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CLOSED ULTRAFILTERS AND REALCOMPACTNESS

TAKESI ISIWATA

We introduce some conditions which are closely related
to closed ultrafilters and establish interconnections among
these conditions and characterize realcompactness, almost
realcompactness, c-realcompactness and weak-cb*-ness ---.

We introduce some conditions which are closely related to closed
ultrafilters and establish interconnections among these conditions and
characterize realcompactness, alomost realcompactness, c-realcompact-
ness and weak-chb*-ness, - --.

Throughout this paper, by a space we mean a completely regular
Hausdorff space and all functions are continuous and we assume
familiarity with [3] whose notation and terminology will be used
througvhout. For a given space X, we denote by gX (or vX) the
Stone-Cech compactification (or realcompactification) of X. In §1, we
give definitions and preliminaries and introduce some conditions which
are closely related to closed ultrafilters. In §2, we establish inter-
connections among conditions introduced in §1. In §3, we characterize
realcompactness, almost realcompactness c-realcompactness and weak-
cb*-ness and give some examples in §4.

Notations and terminologies. N = the set of positive integers,
nbd = neighborhood, @ = the first countable ordinal, 2 = the first
uncountable ordinal, C(X) = the ring of all continuous functions on
X, Z(f) = the zero set of feC(X) where we assume 0= f <1,
Z(X) = the set of all zero sets, X* = gX — X. & (% or & resp.) =
a free closed (open or regular closed resp.) ultrafilter. F# (&%) = a
free closed (Z) ultrafilter converging to pe X*. & = the set of
all & (similarly define /7, I and R resp.), clz = {clU; Ue %} and
{F.Ja |l {F.}a | @) = a decreasing sequence of closed sets (with the
empty intersection). Similarly we define {R,},.! and {Z,}..]---
where “r¢” and “ze” denote “R, is a regular closed set” and “Z, is
a zero set” respectively.

1. Definitions and preliminaries. A family .o~ of subsets of
X is said to be stable if for any f e C(X) there is A €.%” such that
f|A is bounded. Mandelker ([10], Th. 5.1) has proved that X is
realcompact iff any stable closed family .o with the finite intersection
property has non-empty intersection and Hardy and Woods ([4], Lemma
2.6) have obtained that <Z is stable iff there is pevX — X and
F# —p. We say that % or # has CIP ifNneclA, + @ for any
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A,eZ or <2 respectively.

1.1. 1) e (or N) is stable 1ff .7 converges to some point
of vX — X.

(2) X 1is realcompact iff no F is stable.

(8) For pepBX —vX, no prime closed (resp. open) filter .o
converging to p has CIP.

Proof. (1) From the same method used in the proof of Lemma
2.6 in [4]. (2) From (1). (8) Let pepX —vX. Then there is
feC(pX) with pe Z(f) c X — vX. Since . is prime, &7 3 F, =
{xeX; f(x) < 1/n}(resp. U, = {x € X; f(z) < 1/n}) and hence .& does
not have CIP.

The following are well known (e.g., p. 649 line 4 in [4]).

1.2. O Nozx=F =clzwecR. If Z has CIP, so has Z.

(2) RoF#=%(R)={U;int RCU for some Rec.# and U s
openyeW. If <& has CIP, so has 7/ (2).

(3) Nozm =w(l%)=%.

(4) Ro> F =cl%(F)) = A#.

1.8. We will divide X*, especially vX — X, into three do-
mains.

F(0) = {pe X*; any .7 * has CIP}.

&0, A) = {p e X*; there are #,? with CIP and .#,” without CIP}.
KH(A) = {pe X*; no & * has CIP}.

B, A) = F(AH) N @PX — X).

Similarly we define 11(0), (0, A), WA), U, A), R(0), RO, A),
R(A) and R, A). From 1.1(3) and 1.2 we have 11(0) = R(0), U0, A) =
RO, A), WA) = R(A) and X — X CWA).

1.4. As generalization of realcompactness, almost realcompactness
[1], c-realcompactness [2] and a-realcompactness [2] are introduced.
X is said to be almost realcompact if any open ultrafilter % with
CIP is fixed, that is, NelZ = @[1]. X is a-realcompact (= closed-
complete) if any closed ultrafilter & with CIP is fixed [2]. We say
that X is e-realcompact if for each point pe 8X — X, there exists
{R.},. | @ with pe Nel;xR, [5]. From 1.2 and the definition we
have

(1) X 1is almost realcompact iff 1(0) U0, A) = @.

(2) X is c-realcompact 1ff N0) = &.

(38) X s a-realcompact iff F0) U FO, A) = .
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From these results and 1.2, it is natural to introduce the notion
of wa-realcompactness, that is, we say that X is wa-realcompact if
%0) = @. Since %0, A) = @ for a normal space, a normal wa-
realcompact space is a-realcompact. If X is either c-realcompact
or a-realcompact, then X is wa-realcompact (cf. 2.1(1) below). The
converse is not necessarily true (see 4.1 and 4.2 below). As another
generalization of ¢b (weak-cb)-ness, we introduced the notion of cb*
(weak-cb*) spaces [8]. X is said to be c¢b* (weak-cb*) if Nel F, =
g(Nel R, = @) for any {F,}. | 9({R,},. | @). In[8] we proved that
X is ¢b* iff any perfect map onto X is hyper-real. The following
are easily seen by 1.1(3), 1.3 and the definitions.

(4) X 1s weak-cdb* off U, A) UNO, A) = @.

(5) X is eb* iff o, A)UEO, A) = @.

(6) X is realcompact 1ff X is wa-realcompact and cb*.

(7) X is countably compact iff FO0, A)UFA) = @.

(8) X is pseudocompact vf WO, A)UNA) = @.

DErmINITION 1.5. $ is said to be countably paracompact (= ¢p)
(weakly countably paracompact (= wep)) if for any {F,e 7} @
there are {K,c F'} | @ and {U,}open | such that E,Cc F,, E,CcU,(E,C
clU,) and NelU, = ¢. Obviously we have

(1) If & 4s either unstable or has CIP, then it is c¢p.

(2) A cep 7 is wep.

DEFINITION 1.6. For & (or %), we denote by W(F) (or (%))
the set of open (or closed) ultrafilters containing {U;U D F for some
Fe 7 (or el )}. In the sequel, “%(Z) — p” means “any 7 € F (%)
converges to p” and similarly we use “$§(%’) has CIP” and so on.
Then we have

(1) & —p implies WF )—p and \WF ) F. If & has
CIP, so has U(<F).

(2) Z — p implies F(%)— p. If Z does not have CIP, then
any 7 €F(Z) is wep dbut does not have CIP.

(38) For a given 7z, Z cW.F ) for any F eFZ).

Proof. (1) and (2) are obvious. (8) Let .7 eF(Z) and let W
be an open set containing some Fe . &. If W¢ %, then thereis Ue
7 with UNnW = @, so & aFNeclU= @, a contradiction. Thus
We Z and hence Z ¢ ().

DEFINITION 1.7. We consider the following conditions.

(@)((B) For any pe X*, there is a wep(ep).F *.

(sa)((sB)) For any pe X*, any Z ? is wep(cp).

The following (1) and (2) follows from the definitions and the
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fact that if X is normal, then the closed ultrafilter converging to
pe X* is only one.

(1) (88 =(B) = (a) and (sB) = (sa) = (a).

(2) If X is normal, then (B) = (sB) and (a) = (sa).
From gX — vX CU(A), 1.1(3), 1.4(5), 1.6(1) and the result that X is
countably paracompact iff for any {F,}., | @, there is {U,; F, C U, }open |
@ with NelU, = @ [7], we have

(3) If X is either countably paracompact or cb* them X has
(88

There is a normal space which has neither (a) nor (8) (see 4.1
below).

1.8. As one of the nice property of the zero sets, it is known
that a Z-ultrafilter 2" has CIP iff 2" contains a prime Z-filter with
CIP. Unfortunately this is not necessarily true for closed ultrafilters.
N. Dykes [1] has, however, proved that if X is a cb-space, F' has
CIP iff .# contains a prime filter with CIP. In the following we
treat the related problem above. We consider the following con-
ditions.

(CPC) If & contains a prime closed filter with CIP, then &
has CIP.

(OPC) If & is a prime open filter with CIP and cl & C . #,
then & has CIP.

(OPO) If 7 contains a prime open filter with CIP, then Z/
has CIP.

(WOPC) If Zz has CIP, then ¥(%) has CIP.

zZC) If zZ(X)nNnF = 27° for pevX — X, then & has CIP (cf.
2.2(3)).

Notice that (1) 2? has CIP iff pevX — X and (2) if & has CIP,
then # N Z(X) = 2°* for some pevX — X by 2.2(3) below. From
1.1(3), 1.4(4.5) and the definition, we have the following implications:

¢b* — {ZC, OPC, CPC)
“ OPC — WOPC

J
weak-cb* == OPO (cf. 2.3(4)) .

There is a weak-cb normal space without ZC (see, 4.1 below).

2. Interconnections among conditions introduced in §1.

2.1. (1) F0)c1(0) and U(A) = FA).

(2) Let peX*. Then there is Z® without CIP iff there is
wep F° without CIP. Equivalently let pe X*, then peN(0) 2ff no
F? without CIP is wep.



CLOSED ULTRAFILTERS AND REALCOMPACTNESS 143

(8) U0 NFA) iff no F* has CIP and no F * is wep.

(4) pe(0)NFO, A) iff there are F#,* with CIP and F,” without
CIP and mo Z#* without CIP is wcp.

(5) peFO, A)NWO, A) iff there are F#.* with CIP and a wep
F,* without CIP.

Proof. (1) Let pe(0) and Z — p. By 1.6(2), (%) — p, cl Zr C
& for each # €F(Z) and F(Z) has CIP, and hence Z has CIP,
so pel(0). Now suppose that pell(A) and & — p. Then W(F)
does not have CIP. By 1.6(1) .# does not have CIP, so p € FA).

(2)= From 1.6. (2)=. By the assumption, there is an open set
UJmneN) cU,e # with NelU, = @. Let N(p) be the open nbd
system of p in X and let ZZ D{U,NV; ne N, Ve N(p)}. Obviously
7y converges to p but does not have CIP.

(8) = Obvious. =. From (2).

(4) = From pe$F0, A) and (2). =. From (2) and the assumption.

(6) = Since p e, A), there is #,» with CIP. By (2), pe
(0, A) implies that there is a wep #,” without CIP. —. By the
assumption, we have peF0, A) and pe(0, A) by (1) and (2).

Lemma 2.2. (1) If Z® has CIP, then &7 = {F; F contains some
Uez and F is closed} is a prime closed filter with CIP and cl ZZ* C
F whenever 7 C F.

(2) Let X is normal and let pevX — X. Then &7 ={U; U
contains some Z € Z° and U is open} is a prime open filter with CIP.
If 22 — p, then &7 C Z.

(3) If & has CIP, then Z(X)N.# = Z* for some pe€
vX — X.

Proof. (1) It is sufficient to show that .o is prime. Let K
and F be closed, FEU Fe.& and E¢ .. Then EU FOint(FUF) =
AeZ and int EFe Z/. Since Z/ is a ultrafilter and int # U (X — E)
is dense in X, we have X — EFe€Z,s0 AN(X — E)e%. Since AN
(X — E)cint F, we have F'e .. The latter part is obvious.

(2) It suffices to show that .97 is prime. Suppose not; Let W
and V be open and let WU Ve ., W¢ .7 and Ve.o, then there
is Ze 2? such that ZcWUV. AsWe¢. . and Ve ¥, Z W=+ O
and Z —V # @. Since X is normal, there are zero sets Z, and Z,
suchthat X - VcX - Z,Z-WcX—Z,and X —-Z)N X - 2Z) =
@. Thus Z,CV, so as Ve¢.7, Z,¢ 2*. Thus Z,e 2’*. Similarly,
there are zero sets Z, and Z, such that X - WcX - Z,Z-VcC
X—Z,and X—-Z)N(X —Z)=@. Asabove, Z,c 2*. Thus ZnN
ZNZ,ez? But ZnzZ,NnZ,cWnV, soWand Ve.w, which is a
contradiction. Hence .o is prime.
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(8) In general, it is evident that .o~ N Z(X) is a prime Z-filter
for a prime closed filter .. Suppose that there is Ze Z(X) which
intersects each member of Z(X) N #, but Z¢ &#. Let Z = Z(f), f e
C(X), A, = {z; f(x) = 1/n} and B, = {x: f(x) < 1/n}. Since A,UB, =
X, 7 contains A, or B,. If B,c. for infinitely many =, then
Z=NB, e .Z, a contradiction. Thus A4,c .5 for some %, and hence
A,e 7 NZ(X), a contradiction, so &% NZ(X) = Z? for some pec X*.
By 1.1(3) we have pevX — X.

Notice that the assumption CIP in 2.2(3) is essential as is shown
in 4.3 below.

2.3. (1) X has (@) iff W0)NFA) = @.

(2) X has (sa), them 1(0) = F(0).

(8) X has WOPC iff &# does mot have CIP, mneither has
w.es).

(4) If X has CPC, then X has WOPC.

(5) If X has (sB), then X has WOPC.

(6) If X has WOPC, then $(0) = 11(0), F(0, A) = U0, A) and
Z(A) = WA).

(7) If X is mormal, then X has WOPC iff $(0) = 1(0) and
BA) = WA).

(8) If X has ZC, then F, /) = @ (and hence Uy, A) = @).

(9) If # NZ(X) has CIP, so has Z® (and hence pevX — X).

Proof. (1)= From 2.1(8).—. Since any # with CIP is wep, we
consider only a point peF(A). By the assumption, p ¢ 11(0), so there
is Z* without CIP. Thus there is a wep & ? without CIP by 2.1(2).

(2) (sa) implies M(0) N F0, A) = @ by 2.1(4), so (0) = F(0) by
(1) and 2.1Q0).

(8) = Suppose that &, does not have CIP but some %, € U(.F,)
has CIP. Since X has WOPC, ¥(%,) has CIP. On the other hand,
ez, C . F,, so F,€F %, which shows that & has CIP, a contradic-
tion. <. Suppose that %, has CIP but some .7, (%,) does not
have CIP. By 1.6(3), £, N(%,) and (%#,) does not have CIP, a
contradiction.

(4) Take %* with CIP and let # Del %?. Then # contains
a prime closed filter .7 deseribed in 2.2(1), and hence .&# has CIP.
Thus %(Z?) has CIP.

(5) Take & = #* without CIP and let Z ell(<¥ ). Since
UD{W;W is open and WO F for some Fe.%) and .&# is ¢p, there
is {W,; W,ez} with NelW, = @». Thus U(% ) does not have CIP
and X has WOPC by (3).

(6) Let »pell(0, A)UNO) and take Z* with CIP. By the
assumption, F(Z?) has CIP, so p ¢ F(A) which shows F(A) = U(A)
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by 2.1(1). Let pe$(0, A)UU0) and take .#* without CIP. Then
W(#?) does not have CIP by (38), a contradiction. This shows
1(0) = (0.

(7)= From (6) and %0, A) = @. <. Since X is normal,
%0, A) = @. Take .#* without CIP. Then peH(A) = U(A), and
hence (%) does not have CIP, so X has WOPC by (3).

(8) Let peR, A) and take % D 2». Since X has ZC, &
has CIP, a contradiction.

(9) Suppose that 2°? does not have CIP. Then pe 8X—vX and
hence Z* contains F, described in 1.1(3). Since F,e #?, & *NZ(X)
does not have CIP, a contradiction.

By 1.4(1, 2) and 2.3(1, 6), we have the following implications.

almost realcompactness = WOPC

H Il

c-realcompactness — (a) .
3. Characterizations of spaces of by means closed ultrafilters.

THEOREM 8.1. (1) X is weak-cb* iff no # * without CIP is wep
for pe X*.

(2) A normal space X 1is weak-cb* 1f X has OPO.

(38) X 4s ¢b* 1ff X 18 weak-cb*™ and has WOPC.

(4) The following are equivalent for a mormal space X: (i)
X is ¢b* (ii) X has OPC. (iii) Any stable & 1s ¢p. (iv) X has ZC.

(5) A pseudocompact space X 1s countably compact iff X has
WOPC.

Proof. (1) From 2.1(2).

(2) Since a weak-cb* space has OPO by the diagram of 1.8, it
suffices to show the converse. Let pe (X — X) — 11(0) and take any
Z® without CIP. X being normal, there is a prime open filter .o
with CIP and .o C Z? by 2.2(2), so Z? has CIP by the assumption
which is a contradiction.

(8) A cb* space is weak-cb and has WOPC by 1.8. Conversely
suppose that X is weak-cb* and has WOPC. X being weak-cb*, v.X —
X =1(0), so F0) = 1(0) by 2.3(6), and hence X is cb*.

(4) ()= (i) From the diagram of 1.8.

(ii) = (iii) Let & be stable. Then .# — p for some pcvX — X
by 1.1(1). By the diagram of 1.8 and 2.3(7), we have (0) = 11(0)
and F©, A) = U, A). Since X is normal, 2?C . ? and hence
& contains & described in 2.2(2), so .&# has CIP by OPC which
shows that & is ep by 1.5(1).
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(iii) = (iv) Since X is normal, any .&# ? contains 2?. We suppose
that there are pevX — X and % = & ? without CIP. Then there
is {U,}open | such that F,c U, for some F,c€.# and NelU,=@. X
being normal, it is easily seen that there is Z,e Z(X) with F,C
Z,cU,, so NZ,= @, a contradiction.

(iv)= (i) For pevX — X, 2°» has CIP and hence any .&# con-
taining 2°* has CIP by ZC. Thus §(A) = @. On the other hand,
X being normal (0, A) = @, and hence vX — X = & (0), so X is ¢b*.

(5) If X is countably compact, then X is ¢b* [8], so X has
WOPC by (3). Conversely, if X has WOPC, then X is ¢b* by (3)
because a pseudocompact space is weak-eb*. Thus X is countably
compact [8].

X is said to be almost mormal ((v)-almost normal) if a closed
subset F' disjoint from a regular closed subset E, then ¢l F' N ¢l B =
@l Fnel EF= @). It is obvious that X is almost normal ((v)-
almost normal) iffel #? c .#? for each .#® and each %* for pe
X*(pevX — X).

3.2. Let X be (v)-almost normal. Then we have
(1) 0, A)NUO, A) = @ (equivalently, F0, /) 1(0)).
(2) If X is c-realcompact, then X is a-realcompact.

Proof. (1) If there are .# ? with CIP and %* without CIP for
p €0, A) N 1O, A), then el Z? < F# ? because X is (v)-almost normal,
a contradiction.

(2) Since X is c-realcompact, 1 (0) = @, so F0O, A) = @ by
(1). Thus %(0) UFO, A) = @ by 2.1(1) and hence X is a-realcompact.

THEOREM 3.3. (1) X is realcompact iff X is (v)-almost normal
and there is a c¢p F * without CIP for every pe X*.

(1) An almost mormal space X is realcompact iff there is a cp
F* without CIP for every pe X*.

(2) A countably paracompact space X is realcompact 1ff X is
a-realcompact and (V)-almost normal.

(2) An almost normal and countadly paracompact space X 1s
realcompact iff X is a-realcompact.

(8) X s realcompact tff X 1s an a-realcompact space with
ZC.

(4) X is c-realcompact iff there is a wep F ° without CIP for
every pe X*.

(5) An a-realcompact space X is c-realcompact iff X has («).

(6) Amn a-realcompact space X is almost realcompact iff X has
WOPC.
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(7)) If a wa-realcompact space X has (sa), then X is c-

realcompact.
(8) A mormal c-realcompact space is realcompact 1ff X has OPO.

Proof. (1) = Evident. —. By the assumption, we have X*=
F(A) UEO, A). Let pevX — X and take a ¢p . * without CIP.
Then there is {F,e.# 7 | @ and {U,}open | such that F,cU, and
NelU,= @. We may assume that X —clU, = @, ne N. Since X
is (v)-almost normal and p ecl; F',, we have p¢cl;, (X — clU,). Thus
there is f, € C(8X) such that pe Z(f,)Cels;;U,. Then f= 3, (1/2"f, €
C(BX), pe Z(f) and Z(f)N X = @. This is a contradiction because
pevX — X, so vX = X.

(1) From (1).(2) From 1.7(3) and (1). (2") From (2).(8) = Obvious.
<=, From 1.4(3) and 2.3(8), (4) From 1.1(3), 1.5 and 2.1(2).

(5) If X has (a), then U(0) NF(A) = @ by 2.3(1). Since X is
a-realcompact, we have $%(0) U F(0, A) = @, and hence U(0) = @&, so
X is c-realcompact. The converse follows from the diagram of 2.3.

(6) = From the diagram of 2.3. —. From 1.4(1), &0, A)UF0)=
@, 2.3(6) and WOPC.

(7) Since X has (sa), F(0) = N(0) by 2.3(2). On the other hand
%) = @ by wa-realcompactness, so N(0) = @, and hence X is ¢-
realcompact.

(8) = Obvious. <. Since X is normal and has OPO, X is weak-
cb* by 3.1(2). Thus vX — X = 11(0). On the other hand, X being
c-realcompact. We have U(0) = @ by 1.4(2), and hence X is re-
alcompact.

3.4. In the following, we have (1) = (2) = (3) = (4) = (5) = (6).
(1) X s realcompact.

(2) X has (sB) and no F has CIP.

(8) X 1s an almost realcompact space with (sB).

(4) X is almost realcompact.

(5) X has (sa) and no # has CIP.

(6) X is an a-realcompact space with (sa) (and hence X is also

c-realcompact by 3.3(5)).

Proof. (1)=(2), (3)=(4) and (5)= (6) are evident. (4)= (5).
From 1.4(1), 2.1(1) and vX — X = 1K(0).

(2) = (38) Suppose that ¥ = Z? has CIP, pevX — X. Let & €
%(z). By the assumption, .# is ¢p and does not have CIP. There
are {F,e 7 }| @ and {U,}oppen | With F,c U, and NelU, = @. This
implies U, €% and % does not have CIP, a contradiction.

6)=(5) Take ¥ = 7, pecvX — X. Since vX — X = Fv, A),
7 does not have CIP, so % is wep by (sa).
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3.5. In [13], the following theorem was communicated to P.
Simon by Z. Frolik:

THEOREM F. If X is a mormal a-realcompact space, then the
realcompactness of X 1s equivalent to the following condition:
(SZC) 1If .7 does mot have CIP, meither has 7 N Z(X).

Since SZC is equivalent to the condition: if % NZ(X) has CIP,
so has . We have SZC = ZC, and hence the normality in Theorem
F' is superfluous by 2.3(9) and 3.3(3).

3.6. Simon proved the following [13].

THEOREM S. There is a Z°® with CIP in X such that no & O
%% has CIP where X s the Dowker space in 4.1 belows.

Relating this theorem, we consider the following conditions:

(a) If 2 has CIP, then no .7 * has CIP.

(b) If %* has CIP, then there is & ® without CIP.
Then Theorem S is a direct consequence of the fact that a-realcom-
pactness is equivalent to (a). For since 2 has CIPiff pevX — X,
it is easy to see that (a) is equivalent to “no . * has CIP for each
pevX — X” equivalently to “vX — X = @, A), i.e., X is a-realcom-
pact”. Similarly we have that (b) is equivalent to the wa-realcom-
pactness of X.

4. Examples.

Dowker space 4.1. Let X be the Dowker space, constructed by
M. E. Rudin [12], which is normal but not countably paracompact.
X is, moreover, weak-cb [6] and a-realcompact [13] but not c-real-
compact [5]. Since a-realcompactness = vX — X = FQ©, A), c-real-
compactness < 1 (0) = @&, normality =0, A) = @ and weak-cb*-
ness = X — X = 11(0), we have v X — X = &, A)=1(0). This shows
that X is not ¢b* and hence X has neither WOPC nor ZC by 2.3(7)
and 3.1(4) respectively. It is obvious that X does not have (a) by
2.3(1).

4.2. Let X be the countably paracompact space, constructed by
Mack and Johnson [9] (or see, [11]) is c-realcompact [14] and vX =
X U{p} but X is not weak-cb* [8]. But X is neither almost re-
alcompact [14] nor a-realcompact [5]. Thus vX — X = F(0, A) =
(0, A) = {p}.



CLOSED ULTRAFILTERS AND REALCOMPACTNESS 149

Tychonoff Plank 4.3. Let T =10, 2] x [0, ®] — {p} where p =
(2, w). T is pseudocompact but not countably compact and BT =
vT = [0, 2] x [0, w]. Since a pseudocompact space is weak-cb*, 1(0) =
@. It is easy to see that 11(0) = (0, A) = {p} and T is not ¢b* [8]
and moreover, T has OPC but does not have CPC. Let .# be a
closed ultrafilter containing the right edge. Obviously .# does not

have CIP and Z(X) N & = 2°* which shows that X does not have
ZC.

4.4. Let X =[0, 2] — {p} where p = (2, 2). Then vX = [0, 2F.
It is easy to see that $(0) = 1(0) = {p}.
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