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INCOMPRESSIBILITY OF MAPS AND THE HOMOTOPY
INVARIANCE OF CECH COHOMOLOGY

ALLAN CALDER AND FRANK WILLIAMS

The ί?-compressibility dimension of a space Y is the
largest integer r for which every map f:X—> Y from a
normal space with dimension less than r, the loop map
Ωf: ΩX —> Ω Y is compressible. Bounds are determined for
the i2-compressibility dimension of Eilenberg-Maclane spaces
of type (Z, 2n) and (Zpk, 2ri). In application this is used to
settle the question as to when Cech cohomology based on
finite covers is a homotopy invariant functor.

!• Compressibility: Background and statement results* A map
is called compressible if it is homotopic to a map whose image is
contained in a compact subset of the target space. Let Ω denote
the loop functor. A map f:X—>Y is called Ω-compressible if Ωf:
ΩX --> ΩY is compressible.

Obviously if ΩY has the homotopy type of a compact space then
any map into Y is β-compressible. On the other hand if ΩY has
nonzero homology (or homotopy) groups in infinitely many dimensions
then it is easy to see that the identity map 1F: Y—>Y is β-incom-
pressible. In particular that will be the case when 7 is a finite
complex with nonzero (reduced) homology.

We shall be primarily concerned with the case Y — K(G, n), an
Eilenberg-Maclane space. Any essential map / : S2n+1 —> K(Z, 2n + 1)
is i2-incompressible since Ωf induces an isomorphism,

(Ωf)*: H*(ΩK(Z, 2n + 1); Q) > H*(ΩS2n+1; Q) ,

in rational cohomology. The following fundamental result is due to
Weingram [11] (see also [9]).

WEINGRAM'S THEOREM. For any finitely generated abelian group
G, every essential map f: S2n+1 —> K(G, 2n + 1) is Ω-incompressible,

For even dimensional spheres the situation is more complicated:
if p is an odd prime then any map S2n —> K(Zpk, 2n) is incompressible,
since $2%-1 is a if-space modp (see [9] for details). Similarly, if
n = 1, 2 or 4 then any map S2n —> K(G, 2n) is incompressible for
any G.

Any map from an -^-dimensional (covering dimension) normal
space into a CW-complex can be homotopically deformed into a map
whose image is in the ^-skeleton of the target space [see e.g., 6 p.
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356]. The w-skelton of K(Z, ri) (or K(ZJc, ri)) can be considered to
be S%. So if the inclusion of S* is β-compressible then so is every
map from any w-dimensional space into K(Z, ri) (or K(Zpk, ri)). When
this is the case, it seems reasonable to ask what the dimension of
the domain must be in order that there be an β-incompressible map
into K(Z, ri) (or K(Zpk, ri)).

DEFINITION 1.1. The Ω-compressibility dimension of a space Y,
denoted by c(Y)f is the greatest integer r such that if X is a normal
space of dimension less than r then every map X —> Y is i2-compres-
sible. If no such greatest integer exists we set c(Y) — ©°.

If Y = K(G, ri), we denote c(Y) by c(G, ri).

EXAMPLE 1.2. From preceding remarks, we have:
(1) c(Y) = °° if ΩY is homotopic to a compact space. Thus

c(Z,2) = oo.

c(Z, = c(Zpk, 2n = 2n
(3) c(Zvk, 2ri) > 2n if n ^ 1 and p is odd.
(4) c(G, Zri) > 2n if n = 1, 2 or 4.

In this paper we show that c(Z, 2n) and c(Zpk, 2ri) are finite for
most values of n. Specifically in § 3 we prove:

THEOREM 1.3. // n ^ 1, c(Zpfc, 2n) <>2n + p - 1.

THEOREM 1.4. / / n ^ 2, c(Z, 2w) ^ 2 ^ + 9.

We also wish to consider the concept analogous to c(G, ri) when
G = Q. Since K(Q, ri) is not of finite type, we define c*(Y) in the
same way as c(Y) but restricting the domain spaces X to be compact.
Thus if G is finitely generated, c*(G, ri) ~ c(G, ri). The following
table summarizes the known results for c(G, ri) and c*(G, ri) for G —
Zpk, Z and Q.

TABLE 1

^\G
n x.

1

odd> 1

2

4, 8, 16

other even

c(G, ri) = c*(Gy ri)

Z2k

oo

n

n < c ^ n + 3

n ^ c ^ n + B

Zpk (pφ2)

oo

n

n<c^nJr2p — l

Z

1

n

CO

t l ^ C

c*(G, n)

Q

1

OO
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The entries in Table 1 come from 1.2, 1.3, 1.4, and Table 2 in
the next section.

It is still an open question as to what the exact values of c(G, n)
are in the last line of the table.

2* Cech cohomology: Background and statement of results*
In 1932 Cech defined cohomology groups for an arbitrary space X
using the system of nerves of finite covers of X, [5]. These groups
denoted by H?(X), have been ignored in favor of those based on
arbitrary or locally finite covers, since Dowker showed that H}(X)
is not a homotopy invariant of the space X, [7]. However it was
subsequently shown in [1] that if k > 1 and G is finitely generated
then Hf{ — G) is a homotopy invariant functor on the category of
finite dimensional normal spaces.

The homotopy invariance of H)(— G) for larger categories was
investigated in [4] using category-theoretic methods. Of primary
importance there was the following theorem, in which β denotes the
Stone-Cech functor.

THEOREM 2.1. On the category of completely regular Hausdorff
spaces the functors Hf(- G) and [β — ,K(G,k)] are naturally iso-
morphίc.

Proof. By [8] p. 282 and [6] p. 366.

This theorem was used to apply results from [2, 3] concerning
the homotopy invariance of functors of the form [β — , Y], to fl/( — G).
We summarize the known results in the following table, which holds
when C is any full subcategory of the category of completely regular
Hausdorff spaces that contains all countable CW-complexes.

T A B L E 2. Is H}{—\ G) a homotopy functor on C?

n

21 +

21

-—~-_

1

2

1 (I

(l>

G

1)

Zpk

YES

NO

z
NO

YES

NO

Q

NO

YES

NO

YES

In § 4 we will complete the table by proving the following theorem.

T H E O R E M 2.2. The functors H2n(-; Zpk) for n ^ l and H2n(-; Z)
for n > 1 are not homotopy invariant.
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Thus the blanks in the table can be filled in with "NO's".

3* Proofs of Theorems 1*3 and 1Λ. The proofs of the theo-
rems will be applications of a basic technical result, 3.1, the method
of proof of which is essentially due to Goldfeather [9]. We attempt
to follow Goldfeather's proof as closely as possible so as to make it
clear where our arguments extend his and we include complete details,
as the subtle nature of incompressibility seems to require fastidious
exposition.

By a divided polynomial algebra over Z we shall mean a free
graded abelian group with generators xl9 x2, such that the algebra
structure is given by (xλy = {i\)xt.

Let pp: H*(X; Z) -> H*(X; Zp) be reduction mod p.

THEOREM 3.1. Let f\X—>Y. Suppose that there exists xe
H*(ΩX; Z) such that

(a) x generates a divided polynomial algebra that is a summand
of H*(ΩX; Z);

(b) pp(x) e Im {(Ωf)*: H*(ΩY; Z) -> H*(ΩX; Zp)}; and
(c) H*(X; Q) = 0 for k Φ deg (x) + 1.

Then f is Ω-incompressible.

Proof. Let N = degree of x. By hypothesis there exist:
(1) XeH*(ΩY; Zp) such that (£/)*(%) - pp(x);
( 2) η: ΩY->K{ZP, N) given by τj*(eN) = 1; and
(3) a fibration g: ΩX —> K(ZP, N) given by g*(cN) = pp(x) where

cN denotes a generator of HN{K(ZP, N)).
Let F denote the fiber of g and consider the commutative diagram;

d
ΩX[K] —> ΩX

K(ZP, NYK) •—* K{ZP, N)
incl.

where ΩX[K] = g~\K{Zp, N){K)), the portion of ΩX lying over the
Jί-skeleton of K(ZP, n).

Suppose now that the divided polynomial algebra generated by
x is given by elements xk eHkN(ΩX; Z), k = 1, 2, , such that
xk = k\ xk.

Since pPi*(x) = i*(pp(x)) = i*g*(cN) = 0, and since i*: HN(ΩX; Z) -+
HΔ(F; Z) is a monomorphism (by the Serre exact sequence) we see
that i*(x) is a nonzero of element of HN(F; Z) that is divisible by
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p. Let y be an element such that i*(x) = py. Now

i*(xk) — pkyk ,

so that

Let <7fc be the highest power of p that divides i*(ccΛ) and ^ be
such that i*(xk) = ί>α*2/A. Note that limfc sup (σ*) = <*>, since (l/k\)pk

is divisible by arbitrarily high powers of p.

LEMMA 3.2. .For each integer K ^ 0 £/&ere exists an integer y(K)
such that

Proo/. Let μ(l) be the exponent of p in Hι(K(ZP, N); Z). By
the Universal Coefficient Theorem, the exponent of p in El** in the
Serre spectral sequence for g is less than or equal to

Let Ύ(K) = Σitiμ'W). Then the group p'<K)H*(F;Z) = priK)E?>*
is in the kernel of all the differentials dr for 2 ^ r ^ K. Let
(Er(K), dr(K)) denote the spectral sequence of the fibration gκ. Since
El-*(K) = 0 for I > if, (*,(#) - 0 for ϊ > K. By naturality of the
Serre spectral sequence,

dι(K)(p<'K)Et\K)) = 0 for 2 ^ r ^ fc .

Thus

c E%*(K) - Im (if) c H*(F; Z) . Q

For each K, let ^ f c = jκ(Xk)> so that ΐ£(wfc) = p°kyk and let 2;fc 6
HkN(ΩX[K]; Z) be such that ί}(zk) = priK)yk, as guaranteed by Lemma
3.2. If (jfc > τ ( i θ we have that

Wk — p°K~nK)zk 6 Ker (i%) .

LEMMA 3.3. 1/ N does not divide K, there exists an integer
M{K) such that M{K) ker (ij) = 0.

Proof. In the Serre spectral sequence for gκ, H\ΩX[K]; Z) is
filtered by groups Ditl_i9 0 ^ i ^ K + lf such that

(1) DOtl = H\ΩX[K]; Z)f

(2) Dx+ul_x_1 = {0},
and

( 3 ) D^JD^^
Hence A,i-i = ker (ij: ί
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We can ensure that Dia_x is a finite group by knowing that each

m,ι-i ^ H\K(ZV, NYK); Hι-\F\ Z)) is finite for i ^ 0. We have that
H\K(ZP, N){K); Z) is finite except for i = 0 or K. By condition (c)
of the theorem Hj(ΩX; Q) = 0 if N does not divide j . Since i*:
H*(ΩX; Q)->H*(F; Q) is an isomorphism Et1'1 is finite for all

From now on we assume that N does not divide K. Since wk —
pσ^K)zkekeτ(i%), M(K)[wk - p°*-r<K)zk] = 0.

LEMMA 3.4. If g compresses into K(ZP, N)ικ), there exists a map
rκ: ΩX—> ΩX[K] such that jκrκ ~ 1ΩX.

Proof Immediate from the covering homotopy property (see [9]
p. 689). •

If g were compressible into the if-skeleton of K(ZPf N) we could
apply the map rκ given by 3.4 to get

M{K)xh = M(K)p°^K)r*κ{zk) ,

which contradicts the hypothesis that each xk is a free generator of
HkN(ΩX; Z).

Consequently the map g: ΩX -> K(ZPf N) is not deformable into
the ϋΓ-skeleton of K(ZP, N) for any K not divisible by N, hence not
deformable into any finite skeleton. Since g factors as ΩX-> ΩY —>
K(ZPf N), the map Ωf is incompressible.

We proceed now to the proofs of Theorems 1.1 and 1.2. To show
that c(G, n) <; N9 for some N, we need to produce an iV-dimensional
space X and a map / : X-+ K(G, n) such that / is ^-incompressible.
We shall take our spaces X to be appropriate skeleta of our K(G, n)9s.

Proof of Theorem 1.3. We apply 3.1 by letting Y = K{ZJcf 2n),
N - 2n + 2p - 2, X = K(ZJc, 2n){N+1), and / : X-+ Y be the inclusion

/: K(Zpk, 2n){N+1) c K(Zpk, 2n) .

If l£N+l, f*:Hι(Y;G)->H\X;G) is monic for any group G.
Consequently /*(P1/3(O) is a nonzero element of HN+1(X; Zp) that is
in the kernel of β. (Here P 1 and β denote the Steenrod operations.)
Thus there exists a free generator x of HN+1(X; Z) such that

pp(x) = /*(PX/3(O) -

Set x = σ*(ά). (Here α* denotes the cohomology suspension.) Noting
that N is even and that in the Serre spectral sequence of the path
space fibration of X, dN+1: Ey^-^EStt* is an isomorphism, we see
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that x generates a divided polynomial subalgebra of H*(ΩX\ Z).
Furthermore, if μ denotes that multiplication in ΩX, then the &-fold
interaction of μ* contains a term

(μ*)k(x) = + k\ x (g) <g) x(k factors) + •

and hence xk = {ljk\)xk is a free generator of HkN(ΩX;Z). Thus
condition (a) of Theorem 3.1 is satisfied.

By the naturality of the Steenrod operations, the cohomology
suspension, and reduction mod p, condition (b) is satisfied. Condition
(c) is obvious, since X is the (N + l)-skeleton of a space Y whose
reduced rational cohomology is trivial.

Hence the hypotheses of Theorem 3.1 are satisfied and Theorem
1.3 is proven.

Proof of Theorem 1.4. Suppose n > 1. We would like to apply
3.1 to 7 = K(Z, 2n), N == 2n + 8, and X = K(Z, 2n){N+1\ as in the
proof of Theorem 1.3. However we would fail to satisfy condition (c).
So instead we consider the composition

K(Z%, 2n - iyN^ — K{Z, 2nYN+1) <=^ K(Z, 2n) ,

where h is a cellular map induced by a nontrivial map K(Z2, 2n — 1) ->
K(Z, 2n). Then h*(Sq6Sq%n) = SςfSςfSq1^), and we let f:X-+ Y be

ih: K(Z2, 2n - iγN+1) -> K(Z, 2n)

and take x to be a free generator that reduces to
The proof then proceeds as that of Theorem 1.3.

4* Proof of Theorem 2 1 The connection between compres-
sibility and Cech cohomology is made by the following result.

LEMMA 4.1. // there exists an Ω^incompressible map f:X~-+
K(G, n) (n > 1), where X is a finite complex, then J3/( — G) is not
a homotopy functor on the category of countable CW-complexes.

Proof. Specifically, if PX denotes the Milnor universal bundle
(path-space) on X, [10], we shall show that H;(PX; G) Φ 0. Let ΩX
denote the Milnor cellular loopspace of X. We have a diagram

i , i
Ί
X -^-> K(G, n)
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Since /+ is homotopy-equivalent to Ωf, our hypothesis guarantees
that /+ is not deformable into any compact subset of ΩK(G, n).

Now suppose that Hf(PX; G) = 0. This means, according to 2.1,
that [βPX; K(G, n)] = 0. Let i:PX-+βPX denote the inclusion.
Since X is compact, p1 extends to px: βPX-^X such that pλi — plm

By our hypothesis, fPι~*. Hence there exists a lift g: βPX —>
PK{G, n) such that pg = fpλ. Since pgi = fpλi = fplf gi is a fiber-
preserving map. Since PX is contractible, gi ~ /+. Using again
the contractibility of PX and the fact that n > 1, gi is vertically
homotopic t o / + . Hence/- is homotopic to (gi)\ΩX, as maps ΩX—>
ΩK(G, n). Because gi factors through βPX its image is contained
in a compact subset. But that is a contradiction to the i2-incompres-
sibility of /. •

Proof of Theorem 2.1. In the proofs of Theorems 1.3 and 1.4,
finite complexes were produced and maps to (K(Zpk, 2ri) (N ^ 1) and
K(Z, 2ri) (n > 1), respectively that were ^-incompressible. By Lemma
4.1, the functors H2n(~; Zpk) (n ^ 1) and ί P * ( - ; Z) (n > 1) do not
satisfy the homotopy axiom on the category of countable CW-
complexes. Π
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