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HOMOLOGY 3-SPHERES WHICH ADMIT
NO PL INVOLUTIONS

ROBERT MYERS

An infinite family of irreducible homology 3-spheres is
constructed, each member of which admits no PL involutions.

1Φ Introduction* In Problem 3.24 of [6] H. Hilden and J.
Montesinos ask whether every homology 3-sphere is the double
branched covering of a knot in S3. The interest in this question
lies in the fact that there is an algorithm, due to J. Birman and
H. Hilden [1], for deciding whether such a 3-manifold is homeomor-
phic to S\ In addition, the Smith Conjecture for homotopy 3-spheres
[4] implies that every homotopy 3-sphere of this type must be
homeomorphic to S3.

In this paper an infinite family of irreducible homology 3-spheres
is exhibited which admit no PL involutions. This gives a negative
answer to the above question since the nontrivial covering transla-
tion of a branched double cover is a PL involution.

2 Preliminaries* We shall work throughout in the PL
category.

A knot K is an oriented simple closed curve in the oriented 3-
sphere S* which does not bound a disk. The exterior Q = Q{K) is
the closure of the complement of a regular neighborhood of K. A
meridian μ = μ{K) of K is an oriented simple closed curve in dQ
which bounds a disk in S2 — Int Q and has linking number + 1 with
K. A longitude λ = X(K) of K is an oriented simple closed curve
in dQ such that λ bounds a surface in Q and λ ~ K in S3 — Int Q.
("~" means "is homologous to").

K is ± amphicheiral if there is an orientation reversing homeo-
morphism g of S3 such that g(K) — ±K. K is invertible if there
is an orientation preserving homeomorphism g of S3 such that
g(K) =-K.

For the definitions of simple knot, torus knot, and fibered knot
we refer to [8]. For the definitions of irreducible 3-manifold, in-
compressible surface, and of parallel surfaces in a 3-manifold we
refer to [5]. Note that a knot K is simple if and only if every
incompressible torus in Q(K) is parallel to dQ(K). If K is simple
and Q(K) contains an incompressible annulus which is not parallel
to an annulus in dQ(K), then K is a torus knot [3].

Suppose h is an involution on a homology 3-sphere M. Then by
Smith theory [2] the fixed point set Fix (h) is homeomorphic to S°
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or S2 if h reverses orientation and is empty or homeomorphic to S1

if h preserves orientation.

3* The construction* Let Ko and Kx be knots. Let Qέ = Q(K%),
ft = μ(iQ, and λ* = λ(iQ, i = 0, 1. We construct M = M(K0, Kx)
by identifying 3Q0 and dQx so that μQ — λx and λ0 = — ft. We denote
Qo ΓΊ Qi by T and μ0, λ0 by α, β, respectively. Note that M is an
irreducible homology 3-sphere and that T is incompressible in M.

LEMMA 3.1. If Ko and Kx are simple knots, other than torus
knots, then every incompressible torus in M(K0, K±) is isotopic to T.

Proof. Let T be an incompressible torus in M. Isotop T so
that T and Tf are in general position and meet in a minimal number
of components.

Suppose some component J of Γ ί l f bounds a disk D' in T.
We may assume ΰ ; n Γ = dD'. By the incompressibility of T, 3D' =
dD for some disk D in T. By the irreducibility of M, D U D' bounds
a 3-cell B in Λf. So T can be isotoped by pushing Df across B and
off D to remove at least J from Γ Π T. This contradicts minimality
and so cannot happen. A similar argument shows that no component
of Γ n f bounds a disk in T.

Thus if T ί l f ^ 0 , T'Π Qi consists of incompressible annuli.
Let A! be such an annulus in Qo. Since Ko is simple and not a torus
knot, Af is parallel in Qo to an annulus A in T. Therefore T can
be isotoped by pushing A! across the solid torus bounded by A U Af

and off A to remove at least dA from Γ f i Γ . By minimality this
cannot occur.

Thus T lies in some Q{. Since Kt is simple, T is parallel to T
and we are done.

4* Involutions on M(K0, iQ* An involution h on Λf(JSΓ0, JSLJ is
good if fe(Qί) = Qi, i — 0,1, Fix </&> and T are in general position,
h(a) — ±a, and h(β) ~ ±β.

LEMMA 4.1. Let Ko and Kx be simple knots, other than torus
knots, such that Qo and Qx are not homeomorphic. Then every in-
volution of M(Kθ9 Kx) is conjugate to a good involution.

Proof. By Theorem 1 of Tollefson [1] and Lemma 3.1 there is
an isotopy ft of M such that /0 = id, fλ(T) and Fix Qi) are in general
position, and either Λ(Λ(Γ)) =/χ(Γ) or Λ(Λ(Γ)) Π/i(Γ) = 0 . Let
h' = frlohofιm Then either h\T) = T or fc'(Γ) Π Γ = 0 .

Suppose A ' ( T ) n ! Γ = 0 . We may assume fe'(Γ) c l n t Qo If
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h(Q0)dlntQ0, then Qo = h\QQ) dint h(Q0) dint h\Q0) = IntQ0, which is
absurd. Thus Qιc:Inth(Q0). But since 3QX is parallel to dh(Q0) in

Qo and Qi are homeomorphic, a contradiction. Therefore
= T and so Λ'(Q«) - Q{.

Finally h(a) = /&(#,) = fe(λx) — ±λ x = ±a and similarly fc(£) ~ ±β.

LEMMA 4.2. Suppose Ko is non-amphίcheiral. Then every good
involution on M(K0, i£Ί) is orientation preserving.

Proof. h(β) ~ ±β implies that h(μ0) ~ ±μ0 and thus that the
orientation reversing homeomorphism h\Q0 can be extended to an
orientation reversing homeomorphism g of S3 such that g(K0) = ±K0,
a contradiction.

LEMMA 4.3. Suppose Kx is non-invertible. If h is a good,
orientation preserving invoution on M(K0, Kλ), then Fix Qι) (1 Γ = 0 .

Proof. Suppose not. Then Fix (h) is a simple closed curve
meeting T transversely in finitely many points xl9 — }xn. Let T*
be the orbit space of T under h \ T. The projection q: T —> T* is
a 2-fold covering branched over xf, •••,#*, where xf — q(Xi). An
Euler characteristic argument shows that T* is a 2-sphere and
n — 4.

Let 7* and δ* be arcs in T* such that 7* joins ajf and x%, δ*
joins α?2* and xf, and each misses the other two branch points. Then
7 = gf""1(7*) and δ — q~\h*) are simple closed curves meeting trans-
versely in the single point x2. After choosing orientations, 7 and
δ form a basis for H&T). Moreover h(y) 7 and h(δ) δ. It
follows that h(μύ ~ — μ1 and h(Xj) ~ — \. Then h\Qλ can be extended
to an orientation preserving homeomorphism g of Sz such that

= —Klf a contradiction.

LEMMA 4.4. Let h be an orientation preserving free involution
on a torus T. Let a U β be a pair of simple closed curves in T
which meet transversely in a single point. Then a U β can be
isotoped so that either

( i ) h(a) = a and h(β) Π β = 0 , or
(ii) h(β) = β and h(a) f] a = 0 , or
(iii) λ(α) Π α = 0 = h(β) Π /3.

Proof Note that A induces the identity on H^T). Isotop α U β
so that λ(α) Π OL is minimal.

Suppose fc(α) Π a Φ 0 . Since λ(α) — α there is a disk ΰ in Γ
with 3D = 7 U δ, where 7 and <? are arcs in a and /&(α), respectively,
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and (α U h(a)) Π Int D = 0 . Suppose h{D) Π D = 0 . Then α can be
isotoped by pushing 7 across D and off δ to obtain a new curve
having four fewer intersection points with its image. This con-
tradicts minimality and so does not occur. Suppose h(D) Π D is a
single point p. Then a can be isotoped by pushing 7 across D and
off δ — p to obtain a curve having two fewer intersections with its
image. So this cannot happen. Therefore h(D) Π D consists of two
points p and q. In fact h(a) Π oί = {p, #}. Isotop α by pushing 7
across D to δ. Then λ(α) = α.

Now isotop β, keeping a pointwise fixed, so that h{a) Π β is a
single point. (This is only necessary if h(a)f]cc = 0 . ) Then isotop
β, keeping a and Λ(α) setwise fixed, so that h(β) Π β is minimal. As
in the case of a above, the result will be that either h(β) ΓΊ β = 0
or that β can be isotoped so that h(β) = /3. This can be done
keeping a and h(a) setwise fixed because the analogous disk D used
in the isotopies meets each of a and h(a) in at most a point of 7 Π δ
or an arc with one endpoint in each of Int (7) and Int (<?).

LEMMA 4.5. Let h be a good orientation preserving involution
on M(K0, JKΊ) such that Fix (h) Π Γ = 0- T/̂ w Fix <fe> = 0 and
aU β can be isotoped so that h(a) d a = 0 = h(β) Π β.

Proof. We may assume that a (J β satisfies one of the three
possible outcomes of Lemma 4.4. Suppose (i) is true. Then h\Q0

can be extended to an involution g on S3 with Ko c Fix (g}. By
Smith theory KQ = Fix (g). By the period two Smith Conjecture
[14] Ko is unknotted, a contradiction. A similar argument rules out
(ii). Thus (iii) holds. If Fix (h) Φ 0 , then Fix <Λ> c: Int Q< for
some i. Then the homology 3-sphere M(Ki9 Kt) admits an involution
g with Fix (g) homeomorphic to S1 U S\ This contradicts Smith
theory, so Fix (h) — 0 .

LEMMA 4.6. Suppose Ko has a unique isotopy class of incom-
pressible spanning surface. If h is a good, orientation preserving
free involution on M(K0, iQ, then Ko is a fibered knot.

•0Proof. Let Q* be the orbit space of Qo under h. Let q: Qo —> Q{

be the quotient map and set μ* = q(μ0), λ? = g(λ0), and Γ* = g(Γ).
Let i: T* —> Qo* be the inclusion map. Choose an oriented simple
closed curve ζ which meets λ* transversely in a single point. It
follows from Lemma 4.5 that μ* and x* meet transversely in two
points, so μζ = 2ξ + kxf. (We now confuse curves in T* with their
homology classes.)
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Claim. H^Qf) = Z and is generated by ξ.
Since dQ* is a torus, HX(Q*) is infinite. This fact, together with

the exact sequence

implies that

Hence we have the exact sequence 0 —> H±(Q0) -ϊ H^Qί) —> Z2 -» 0. So
iϊi(Qo*) is either Z or Z ® Z 2 . Suppose H^QS) =k Z ζ& Z2 with
generators 7, 5 for Z, Z2, respectively. Then £„.(£) = mγ + wδ. So
7 = i*q*(μ0) = i*(μ*) = i*(2f) = 2mγ + 2w<5 = 2mτ, which is impos-
sible. Thus H^Qo) = Z with generator 7. Then i^ξ) — my and
27 = i*q*(μ0) = i*(μ*) = i*(2f) = 2m7 implies m = 1. This establishes
the claim.

Now choose a map /: ζ>0* —> S1 which realizes the epimorphism
î(Qo*) -> ̂ . Modify / on dQf so that (/| T*)-\p) = λ? for some point

p in S1. Using standard surgery techniques (as in Lemma 6.5 of
[5]) modify / on Int Qo* so that some component F* of f~\p) is an
incompressible surface with dF*=Xf. Since τr1(ί

τ*)^[7Γ1(Q0*), itiiQ*)]^*
Q*fti(Qo)f f~\F*) consists of two disjoint incompressible surfaces FQ

and Fγ which are interchanged by h. Since dFt ~ λ0 in T, the Ft

are spanning surfaces for KQ and so by assumption are isotopic. By
Lemma 5.3 of [13] they cobound a product F x [0, 1] in Qo. Since
Q o - ^ x [0, 1]) U h(F x [0, 1]) and (F x [0, 1]) n h(F x [0, 1]) - Fo U Fu

Ko is a fibered knot.

5* The examples*

THEOREM 5.1. There is an infinite family of pair wise non-
homeomorphic irreducible homology 3-spheres each of which admits
no PL involutions.

Proof. To construct one such example, it is sufficient, by the
results of the previous section, to find simple knots Ko and Klf

other than torus knots, having non-homeomorphic exteriors, such
that Ko is non-amphicheiral, has a unique isotopy class of incompres-
sible spanning surface, and is not fibered, and Kx is non-invertible.

Let Ko be a twist knot [8, p. 112] with q twists, q <; — 2. Ko

has bridge number 2 and so is simple [10]. Ko has signature —2
and is therefore non-amphicheiral [8, p. 217]. Ko has Alexander
polynomial qt2 — (2g + ΐ)t + q and is therefore nonfibered [8, p. 326];
so Ko is not a torus knot. By Lyon [7] Ko has a unique isotopy
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type of incompressible spanning surface.
Let Kx be the (3, 5, 7) pretzel knot [12]. Kx has genus one and

is therefore prime [9]. Since Kt has bridge number 3 this implies
[10] that Kx is simple. Trotter [12] has shown that Kx is non-
invertible. Kx has Alexander polynomial 18ί8 — 35ί + 18 and so is
not a torus knot and has exterior not homeomorphic to that of Ko.

An infinite family of different examples is obtained by letting
Ko range over all twist knots with q <; — 2 twists. No two of these
are homeomorphic since, by Lemma 3.1, any homeomorphism between
M(K0, JKΊ) and M(K'Of KJ could be deformed so that it carries Qo

homeomorphically onto QJ. However, these are distinguished by the
Alexander polynomials of Ko and K'o.
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