HOMOLOGY 3-SPHERES WHICH ADMIT NO PL INVOLUTIONS

Robert Myers

An infinite family of irreducible homology 3-spheres is constructed, each member of which admits no PL involutions.

1. Introduction. In Problem 3.24 of [6] H. Hilden and J. Montesinos ask whether every homology 3 -sphere is the double branched covering of a knot in S^{3}. The interest in this question lies in the fact that there is an algorithm, due to J. Birman and H. Hilden [1], for deciding whether such a 3-manifold is homeomorphic to S^{3}. In addition, the Smith Conjecture for homotopy 3 -spheres [4] implies that every homotopy 3 -sphere of this type must be homeomorphic to S^{3}.

In this paper an infinite family of irreducible homology 3 -spheres is exhibited which admit no PL involutions. This gives a negative answer to the above question since the nontrivial covering translation of a branched double cover is a PL involution.
2. Preliminaries. We shall work throughout in the PL category.

A knot K is an oriented simple closed curve in the oriented 3sphere S^{3} which does not bound a disk. The exterior $Q=Q(K)$ is the closure of the complement of a regular neighborhood of K. A meridian $\mu=\mu(K)$ of K is an oriented simple closed curve in ∂Q which bounds a disk in $S^{2}-\operatorname{Int} Q$ and has linking number +1 with K. A longitude $\lambda=\lambda(K)$ of K is an oriented simple closed curve in ∂Q such that λ bounds a surface in Q and $\lambda \sim K$ in $S^{3}-\operatorname{Int} Q$. ("~" means "is homologous to").
K is \pm amphicheiral if there is an orientation reversing homeomorphism g of S^{3} such that $g(K)= \pm K . \quad K$ is invertible if there is an orientation preserving homeomorphism g of S^{3} such that $g(K)=-K$.

For the definitions of simple knot, torus knot, and fibered knot we refer to [8]. For the definitions of irreducible 3-manifold, incompressible surface, and of parallel surfaces in a 3 -manifold we refer to [5]. Note that a knot K is simple if and only if every incompressible torus in $Q(K)$ is parallel to $\partial Q(K)$. If K is simple and $Q(K)$ contains an incompressible annulus which is not parallel to an annulus in $\partial Q(K)$, then K is a torus knot [3].

Suppose h is an involution on a homology 3 -sphere M. Then by Smith theory [2] the fixed point set Fix $\langle h\rangle$ is homeomorphic to S^{0}
or S^{2} if h reverses orientation and is empty or homeomorphic to S^{1} if h preserves orientation.
3. The construction. Let K_{0} and K_{1} be knots. Let $Q_{i}=Q\left(K_{i}\right)$, $\mu_{i}=\mu\left(K_{i}\right)$, and $\lambda_{i}=\lambda\left(K_{i}\right), i=0,1$. We construct $M=M\left(K_{0}, K_{1}\right)$ by identifying ∂Q_{0} and ∂Q_{1} so that $\mu_{0}=\lambda_{1}$ and $\lambda_{0}=-\mu_{1}$. We denote $Q_{0} \cap Q_{1}$ by T and μ_{0}, λ_{0} by α, β, respectively. Note that M is an irreducible homology 3 -sphere and that T is incompressible in M.

Lemma 3.1. If K_{0} and K_{1} are simple knots, other than torus knots, then every incompressible torus in $M\left(K_{0}, K_{1}\right)$ is isotopic to T.

Proof. Let $T^{\prime \prime}$ be an incompressible torus in M. Isotop $T^{\prime \prime}$ so that T and $T^{\prime \prime}$ are in general position and meet in a minimal number of components.

Suppose some component J of $T \cap T^{\prime}$ bounds a disk D^{\prime} in $T^{\prime \prime}$. We may assume $D^{\prime} \cap T=\partial D^{\prime}$. By the incompressibility of $T, \partial D^{\prime}=$ ∂D for some disk D in T. By the irreducibility of $M, D \cup D^{\prime}$ bounds a 3-cell B in M. So $T^{\prime \prime}$ can be isotoped by pushing D^{\prime} across B and off D to remove at least J from $T \cap T^{\prime}$. This contradicts minimality and so cannot happen. A similar argument shows that no component of $T \cap T^{\prime}$ bounds a disk in T.

Thus if $T \cap T^{\prime} \neq \varnothing, T^{\prime} \cap Q_{i}$ consists of incompressible annuli. Let A^{\prime} be such an annulus in Q_{0}. Since K_{0} is simple and not a torus knot, A^{\prime} is parallel in Q_{0} to an annulus A in T. Therefore $T^{\prime \prime}$ can be isotoped by pushing A^{\prime} across the solid torus bounded by $A \cup A^{\prime}$ and off A to remove at least ∂A from $T \cap T^{\prime}$. By minimality this cannot occur.

Thus T^{\prime} lies in some Q_{i}. Since K_{i} is simple, T^{\prime} is parallel to T and we are done.
4. Involutions on $M\left(K_{0}, K_{1}\right)$. An involution h on $M\left(K_{0}, K_{1}\right)$ is good if $h\left(Q_{i}\right)=Q_{i}, i=0,1$, Fix $\langle h\rangle$ and T are in general position, $h(\alpha) \sim \pm \alpha$, and $h(\beta) \sim \pm \beta$.

Lemma 4.1. Let K_{0} and K_{1} be simple knots, other than torus knots, such that Q_{0} and Q_{1} are not homeomorphic. Then every involution of $M\left(K_{0}, K_{1}\right)$ is conjugate to a good involution.

Proof. By Theorem 1 of Tollefson [1] and Lemma 3.1 there is an isotopy f_{t} of M such that $f_{0}=i d, f_{1}(T)$ and Fix $\langle h\rangle$ are in general position, and either $h\left(f_{1}(T)\right)=f_{1}(T)$ or $h\left(f_{1}(T)\right) \cap f_{1}(T)=\varnothing$. Let $h^{\prime}=f_{1}^{-1} \circ h \circ f_{1}$. Then either $h^{\prime}(T)=T$ or $h^{\prime}(T) \cap T=\varnothing$.

Suppose $h^{\prime}(T) \cap T=\varnothing$. We may assume $h^{\prime}(T) \subset \operatorname{Int} Q_{0}$. If
$h\left(Q_{0}\right) \subset \operatorname{Int} Q_{0}$, then $Q_{0}=h^{2}\left(Q_{0}\right) \subset \operatorname{Int} h\left(Q_{0}\right) \subset \operatorname{Int} h^{2}\left(Q_{0}\right)=\operatorname{Int} Q_{0}$, which is absurd. Thus $Q_{1} \subset \operatorname{Int} h\left(Q_{0}\right)$. But since ∂Q_{1} is parallel to $\partial h\left(Q_{0}\right)$ in $h\left(Q_{0}\right), Q_{0}$ and Q_{1} are homeomorphic, a contradiction. Therefore $h^{\prime}(T)=T$ and so $h^{\prime}\left(Q_{i}\right)=Q_{i}$.

Finally $h(\alpha)=h\left(\mu_{0}\right)=h\left(\lambda_{1}\right) \sim \pm \lambda_{1}= \pm \alpha$ and similarly $h(\beta) \sim \pm \beta$.
Lemma 4.2. Suppose K_{0} is non-amphicheiral. Then every good involution on $M\left(K_{0}, K_{1}\right)$ is orientation preserving.

Proof. $h(\beta) \sim \pm \beta$ implies that $h\left(\mu_{0}\right) \sim \pm \mu_{0}$ and thus that the orientation reversing homeomorphism $h \mid Q_{0}$ can be extended to an orientation reversing homeomorphism g of S^{3} such that $g\left(K_{0}\right)= \pm K_{0}$, a contradiction.

Lemma 4.3. Suppose K_{1} is non-invertible. If h is a good, orientation preserving invoution on $M\left(K_{0}, K_{1}\right)$, then Fix $\langle h\rangle \cap T=\varnothing$.

Proof. Suppose not. Then Fix $\langle h\rangle$ is a simple closed curve meeting T transversely in finitely many points x_{1}, \cdots, x_{n}. Let T^{*} be the orbit space of T under $h \mid T$. The projection $q: T \rightarrow T^{*}$ is a 2-fold covering branched over $x_{1}^{*}, \cdots, x_{n}^{*}$, where $x_{i}^{*}=q\left(x_{i}\right)$. An Euler characteristic argument shows that T^{*} is a 2 -sphere and $n=4$.

Let γ^{*} and δ^{*} be arcs in T^{*} such that γ^{*} joins x_{1}^{*} and x_{2}^{*}, δ^{*} joins x_{2}^{*} and x_{3}^{*}, and each misses the other two branch points. Then $\gamma=q^{-1}\left(\gamma^{*}\right)$ and $\delta=q^{-1}\left(\delta^{*}\right)$ are simple closed curves meeting transversely in the single point x_{2}. After choosing orientations, γ and δ form a basis for $H_{1}(T)$. Moreover $h(\gamma) \sim-\gamma$ and $h(\delta) \sim-\delta$. It follows that $h\left(\mu_{1}\right) \sim-\mu_{1}$ and $h\left(\lambda_{1}\right) \sim-\lambda_{1}$. Then $h \mid Q_{1}$ can be extended to an orientation preserving homeomorphism g of S^{3} such that $g\left(K_{1}\right)=-K_{1}$, a contradiction.

Lemma 4.4. Let h be an orientation preserving free involution on a torus T. Let $\alpha \cup \beta$ be a pair of simple closed curves in T which meet transversely in a single point. Then $\alpha \cup \beta$ can be isotoped so that either
(i) $h(\alpha)=\alpha$ and $h(\beta) \cap \beta=\varnothing$, or
(ii) $h(\beta)=\beta$ and $h(\alpha) \cap \alpha=\varnothing$, or
(iii) $h(\alpha) \cap \alpha=\varnothing=h(\beta) \cap \beta$.

Proof. Note that h induces the identity on $H_{1}(T)$. Isotop $\alpha \cup \beta$ so that $h(\alpha) \cap \alpha$ is minimal.

Suppose $h(\alpha) \cap \alpha \neq \varnothing$. Since $h(\alpha) \sim \alpha$ there is a disk D in T with $\partial D=\gamma \cup \delta$, where γ and δ are arcs in α and $h(\alpha)$, respectively,
and $(\alpha \cup h(\alpha)) \cap \operatorname{Int} D=\varnothing$. Suppose $h(D) \cap D=\varnothing$. Then α can be isotoped by pushing γ across D and off δ to obtain a new curve having four fewer intersection points with its image. This contradicts minimality and so does not occur. Suppose $h(D) \cap D$ is a single point p. Then α can be isotoped by pushing γ across D and off $\delta-p$ to obtain a curve having two fewer intersections with its image. So this cannot happen. Therefore $h(D) \cap D$ consists of two points p and q. In fact $h(\alpha) \cap \alpha=\{p, q\}$. Isotop α by pushing γ across D to δ. Then $h(\alpha)=\alpha$.

Now isotop β, keeping α pointwise fixed, so that $h(\alpha) \cap \beta$ is a single point. (This is only necessary if $h(\alpha) \cap \alpha=\varnothing$.) Then isotop β, keeping α and $h(\alpha)$ setwise fixed, so that $h(\beta) \cap \beta$ is minimal. As in the case of α above, the result will be that either $h(\beta) \cap \beta=\varnothing$ or that β can be isotoped so that $h(\beta)=\beta$. This can be done keeping α and $h(\alpha)$ setwise fixed because the analogous disk D used in the isotopies meets each of α and $h(\alpha)$ in at most a point of $\gamma \cap \delta$ or an arc with one endpoint in each of $\operatorname{Int}(\gamma)$ and Int (δ).

Lemma 4.5. Let h be a good orientation preserving involution on $M\left(K_{0}, K_{1}\right)$ such that Fix $\langle h\rangle \cap T=\varnothing$. Then Fix $\langle h\rangle=\varnothing$ and $\alpha \cup \beta$ can be isotoped so that $h(\alpha) \cap \alpha=\varnothing=h(\beta) \cap \beta$.

Proof. We may assume that $\alpha \cup \beta$ satisfies one of the three possible outcomes of Lemma 4.4. Suppose (i) is true. Then $h \mid Q_{0}$ can be extended to an involution g on S^{3} with $K_{0} \subset$ Fix $\langle g\rangle$. By Smith theory $K_{0}=$ Fix $\langle g\rangle$. By the period two Smith Conjecture [14] K_{0} is unknotted, a contradiction. A similar argument rules out (ii). Thus (iii) holds. If Fix $\langle h\rangle \neq \varnothing$, then Fix $\langle h\rangle \subset \operatorname{Int} Q_{i}$ for some i. Then the homology 3 -sphere $M\left(K_{i}, K_{i}\right)$ admits an involution g with Fix $\langle g\rangle$ homeomorphic to $S^{1} \cup S^{1}$. This contradicts Smith theory, so Fix $\langle h\rangle=\varnothing$.

Lemma 4.6. Suppose K_{0} has a unique isotopy class of incompressible spanning surface. If h is a good, orientation preserving free involution on $M\left(K_{0}, K_{1}\right)$, then K_{0} is a fibered knot.

Proof. Let Q_{0}^{*} be the orbit space of Q_{0} under h. Let $q: Q_{0} \rightarrow Q_{0}^{*}$ be the quotient map and set $\mu_{0}^{*}=q\left(\mu_{0}\right), \lambda_{0}^{*}=q\left(\lambda_{0}\right)$, and $T^{*}=q(T)$. Let $i: T^{*} \rightarrow Q_{0}^{*}$ be the inclusion map. Choose an oriented simple closed curve ξ which meets λ_{0}^{*} transversely in a single point. It follows from Lemma 4.5 that μ_{0}^{*} and λ_{0}^{*} meet transversely in two points, so $\mu_{0}^{*}=2 \xi+k \lambda_{0}^{*}$. (We now confuse curves in T^{*} with their homology classes.)

Claim. $H_{1}\left(Q_{0}^{*}\right) \cong \boldsymbol{Z}$ and is generated by ξ.
Since ∂Q_{0}^{*} is a torus, $H_{1}\left(Q_{0}^{*}\right)$ is infinite. This fact, together with the exact sequence

$$
1 \longrightarrow \pi_{1}\left(Q_{0}\right) \xrightarrow{q_{*}} \pi_{1}\left(Q_{0}^{*}\right) \xrightarrow{\rho} \boldsymbol{Z}_{2} \longrightarrow 1
$$

implies that

$$
q_{*}\left[\pi_{1}\left(Q_{0}\right), \pi_{1}\left(Q_{0}\right)\right]=\left[\pi_{1}\left(Q_{0}^{*}\right), \pi_{1}\left(Q_{0}^{*}\right)\right]
$$

Hence we have the exact sequence $0 \rightarrow H_{1}\left(Q_{0}\right) \xrightarrow{q_{*}} H_{1}\left(Q_{0}^{*}\right) \xrightarrow{\rho} \boldsymbol{Z}_{2} \rightarrow 0$. So $H_{1}\left(Q_{0}^{*}\right)$ is either \boldsymbol{Z} or $\boldsymbol{Z} \oplus \boldsymbol{Z}_{2}$. Suppose $H_{1}\left(Q_{0}^{*}\right) \cong \boldsymbol{Z} \oplus \boldsymbol{Z}_{2}$ with generators γ, δ for $\boldsymbol{Z}, \boldsymbol{Z}_{2}$, respectively. Then $i_{*}(\xi)=m \gamma+n \delta$. So $\gamma=i_{*} q_{*}\left(\mu_{0}\right)=i_{*}\left(\mu_{0}^{*}\right)=i_{*}(2 \xi)=2 m \gamma+2 n \delta=2 m \gamma$, which is impossible. Thus $H_{1}\left(Q_{0}^{*}\right) \cong \boldsymbol{Z}$ with generator γ. Then $i_{*}(\xi)=m \gamma$ and $2 \gamma=i_{*} q_{*}\left(\mu_{0}\right)=i_{*}\left(\mu_{0}^{*}\right)=i_{*}(2 \xi)=2 m \gamma$ implies $m=1$. This establishes the claim.

Now choose a map $f: Q_{0}^{*} \rightarrow S^{1}$ which realizes the epimorphism $\pi_{1}\left(Q_{0}^{*}\right) \rightarrow Z$. Modify f on ∂Q_{0}^{*} so that $\left(f \mid T^{*}\right)^{-1}(p)=\lambda_{j}^{*}$ for some point p in S^{1}. Using standard surgery techniques (as in Lemma 6.5 of [5]) modify f on Int Q_{0}^{*} so that some component F^{*} of $f^{-1}(p)$ is an incompressible surface with $\partial F^{*}=\lambda_{0}^{*}$. Since $\pi_{1}\left(F^{*}\right) \leqq\left[\pi_{1}\left(Q_{0}^{*}\right), \pi_{1}\left(Q_{0}^{*}\right)\right] \leqq$ $q_{*} \pi_{1}\left(Q_{0}\right), f^{-1}\left(F^{*}\right)$ consists of two disjoint incompressible surfaces F_{0} and F_{1} which are interchanged by h. Since $\partial F_{i} \sim \lambda_{0}$ in T, the F_{i} are spanning surfaces for K_{0} and so by assumption are isotopic. By Lemma 5.3 of [13] they cobound a product $F \times[0,1]$ in Q_{0}. Since $Q_{0}=(F \times[0,1]) \cup h(F \times[0,1])$ and $(F \times[0,1]) \cap h(F \times[0,1])=F_{0} \cup F_{1}$, K_{0} is a fibered knot.

5. The examples.

Theorem 5.1. There is an infinite family of pairwise nonhomeomorphic irreducible homology 3-spheres each of which admits no PL involutions.

Proof. To construct one such example, it is sufficient, by the results of the previous section, to find simple knots K_{0} and K_{1}, other than torus knots, having non-homeomorphic exteriors, such that K_{0} is non-amphicheiral, has a unique isotopy class of incompressible spanning surface, and is not fibered, and K_{1} is non-invertible.

Let K_{0} be a twist knot [8, p. 112] with q twists, $q \leqq-2$. K_{0} has bridge number 2 and so is simple [10]. K_{0} has signature -2 and is therefore non-amphicheiral [8, p. 217]. K_{0} has Alexander polynomial $q t^{2}-(2 q+1) t+q$ and is therefore nonfibered [8, p. 326]; so K_{0} is not a torus knot. By Lyon [7] K_{0} has a unique isotopy
type of incompressible spanning surface.
Let K_{1} be the ($3,5,7$) pretzel knot [12]. K_{1} has genus one and is therefore prime [9]. Since K_{1} has bridge number 3 this implies [10] that K_{1} is simple. Trotter [12] has shown that K_{1} is noninvertible. K_{1} has Alexander polynomial $18 t^{2}-35 t+18$ and so is not a torus knot and has exterior not homeomorphic to that of K_{0}.

An infinite family of different examples is obtained by letting K_{0} range over all twist knots with $q \leqq-2$ twists. No two of these are homeomorphic since, by Lemma 3.1, any homeomorphism between $M\left(K_{0}, K_{1}\right)$ and $M\left(K_{0}^{\prime}, K_{1}\right)$ could be deformed so that it carries Q_{0} homeomorphically onto Q_{0}^{\prime}. However, these are distinguished by the Alexander polynomials of K_{0} and K_{0}^{\prime}.

References

1. J. Birman and H. Hilden, Heegaard splittings of branched coverings of S^{3}, Trans. Amer. Math. Soc., 213 (1975), 315-352.
2. G. Bredon, Introduction to Compact Transformation Groups, Academic Press, 1972. 3. C. D. Feustel, On the torus theorem and its applications, Trans. Amer. Math. Soc., 217 (1976), 1-43.
3. C. McA. Gordon and R. Litherland, The Smith conjecture for homotopy 3-spheres, Notices Amer. Math. Soc., 26 (1978), A-252.
4. J. Hempel, 3-Manifolds, Princeton University Press, 1976.
5. R. Kirby, Problems in low dimensional manifold theory, Algebraic and Geometric Topology (Proceedings of Symposia in Pure Mathematics, Volume XXXII Part 2), Amer. Math. Soc., (1978), 273-312.
6. H. C. Lyon, Simple knots with unique spanning surfaces, Topology, 13 (1974), 275-279.
7. D. Rolfsen, Knots and Links, Publish or Perish, Berkeley, 1976.
8. H. Schubert, Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl., 3 (1949), 57-104.
9. —, Über eine numerische Knoteninvariante, Math. Z., 61 (1954), 245-288.
10. J. Tollefson, Periodic homeomorphisms of 3 -manifolds fibered over S^{1}, Trans. Amer. Math. Soc., 223 (1976), 223-234.
11. H. F. Trotter, Non-invertible knots exist, Topology, 2 (1964), 275-280.
12. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math., (2), 87 (1968), 56-88.
13. —— Über Involutionen der 3-Sphäre, Topology, 8 (1969), 81-91.

Received February 6, 1980.
Oklahoma State University
Stillwater, OK 74078

