [1] has, however, proved that if X is a c6-space, F has
CIP iff J^ contains a prime filter with CIP. In the following we
treat the related problem above. We consider the following con-
ditions.

(CPC) If ^~ contains a prime closed filter with CIP, then
has CIP.

(OPC) If j y is a prime open filter with CIP and cl S>/ c ,
then &~ has CIP.

(OPO) If Ήf contains a prime open filter with CIP, then ^
has CIP.

(WOPC) If %f has CIP, then %(^f) has CIP.
(ZC) If Z(X) f) J^ = %r* for p e υX - X, then ^ has CIP (cf.

2.2(3)).
Notice that (1) 5fp has CIP iff p e υX - X and (2) if J ^ has CIP,
then &~ Π Z(X) = %*p for some p e υX - X by 2.2(3) below. From
1.1(3), 1.4(4.5) and the definition, we have the following implications:

cδ* = > {ZC, OPC, CPC}
OPC = > WOPC

I

weak-cδ* => OPO (cf. 2.3(4)) .

There is a weak-cδ normal space without ZC (see, 4.1 below).

2* Interconnections among conditions introduced in §!•

2.1. (1) 3(0) c tt(0) and U(Δ) c
(2) Let p e l * . Then there is %fp without CIP iff there is

wcp ^ p without CIP. Equivalently let peX*, then peU(0) iff no
without CIP is wcp.
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(3) pe 11(0) ΓΊ §(Δ) iff no J^p has CIP and no J?~p is wcp.
(4) p e tt(0) ΓΊ 8(0, Δ) iff there are J?l* with CIP and J^? without

CIP and no J^~p without CIP is wcp.
( 5) peg(0, Δ)Πtt(O, Δ) iff there are J^? with CIP and a wcp
without CIP.

Proof. (1) Let p e §(0) and <Zί-+p. By 1.6(2), %(&) -> p, cl ^ c
for each J ^ e g ( ^ ) and %{^) has CIP, and hence ^ has CJP,

so pett(O). Now suppose that pelt(Δ) and J^-^p. Then U(^H
does not have CIP. By 1.6(1) &~ does not have C/P, so p e g ( Δ ) .

(2) ==> From 1.6. (2) «=. By the assumption, there is an open set
Un(neN)tclUne^ with nclf/%= 0 . Let N(p) be the open nbd
system of p in βX and let ^ z> {Un Π F; n e N, VeN(p)}. Obviously
<%f converges to p but does not have CIP.

(3) => Obvious. <=. From (2).
(4) => From p e %(0, Δ) and (2). =>. From (2) and the assumption.
(5)=- Since pe%(0, Δ), there is ^Γ^ with CIP. By (2), p e

ΐt(0, Δ) implies that there is a wcp ^2

V without CIP. <=. By the
assumption, we have pe$(0, Δ) and peΐt(O, Δ) by (1) and (2).

LEMMA 2.2. (1) // %sp has CIP, then Jϊf = {F; F contains some
UG ^ and F is closed} is a prime closed filter with CIP and cl ^ p c
a?" whenever Stf c ^ .

( 2 ) Let X is normal and let p e υX — X. Then J$? = {U; U
contains some Z e %"p and U is open) is a prime open filter with CIP.
If ^ -> p, then .$/ c ^ .

(3) If ^ has CIPy then Z(X) C\ ^ = %TP for some pe
υX - X.

Proof. (1) It is sufficient to show that j y is prime. Let E
and F be closed, E U Fe j^f and EZJtf. Then E\jFz) mt(E\jF) =
Ae^ and int E%<%f. Since ^ is a ultrafilter and int E U (X — E)
is dense in X, we have X — Ee^f, so A Π (X — E) e ^. Since A Π
(X — E) c int F, we have Fejzf. The latter part is obvious.

(2) It suffices to show that J ^ is prime. Suppose not; Let W
and V be open and let WU Vessf, WίJ^f and V& Szf, then there
is Ze JT* such that ^ c TF U V. As WgJϊf and VίJ*?, Z-W ¥= 0
and Z - F ^ 0. Since X is normal, there are zero sets Zx and Z%

such that I - F c l - Z ^ - TFc X - Z2 and (X - Z,) f] (X - Z2) =
0. T h u s ^ c F , so as F g J ^ ^ ί ^ . Thus Z2e%Tp. Similarly,
there are zero sets Z3 and Z± such that I - ? c I - Z 3 , Z - 7 c
X - Z, and (X - Zz) Π (X - Z,) = 0. As above, ^ e ^ p . Thus Z n
Z2(λZ,e πp. But ZnZ2nZ,c:WnV9 so TΓ and Fe jy; which is a
contradiction. Hence J ^ is prime.
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( 3) In general, it is evident that s*f Π Z(X) is a prime ^-filter
for a prime closed filter J^. Suppose that there is ZeZ(X) which
intersects each member of Z{X) n J^7 but Zi J^T Let Z = Z(/), / 6
C(X), Λ = {z; /(«) ^ 1M} and 5 Λ = {x: f(x) ^ 1/n). Since A%UBU =
X, ^ contains An or Bn. If /?„ 6 ̂  for infinitely many w, then

a contradiction. Thus 4 f t e ^ for some w, and hence
a contradiction, so ^f]Z(X) = Z* for some p e X * .

By 1.1(3) we have peυX - X.
Notice that the assumption CIP in 2.2(3) is essential as is shown

in 4.3 below.

2.3. (1) X has (a) iff tt(0) Π 3(Δ) - 0 .
(2) X has (sa), ίAβw U(0) - g(0).
(3) X foαs WOPC iff ^ does not have CIP, neither has

(4) If X has CPC, then X has WOPC.
(5) If X has (8/3), ί/̂ w X has WOPC.
(6 ) If X has WOPC, then %(0) = 11(0), §(0, Δ) - tt(O, Δ) and

(7) If X is normal, then X has WOPC iff g(0) - 11(0) and

(8) If X has ZC, then g(y, Δ) = 0 (αwd Aewce ll(v, Δ) = 0) .
(9) If J^ΠZiX) has CIP, so has JTP (and hence peυX - X).

Proof (1) ==> From 2.1(3).—. Since any &~ with CIP is wcp, we
consider only a point p e g ( Δ ) . By the assumption, pg 11(0), so there
is ^ p without CIP. Thus there is a wcp ^ * p without C/P by 2.1(2).

(2) {so) implies U(0) Π 3(0, Δ) = 0 by 2.1(4), so 11(0) = g(0) by
(1) and 2.1(1).

(3) => Suppose that ^ does not have CIP but some ^ 0 e l l ( ^ )
has C/P. Since X has T^OPC, g(^ 0 ) bas CIP. On the other hand,
c l ^ Ό c : ^ , so ^ 6 g ( ^ 0 ) which shows that ^ has C/P, a contradic-
tion. <==. Suppose that ^ 0 has CIP but some ^ e g ( ^ 0 ) does not
have C/P. By 1.6(3), ^ o e U ( j Q and U ( ^ ) does not have C/P, a
contradiction.

(4 ) Take ^ p with C/P and let ^ Z) cl ^ p . Then J ^ contains
a prime closed filter ^f described in 2.2(1), and hence ^~ has CIP.
Thus %(&p) has C/P.

(5) Take ^ = ^ p without CIP and let ^ e l l ( j ^ ) . Since
Uz){W;W is open and T^ID/*7 for some FeJ^) and ^ * is cp, there
is {T7ft; Wne^} with n clWΛ = 0 . Thus 1X(JH does not have CIP
and X has WOPC by (3).

(6) Let pe 11(0, Δ) U 11(0) and take ^ p with CIP. By the
assumption, g ( ^ ) has CIP, so p g g ( Δ ) which shows g(Δ) = U(Δ)
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by 2.1(1). Let pe%(0, Δ) U 11(0) and take ^ p without CIP. Then
VLiJ^*) does not have CIP by (3), a contradiction. This shows
U(0) = §(0).

(7)=> From (6) and g(0, Δ) = 0 . «=. Since X is normal,
g(0, Δ) = 0 . Take j ^ without C/P. Then p e g ( Δ ) = tt(Δ), and
hence U(J?~) does not have CIP, so X has WO PC by (3).

(8) Let p e %(υ, Δ) and take J^ ID %TP. Since X has ZC, j ^
has CIP, a contradiction.

(9 ) Suppose that STP does not have CIP. Then p e βX-vX and
hence %TP contains Fn described in 1.1(3). Since Fn e ^~*9 ^~p Π Z(X)
does not have CIP, a contradiction.

By 1.4(1, 2) and 2.3(1, 6), we have the following implications.

almost realcompactness = > WOPC

c-realcompactness ==> (a) .

Characterizations of spaces of by means closed ultrafilters*

THEOREM 3.1. (1) X is weak-cb* iff no ^ p without CIP is wcp
for p e l * .

(2) A normal space X is weak-cb* iff X has OPO.
(3) X is cb* iff X is weak-cb* and has WOPC.
(4) The following are equivalent for a normal space X: (i)

X is cb* (ii) X has OPC. (iii) Any stable ^ is cp. (iv) X has ZC.
(5) A pseudocompact space X is countably compact iff X has

WOPC.

Proof. (1) From 2.1(2).
(2) Since a weak-c6* space has OPO by the diagram of 1.8, it

suffices to show the converse. Let p e (υX — X) — U(0) and take any
%SP without CIP. X being normal, there is a prime open filter <s*f
with CIP and J ^ c ^ by 2.2(2), so ^ has CIP by the assumption
which is a contradiction.

(3) A cb* space is weak-cδ and has WOPC by 1.8. Conversely
suppose that X is weak-cδ* and has WOPC. X being weak-c&*, υX —
X = 11(0), so g(0) = tt(O) by 2.3(6), and hence X is cb*.

( 4) (i) => (ii) From the diagram of 1.8.
(ii) => (iii) Let &~ be stable. Then ^ —> p for some p 6 υX — X

by 1.1(1). By the diagram of 1.8 and 2.3(7), we have g(0) = tt(O)
and %(υ, Δ) = U(υ, Δ) . Since X is normal, ^pcz^p, and hence
^ contains J ^ described in 2.2(2), so ^ has CIP by OPC which
shows that &~ is cp by 1.5(1).
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(iii) ==> (iv) Since X is normal, any J^p contains %"*. We suppose
that there are peuX - X and ^ = jr* without CIP. Then there
is {ί/Jopenl such that FnaUn for some FneJ?~ and Πcli/n = 0 . X
being normal, it is easily seen that there is ZneZ(X) with Fna
ZnaUn, so n Zn = 0 , a contradiction.

(iv) => (i) For peυX — X, %TP has CZP and hence any ^ con-
taining ;TP has CIP by ZC. Thus g(Δ) = 0 . On the other hand,
X being normal g(0, Δ) = 0 , and hence υX - X = ^~(0), so X is cδ*.

(5) If X is countably compact, then X is cί>* [8], so X has
T70PC by (3). Conversely, if X has WΌPC, then X is c&* by (3)
because a pseudocompact space is weak-e&*. Thus X is countably
compact [8].

X is said to be almost normal ((υ)-almost normal) if a closed
subset F disjoint from a regular closed subset E, then c l ^ F ΓΊ cl^l? —
0(c\υxF n clvΓi? = 0) . It is obvious that X is almost normal
almost normal) i f f c l ^ p c J ^ for each ^ * and each %SP for

- X).

3.2. Let X be (υ)-almo$t normal. Then we have
(1) δ(0, Δ) n 11(0, Δ) = 0 (equivalents, g(0, Δ) c U(0)).
(2) If X is c-realcompact, then X is a-realcompact.

Proof. (1) If there are J?~p with C7P and ^ p without CIP for
p 6 g(0, Δ) Π 11(0, Δ), then cl ̂ p c &~* because X is (y)-almost normal,
a contradiction.

(2) Since X is c-realcompact, 11(0) = 0 , so g(0, Δ) = 0 by
(1). Thus g(0) U §(0, Δ) = 0 by 2.1(1) and hence X is α-realcompact.

THEOREM 3.3. (1) X is realcompact iff X is (υ)-almost normal
and there is a cp JΓp without CIP for every peX* .

(1/) An almost normal space X is realcompact iff there is a cp
^ p without CIP for every peX*.

(2) A countably paraeompact space X is realcompact iff X is
a-realcompact and {u)-almost normal.

(2') An almost normal and countably paraeompact space X is
realcompact iff X is a-realcompact.

(3) X is realcompact iff X is an a-realcompact space with
ZC.

(4) X is c-realcompact iff there is a wep J^p without CIP for
every peX*.

(5) An a-realcompact space X is c-realcompact iff X has (a).
( 6 ) An a-realcompact space X is almost realcompact iff X has

WOPC.
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(7) If a wa-realcompact space X has (sa), then X is c-
realcompact.

( 8 ) A normal c-realcompact space is realcompact iff X has OPO.

Proof. (1) => Evident. <=. By the assumption, we have X* =
δ(Δ) U g(0, Δ). Let peυX - X and take a cp J?~v without CIP.
Then there is {Fnej*rp}l0 and {C/%}open 1 such that FnczUn and
Π clUn = 0 . We may assume that X — clUn ^ 0,neN. Since X
is (ί )-almost normal and p e c\βΣFn, we have p $ clβx(X — clϊ7w). Thus
there is fn e C(/3X) such that p e Z(fn)ac\βxUn. Then / = Σ (1/2%)Λ e
C(βX), peZ(f) and Z(f)ΠX= 0 . This is a contradiction because
p e ^X — X, so 6>X = X.

(1') From (1).(2) From 1.7(3) and (1). (2') From (2).(3) => Obvious.
<=. From 1.4(3) and 2.3(8), (4) From 1.1(3), 1.5 and 2.1(2).

(5) If X has (α), then 11(0) Π 8(Δ) - 0 by 2.3(1). Since X is
α-realcompact, we have g(0) U g(0, Δ) = 0 , and hence ϊt(0) = 0 , so
X is c-realcompact. The converse follows from the diagram of 2.3.

(6) => From the diagram of 2.3. <=. From 1.4(1), g(0, Δ) Ug(0) =
0 , 2.3(6) and WΌPC.

( 7 ) Since X has (sa), %(0) = U(0) by 2.3(2). On the other hand
g(0) = 0 by wα-realeompactness, so tt(0) = 0 , and hence X is c-
realcompact.

(8) => Obvious. <=. Since X is normal and has OPO, X is weak-
c6* by 3.1(2). Thus υX - X = tt(0). On the other hand, X being
c-realcompact. We have ΐt(0) = 0 by 1.4(2), and hence X is re-
alcompact.

3.4. In the following, we have (1) => (2) =» (3) =» (4) => (5) <-> (6).
(1) X is realcompact.
(2) X has (g/3) α^ώ ^o F ftαs C/P.
(3) X is an almost realcompact space with (sβ).
(4 ) X is almost realcompact.
(5) X has (sa) and no J?~~ has CIP.
( 6 ) X is an a-realcompact space with (sa) (and hence X is also

c-realcompact by 3.3(5)).

Proof. (1) => (2), (3) => (4) and (5) => (6) are evident. (4)=>(5).
From 1.4(1), 2.1(1) and υX - X = 11(0).

(2) =* (3) Suppose that ^ -= ̂ p has CJP, p e L>X - X. Let ^ e
g ( ^ ) . By the assumption, . ^ is cp and does not have CIP. There
are {Fne^}[ 0 and [U%}ov^ϊ with FnczUn and ndZ/, = 0 . This
implies Une%f and ^ does not have CIP, a contradiction.

(6) => (5) Take j ^ ~ = ^ " ^ p 6 υX - X. Since uX - X = %(υ, Δ),
does not have C/P, so ^~ is ^cp by (sa).
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3.5. In [13], the following theorem was communicated to P.
Simon by Z. Frolik:

THEOREM F. If X is a normal a-realcompact space, then the
realcompactness of X is equivalent to the following condition:

(SZC) If J^ does not have CIP, neither has J^ Π Z(X).

Since SZC is equivalent to the condition: if ^f]Z(X) has CIP,
so has F. We have SZC => ZC, and hence the normality in Theorem
F is superfluous by 2.3(9) and 3.3(3).

3.6. Simon proved the following [13].

THEOREM S. There is a %TP with CIP in X such that no ^ ' z>
^ p has CIP where X is the Dowker space in A.I belows.

Relating this theorem, we consider the following conditions:
(a) If JT2* has CIP, then no J^* has CIP.
(b) // %Tp has CIP, then there is J^p without CIP.

Then Theorem S is a direct consequence of the fact that α-realcom-
pactness is equivalent to (a). For since %*p has CIPifίp e υX - X,
it is easy to see that (a) is equivalent to "no ^~* has CIP for each
p e υX — X" equivalently to "υX — X = %(υ, Δ), i.e., X is α-realcom-
pact". Similarly we have that (b) is equivalent to the wα-realcom-
pactness of X.

4* Examples*

Dowker space 4.1. Let X be the Dowker space, constructed by
M. E. Rudin [12], which is normal but not countably paracompact.
X is, moreover, weak-c6 [6] and α-realcompact [13] but not c-real-
compact [5]. Since α-realcompactness <=̂  oX — X — %(Ό, A), c-real-
compactness *=> 11(0) = 0, normality =>g(0, Δ) = 0 and weak-cδ*-
ness <=> υX - X = tt(0), we have υX - X = g(υ, Δ) = 11(0). This shows
that X is not cb* and hence X has neither WOPC nor ZC by 2.3(7)
and 3.1(4) respectively. It is obvious that X does not have (a) by
2.3(1).

4.2. Let X be the countably paracompact space, constructed by
Mack and Johnson [9] (or see, [11]) is c-realcompact [14] and υX =
X{j{p} but X is not weak-c&* [8]. But X is neither almost re-
alcompact [14] nor α-realcompact [5]. Thus υX — X = %(0, A) =
U(0, Δ) = {p}.
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Tychonoff Plank 4.3. Let T = [0, Ω] x [0, ω] - {p} where p =
(Ω, α>). T is pseudocompact but not countably compact and βT =
L>T = [0, i2] x [0, a)]. Since a pseudocompact space is weak-cδ*, 11(0) Φ
0 . It is easy to see that 11(0) = g(0, Δ) = M and T is not cδ* [8]
and moreover, Γ has OPC but does not have CPC. Let ^ be a
closed ultraίilter containing the right edge. Obviously ^ does not
have CIP and Z(X) Π ̂  Φ ^ p which shows that X does not have
ZC.

4.4. Let X = [0, β]2 - {p} where p = (Λ, Ω). Then J X - [0, Ω]2.
It is easy to see that g(0) - U(0) - {p}.
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