REPRESENTATIONS OF HOMOLOGY 3-SPHERES

Hugh M. Hilden

Abstract

Every homology 3-sphere can be represented as a framed link, in the sense of Kirby, of the following special type. There are k disjoint embeddings in S^{3} of a genus one surface with two boundary components. The link is the $2 k$ boundary components. If q is the linking number of the i th pair, then one of the components has framing $q+1$, the other $q-1$.

1. Introduction. A very useful and fairly recent method for studying 3 -manifolds, in particular for the study of examples, is R. Kirby's "Calculus of framed links" (see [8], [7]). Another, older, method is through the mapping class group of a surface via Heegaard splittings (see [1], [4]). Through the work of Birman [2], Powell [9], and Johnson [6], a geometrically appealing (but infinite) set of generators has been found for group of homeomorphisms of an orientable surface, up to isotopy, that induce the identity on homology. It is the purpose of this paper to use this set of generators to obtain a representation theorem for all homology 3 -spheres as special framed links. It turns out that the formula for the μ-invariant of homology 3 -spheres represented this way is particularly simple.
2. Notation and conventions. Throughout the paper X_{g} will be a 3-dimensional genus g handlebody, T_{g} its boundary, X_{g}^{\prime} another such handlebody, and i a PL homeomorphism from T_{g} to ∂X_{g}^{\prime} so that $X_{g} \cup X_{g}^{\prime}$ defines a Heegaard splitting of S^{3}. Also, A will be an "annulus with a handle"; that is an oriented genus one surface with two boundary components. The boundary components derive orientations from the orientation of A and will be denoted α and b. We assume the reader is familiar with such concepts as "characteristic surface", "intersection matrix", "index", and " μ-invariant" as they apply to three and four manifolds. These terms are defined in [8].
3. Several propositions. In this section we state several results needed for the proof of the main theorem.

Proposition 1. Let H^{3} be a genus g homology 3-sphere. There is a homeomorphism ϕ of T_{g} such that ϕ induces the identity on the homology of T_{g} and $H^{3}=X_{g} \bigcup_{i \phi} X_{g}^{\prime}$.

Proof. This is proven by Joan Birman in [3].
Let $f: A \rightarrow T_{g}$ be an embedding. If we do Dehn twists in opposite directions about the boundary curves of $f(A)$, it is not difficult to see that this homeomorphism induces the identity on the homology of T_{g}. We shall call such a homeomorphism "special" for awhile.

Proposition 2. Let ϕ be a homeomorphism of T_{g} that induces the identity on homology. Then ϕ is isotopic to a finite product of "special" homeomorphisms.

Proof. This follows directly from results of Dennis Johnson ([6]), Jerome Powell ([9]), and Joan Birman ([2]).

Proposition 3. Let $M^{3}=X_{g} \bigcup_{\alpha_{n} \cdots \alpha_{1} i} X_{g}^{\prime}$ where α_{j} is a homeomorphism of $T_{g}, 1 \leqq j \leqq n$. Then also

$$
M^{3}=X_{g} \bigcup_{i d} T_{g} \times[0,1] \bigcup_{\hat{\alpha}_{1}} T_{g} \times[1,2] \bigcup_{\hat{\alpha}_{2}} \cdots \bigcup_{\hat{\alpha}_{n}} T_{g} \times[n, n+1] \bigcup_{i} X_{g}^{\prime}
$$

where $\hat{\alpha}_{j}(x, j)=\left(\alpha_{j}(x), j\right)$.
Proof. We can present M^{3} as

$$
M^{3}=X_{g} \bigcup_{i d} T_{g} \times[0,1] \bigcup_{i d} T_{g} \times[1,2] \cup \cdots \bigcup_{i d} T_{g} \times[n, n+1] \bigcup_{\alpha_{n} \cdots \alpha_{1} i} X_{g}^{\prime}
$$

and then explicitly define a homeomorphism as below.

$$
\begin{aligned}
& X_{g} \bigcup_{i d} T_{g} \times[0,1] \bigcup_{\hat{\alpha}_{1}} T_{g} \times[0,2] \bigcup_{\hat{\alpha}_{2}} \cdots \bigcup_{\hat{\alpha}_{n}} T_{g} \times[n, n+1] \bigcup_{i} X_{g}^{\prime} \\
& \begin{array}{lll}
\uparrow_{i d} \uparrow_{i d} & \uparrow_{\alpha_{1} \times i d} \uparrow \hat{\alpha}_{2} \alpha_{1} \times i d \cdots & \uparrow_{\alpha_{n} \cdots \alpha_{1} \times i d} \uparrow_{i d} \\
X_{g} \bigcup_{i d} T_{g} \times[0,1] \bigcup_{i d} T_{g} \times[0,2] \cup \cdots \bigcup_{i d} T_{g} \times[n, n+1] \bigcup_{\alpha_{n} \cdots \alpha_{1} i} X_{g}^{\prime}
\end{array}
\end{aligned}
$$

4. Statement and proof of the main theorem.

Main Theorem. Let $f_{i}, 1 \leqq i \leqq n$ be a set of smooth embeddings of A in S^{3} with pairwise disjoint images. Let q_{i} be the linking number of $f_{i}(a)$ and $f_{i}(b)$. Frame the link $\left\{f_{1}(a), f_{1}(b) ; f_{2}(a), f_{2}(b), \cdots\right.$, $\left.f_{n}(b)\right\}$ with framing numbers $\left\{-q_{1}+1,-q_{1}-1 ;-q_{2}+1, \cdots,-q_{n}-1\right\}$ respectively and let M^{3} be the 3-manifold constructed from this framed link using the Kirby calculus ([8]).

Then M^{3} is a homology 3 -sphere and every homology 3 -sphere can be constructed this way. The μ-invariant of M^{3} (as an integer
$\bmod 2)$ is the $\bmod 2$ sum of the $A r f$ invariants of the surfaces $f_{i}(A)$ that have q_{i} even.

Proof. We begin by showing that an arbitrary homology 3 -sphere H^{3} has this type of representation. It follows directly from Propositions 1, 2 and 3 that

$$
H^{3}=X_{g} \bigcup_{i d} T_{g} \times[0,1] \bigcup_{\hat{\alpha}_{1}} T_{g} \times[1,2] \bigcup_{\hat{\alpha}_{2}} \cdots \bigcup_{\hat{\alpha}_{n}} T_{g} \times[n, n+1] \bigcup_{i} X_{g}^{\prime}
$$

where $S^{3}=X_{g} \bigcup_{i d} T_{g} \times[0,1] \bigcup_{i d} T_{g} \times[1,2] \cup \cdots \bigcup_{i d} T_{g} \times[n, n+1] \bigcup_{i} X_{g}^{\prime}$ and $\hat{\alpha}_{j}: T_{g} \times\{j\} \rightarrow T_{g} \times\{j\}$ is "special". Thus there are embeddings $f_{j}: A \rightarrow T_{g} \times\{j\}, 1 \leqq j \leqq n$ and $\hat{\alpha}_{j}$ consists of simultaneous Dehn twists in opposite directions about the bounding curves of $f_{j}(A)$ in the surface $T_{g} \times\{j\}$. Denote $f_{j}(a)$ and $f_{j}(b)$ by k_{1} and k_{2} respectively.

For $i=1,2$ let U_{i} be a tubular neighborhood of k_{i}, let m_{i} be a meridian, let l_{i} be a longitude, and let $s_{i}=f_{j}(A) \cap \partial U_{i}$. Assume m_{i}, l_{i}, and s_{i} lie in ∂U_{i}. Orient s_{i} and l_{i} parallel to k_{i} and orient m_{i} using k_{i} and the "right hand rule". To do a Dehn twist in the surface $T_{g} \times\{j\}$ along the curve k_{i} we split S^{3} along $T_{g} \times\{j\}$, do a full twist in one of the two annuli bounded by the copies of k_{i} and s_{i} and sew S^{3} back together along $T_{g} \times\{j\}$.

This is equivalent to removing U_{i} and sewing it back in so that a meridian is sewn to $m_{i} \pm s_{i}$ where the sign is determined by the direction of the twist. To see this, before removing U_{i} just push it down a little into the surface $T_{g} \times[j-1, j]$, so that the annulus bounded by k_{i} and s_{i} lies in the boundary of U_{i}.

If the meridian of U_{1} is sewn to $m_{1} \pm s_{1}$, then the meridian of U_{2} is sewn to $m_{2} \mp s_{2}$ since the twists are in opposite directions. We assume (by renumbering if necessary) that the meridian of U_{1} is sewn to $m_{1}+s_{1}$.

In the homology of the complement of k_{1}, we have $s_{1}=l_{1}+c m_{1}$ for some integer c then $L\left(s_{1}, k_{1}\right)=L\left(l_{1}, k_{1}\right)+c L\left(m_{1}, k_{1}\right)$ where $L($, stands for linking number. Thus $c=L\left(s_{1}, k_{1}\right)=L\left(-s_{2}, k_{1}\right)=L\left(-k_{2}, k_{1}\right)=$ $-L\left(k_{2}, k_{1}\right)$. Similarly $s_{2}=l_{2}-L\left(k_{2}, k_{1}\right) m_{2}$.

If we do framed surgery, say on k_{1}, with framing t, then the meridian is sewn to $l_{1}+t m_{1}=s_{1}+L\left(k_{2}, k_{1}\right) m_{1}+t m_{1}$. If we choose $t=-L\left(k_{n}, k_{1}\right)+1$, then the Dehn surgery and the framed surgery have the same effect. By an analogous argument, the Dehn surgery at k_{2} has the same effect as framed surgery at k_{2} with framing $-L\left(k_{2}, k_{1}\right)-1$. Thus we have shown that every homology 3 -sphere has the asserted representation.

Now consider the manifold M^{3} defined by any framed link satisfying the hypothesis of the theorem. Following Kirby [8], we
construct a simply connected 4-manifold W^{4} that M^{3} bounds. The intersection matrix of W^{4}, with respect to the basis $\left\{f_{1}(a), f_{1}(b), \cdots\right.$, $\left.f_{n}(b)\right\}$, as in the hypothesis of the theorem, is a $2 n \times 2 n$ matrix with framing numbers on the diagonal and linking numbers off the diagonal. We can think of this matrix as an $n \times n$ matrix with 2×2 matrix entries. Off diagonal entries have the form $\left[\begin{array}{rr}x & -x \\ -x & x\end{array}\right]$ and diagonal entries have the form $\left[\begin{array}{cc}-q+1 & q \\ q & -q-1\end{array}\right]$. Using symmetric row and column operations, we see that this matrix is equivalent to a matrix with off diagonal entries $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and diagonal entries $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ or $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. (Add the first column to the second column and then the first row to the second row to get first column off diagonal entries like $\left[\begin{array}{ll}x & 0 \\ x & 0\end{array}\right]$, first row off diagonal entries like $\left[\begin{array}{cc}x & -x \\ 0 & 0\end{array}\right]$ and $]_{-q+1} 1$ and the index of W^{4} is zero. Since the matrix is unimodular, M^{3} is a homology sphere (see [8]).

There is the following method for computing the μ-invariant of a homology 3 -sphere (see [5]). Let W^{4} be any simply connected 4-manifold that M^{3} bounds and let F^{2} be a characteristic surface. Then $\mu\left(M^{3}\right)$, as an integer $\bmod 2=1 / 8$ (index $W^{4}-F \cdot F+8$ (Kervaire invariant of F)). In our case index $W^{4}=0$, and a characteristic element in $H_{2}\left(W^{4}\right)$ corresponds to the sum of the basis elements with odd framing numbers (so that g_{j} is even). This can be verified by direct computation. Thus a characteristic surface F can be taken as a disjoint union of tori, each torus consisting of the union of an $f_{j}(A)$ and two discs in the attached 2-handles. If F_{j} is a torus component of F corresponding to $f_{j}(A)$, then $F_{j} \cdot F_{j}=\left(f_{j}(a)+\right.$ $\left.f_{j}(b)\right) \cdot\left(f_{j}(a)+f_{j}((b))=f_{j}(a) \cdot f_{j}(a)+2 f_{j}(a) \cdot f_{j}(b)+f_{j}(b) \cdot f_{j}(b)=-q_{j}+\right.$ $1+2 q_{j}-q_{j}-1=0$. Thus $F \cdot F=0$. The Kervaire invariant of a component F_{j} is just the Arf invariant of $f_{j}(A)$ as it is embedded in S^{3} (see [5] for a definition of Kervaire invariant). Thus two of the three terms in the formula for $\mu\left(M^{3}\right)$ vanish and we are done.

References

1. J. Birman, On the equivalence of Heegaard splittings of closed, orientable 3-manifolds, preprint.
2. -, On Siegel's modular group, Math. Ann., 191 (1971), 59-68.
3. ——, Poincarés conjecture and the homotopy group of a closed orientable 2-mane. fold, preprint.
4. J. Birman and H. Hilden, Heegaard splittings of branched coverings of S^{3}, Trans. Amer. Math. Soc., 213 (1975), 315-352.
5. S. Cappell and J. Shaneson, Some new four manifolds, Ann. of Math., (2) 104 (1976), 61-72.
6. D. Johnson, Homeomorphisms of a surface which art trivially on homology, to appear
in the Proc. Amer. Math. Soc.
7. S. Kaplan, Lecture Notes Prepared in Connection with the Summer Institute on Algebraic and Geometric Topology held at Stanford University, Stanford, CA, August 2-21, 1976, S1-S47.
8. R. Kirby, A calculus for framed links in S^{3}, Invent. Math., 45 (1978), 35-56.
9. J. Powell, Two theorems on the mapping class group of surfaces, to appear in the Proc. Amer. Math. Soc.

Received December 26, 1979. This research was partially supported by an NSF grant.

University of Hawail at Manoa
Honolule, HI 96822

