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A NOTE ON REGULAR CAUCHY SPACES

D. C. KENT

A regular convergence space has both a finest and
coarsest compatible regular Cauchy structure. The coarsest
compatible regular Cauchy structure is complete if and only
if the original space is Urysohn-closed; it is totally bounded
if and only if the original space is almost topological.
Minimal regular Cauchy spaces are characterized and, in the
complete case, shown to be in one-to-one correspondence with
the minimal regular convergence spaces. The noncomplete
minimal regular regular Cauchy spaces do not have regular
completions.

l Fine and coarse Cauchy structures* The reader is asked
to refer to [2] for definitions, notation, and terminology pertaining
to convergence and Cauchy spaces not given here. As in [2], we
make the assumption that all convergence and Cauchy spaces are
Hausdorff.

A few nonstandard notations which we shall borrow from [2]
are worth special mention. If filters J^ and & contain disjoint sets,
we write "&~\l gf = 0". The symbol "ΓJ" denotes the nth itera-
tion of the closure operator with respect to a convergence structure
q. The term "ultrafilter" will be abbreviated "u.f.".

Given a Cauchy space (X, ̂ ) , the associated convergence struc-
ture is denoted q&; in other words, ^'^-converges to x iff xΠ^s^.

Let F(X) denote the set of all filters on X. Given a convergence
space (X, q), let [q] denote the set of all Cauchy structures ^ on
X such that q — q^. Also associated with q are the following sets
of filters:

is g-convergent}

Aq = {jr 6 F(X): ̂  V 5f = 0 for all gf e

We omit the easy proof of the first proposition.

PROPOSITION 1.1. For any convergence space (X, q), c^q is the
finest member of[q\. r^q is regular iff q is regular. <r^>q is complete.

PROPOSITION 1.2. For any convergence space (X, q), ^ q is the
coarsest member of [q]. ^ q is totally bounded.

Proof. The verification that ^ q is a Cauchy structure compatible
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with q is straightforward. If ^ e [q] and ^~ e ^ , then either
if (/-convergent, in which case J?" e ^ , or else ^ is non-#-conver-
gent, in which case J ^ V 5f = 0 for all gf e<Sr«, and hence ^ zΛq.
In either case, ,JΓ' e <ĝ , and so ^ α ^ ^ . If £$f is a non-g-conver-
gent u.f., then ^ T V ^ = 0 for all gf e<if9, and therefore gf eίfβ;
thus ^ is totally bounded.

For a convergence space (X, q), ^ q will be called the fine Cauchy
structure and ^ the coarse Cauchy structure associated with q.

THEOREM 1.3. Let (X, q) be a convergence space. Then ^q is
regular iff q is regular and almost topological.

Proof. Assume that q is regular and almost topological. If
^ 6 <§fg, then Γ ^ 6 if* by Proposition 1.1. lί^eΛq and Γq^ £ Λq,
then there is a filter 5f 9 9fg such that (Γq^) V 5^ Φ 0. Without
loss of generality, we can assume that ^ is an u.f. Since (X, q)
has the same u.f. convergence as a topological space, the point to
which ^-converges (call it x) is an adherent point for a?". Under
the assumption that ά?" is an u.f., ^g-converges to x. But this
contradicts the assumption that ^ e Λq, and this contradiction shows
that ΓqJ^eΛq. Thus <£>q is regular.

Conversely, assume that &q is regular. Then q is obviously
regular, and it remains to show that q is almost topological. First,
let &~ ^ 3̂ (a?), where ^ is an u.f. and T^x) the ^-neighborhood
filter at x. Then * ^ Γq^. Since £fg is totally bounded, ^ e ίfg,
and hence ,J^-converges to x. The proof will be completed by
showing that the ^-closure operator is idempotent. Let xeΓ2

qA.
Then there is an u.f. Jfq-conveτgmg to x such that Γq(A) e SίΓ.
By Lemma 2.1 of [2], there is an u.f. £ίf containing A such that
3tr ^ ΓqSί?. Since * ^ Γ,^T ^ Γ^JT and .^T e <gf9, ^Tg-converges
to sc. Therefore, x e ΓqA. Since the g-closure operator is idempotent,
it follows that (X, q) is almost topological, and the proof is complete.

2* The coarsest regular Cauchy structure* Let N denote the
set of natural numbers, and let Γq denote the wth iteration of the
closure operator of a convergence (X, q). With each regular con-
vergence space (X, q), we shall associate two additional sets of filters
defined as follows:

Aq = {^r 6 F(X): & V (ΠJ^) = 0 for all Sf e ^ q and n e N} .

PROPOSITION 2.1. // (X, #) is α regular convergence space, then
is the coarsest regular member of [q].
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Proof. It is a routine matter to verify that 3Jq is a Cauchy
structure compatible with q. To show that £&q is regular, let Jβ~ e Δq.
Since (ΓJJH V 5f = 0 for all ra in N and 5f 6 ΐ f % Γn

q(Γq^) V 5f = 0
for all w in iV and gf e ̂ f f . Thus /VF~ G Jg, and the regularity of
3fq is established. An argument like that used in the proof of
Proposition 1.2 shows that ^ is the coarsest regular member of [q],

A convergence space (X, q) is said to be a Urysohn space if,
whenever ^Ί^-converges to x and ̂ g-converges to y, for x Φ y, it
follows that Γn

q{^) V Γ£(gf) = 0 for all % in N. A regular conver-
gence space is obviously a Urysohn space.

A regular (Urysohn) convergence space is regular-closed (Urysohn-
closed) if it is a closed subspace of every regular (Urysohn) conver-
gence space in which it is embedded. Characterizations of regular-
closed and Urysohn-closed convergence spaces are given in [1]; these
results are restated, in modified form, in the following lemma.

Given a convergence space (X, q) and . / e F f l ) , let Γq^~ ~

LEMMA 2.2. Let (X, q) be a regular convergence space.
(a) (X,q) is regular-closed iff, for each ^eF{X), Γq{^") has

an adherent point.
(b) (X, q) is Urysohn iff, for each J^" e F(X)y there is neN

such that Γn

q{^) has an adherent point.

THEOREM 2.3. A regular convergence space (X, q) has a unique
compatible regular Cauchy structure iff (X, q) is regular and Urysohn-
closed.

Proof. The set [q] contains a unique regular member iff Δq = 0 .
If Δq = 0 , then for each filter ^ on X, ( Γ J ^ ) V 5f Φ 0 for some
n e N and gf 6 if9. Thus Γ£J^ has an adherent point, and (X, q)
is Urysohn-closed by Lemma 2.2. Conversely, assume that Δq contains
a filter ^ . Since 5f V (Γ^^O = 0 for all gf 6 if9 and w e iSΓ, Γ ? ^
has no adherent points for all neN, and by Lemma 2.2, (X, q) is
not Urysohn-closed.

From Theorem 2.3 and Lemma 2.2, it follows that every conver-
gence space with a unique compatible regular Cauchy structure is
regular-closed.

COROLLARY 2.4. Let (X, q) be a regular convergence space.
(a) (X, ϋ^) is complete iff (X, q) is Urysohn-closed.
(b) (X, &q) is totally bounded iff (X, q) is almost topological.

Proof, (a) Since Aq is the set of nonconvergent Cauchy filters
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in 3Fq, &q is complete iff Aq = 0 . In the proof of Theorem 2.3, it
is shown that Δq — 0 iff (X, q) is Urysohn-closed.

(b) (X, &fq) is totally bounded iff 3fq = <g=V The latter condition
is, by Theorem 1.3 and Proposition 2.1, equivalent to (X, g) being
almost topological.

If (X, q) is a regular convergence space which is not Urysohn-
closed, then let ^ q be the filter obtained by intersecting all of the
filters in Δq.

THEOREM 2.5. If (X, q) is a regular convergence space which is
not Urysohn-closed, then (X, <&q) has a regular completion iff

- 0 for all

Proof. The set Δq constitutes the single equivalence class of
nonconvergent Cauchy filters in 3fq. Thus any completion of (X, 3fq)
is necessarily a one-point completion, with all filters in Aq converging
in the completion space to the added point.

Assume that (F, &) is a regular one-point completion of (X, ^ ) .
Without loss of generality, we can let Y — X\J {a}, where a £ X,
and consider (X, ϋ%) as a subspace of (Y, <£*). If ^"e^q and
J^V ^q^0, then there is an u.f. gf ^ ^ such that g f ^ ^ .
Thus every set G in ^ belongs to an u.f. in Δv and therefore
& ̂  Γq^'f where gf' is the filter on Y generated by gf. But gf'
also g^-converges to some element in X, and it follows that (IT, <£*)
cannot be both regular and Hausdorff. This contradiction establishes
that J ^ V ^ ζ = 0 for all j^e<Sf«.

Conversely, assume that ^ V ̂ £q = 0 for all J ^ e ̂ g . Let
Γ = l U ( α } , where a £ X, and let ^ be the canonical one-point
completion Cauchy structure in which the filters in Δg, considered
as filters on Y, converge to a. One can readily verify that the
assumed condition is precisely what is needed to establish that
(F, ^ ) is regular.

3* Minimal regular Cauchy spaces* A regular convergence
space (X, q) is minimal regular if, whenever p is a regular conver-
gence structure on X and p ^ q, then p = q. A characterization of
minimal regular convergence spaces, which we shall not make use
of, is given in [1], A minimal regular Cauchy space is defined in
the analogous (and obvious) way.

THEOREM 3.1. A complete Cauchy space (X, ̂ ) is minimal
regular iff (X, q&) is a minimal regular convergence space.

Proof. Let (X, ̂ ) be a complete minimal regular Cauchy space.
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If q — q^, then <£* — ̂ q by the assumption that (X, ^) is complete.
If there is a regular convergence structure p ^ q, then ^ p ^ ^ q ,
and so by assumption ^ p — &q. But this implies p = q, and so
(X, q) is a minimal regular convergence space.

Conversely, if q is minimal regular and &q — ̂ , then let <g"
be a regular Gauchy structure on X such that <^>t ^ ^ . Then
qw, ^ g implies that q«, = q. Since <Sf' is regular, ^ ^ <g*' ^ if*.
But a minimal regular convergence space is shown in [1] to be
regular-closed, and it follows from Theorem 2.2 that ϋ ^ = <£" =
^ q — ̂ . Thus (X, ^ ) is a minimal regular Cauchy space.

To simplify the formulation of the next theorem, we introduce
the following two condition on a Cauchy space (X,

Condition A. Let Sίf be an u.f. on X and aeX. If, for all
n in N, ^ 6 Λff, and y Φ α, it is true that (Γ^^T) V ^ ^ = 0 and
{Γn

q3έf) V Tq{y) = 0, and it is also true that gf V {F™£έ?) Φ 0 for
some S^g-converging to a and meN, then ,^^g-converges to α.

Condition B. There are at least two filters ^ " and ^ on I
which g-converge to distinct points such that t ^ r V ^ ^ ^ 0 and

g f v ^ ^ o.

THEOREM 3.2. Lei (X, ^ ) 6e α noncomplete regular Cauchy
space, and let q = g .̂ TΛ,ê  (X, ^ ) is minimal regular iff ^ = ^

(X, ^ ) satisfies Conditions A α-̂ cί B.

Proof. Assume that ^ = ^ and that (X, ^ ) satisfies the two
conditions. Suppose that there is a regular Cauchy structure ^ ' on
X such that ^ ' < <ĝ . Let p = ĝ /. Since ^ = ^ , p < q, and so
there is an u.f. £έf and a point z in X such that <^p-converges to
3, but Jg^ fails to g-converge to z.

Case 1. JJT e 4 . If J T e 4, then X n ^ r e ^ , c ^ , a n d Con-
dition B asserts that there are filters ^ and & which interest ^
and converge to distinct points a and 6, respectively; it follows that
& ̂  /V̂ ~" a n ( ^ ^ = ^g^ Since z cannot equal both a and 6, a
contradiction is obtained, and it follows that Sίf^Δq. Thus each
member of Δq is a nonconvergent member of ^ ' from this it follows
that i c i .

Case 2. ^ ^ $ z/5. In this case there is neN, a e X, and 3ίΓq-
converging to a such that JίΓ V {Γ%3ίf) ^ 0 . It must be the case
that a = 3, otherwise (X, ^ ' ) would not be regular and Hausdorff.
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Since {Γn

p^f) V Tp{b) = 0 for all n in N and b Φ z, it follows that
V Tq{b) = 0 for all n in N and 6 =£ z. Furthermore, {Γ%^f) V
= 0 for all n e ΛΓ and ^eJp; this, along with the previously

established result that Δq c 4,, implies that {Γ*βέf) V (ΓJ^H = 0 for
all ^ e 4 But then, by Condition A, ^g-eonverges to z. This
contradiction establishes that (X, ^ ) is minimal regular.

Conversely, assume that (X, &) is minimal regular. Obviously,
<& — 2$q. Suppose that under the stipulations of Condition A, έ%f
fails to ^-converge to a. Then the Cauchy space <£" — & U {<3f e
F{X): ^T ^ £f Π iΓn

q3f) for some ^g-eonverging to α and n in ΛΓ}
is a regular Cauchy structure on X, and <jg" < ^ . This contradic-
tion shows that Condition A must be satisfied.

Next, we show that Condition B is satisfied. Suppose, on the
contrary, that there is only one point x with the property that there
is a filter ^~ which ^-converges to x such that JΓ V ^€q Φ 0. Define
^ ' = ^ U {2ίf 6 F(X): Sίf^3ίΓς\^ for some ^"g-converging to
x and Jίf 6 Aq}. It is easy to verify that ^ ' is regular and ^ ' < ^
A similar construction is possible if there is no filter ^ 6 &q such
that ^ ^ V\y£q Φ 0; in this case the point x can be chosen arbitrarily,
and <g5" constructed as before. Thus a minimal regular Cauchy space
also satisfies Condition B, and the proof is complete.

Note that (X, ^ ) satisfies Condition A whenever q^ is a topology.

COROLLARY 3.3. Let (X, ^ ) 6e α noncomplete, regular Cauchy
space such that q = #^ is α topology. Then (X, ^ ) is minimal
regular iff ^ = ϋ%, am? (X, <g:7) satisfies Condition B.

The next corollary, which follows immediately from Theorems
3.1 and 3.2 and Corollary 2.4, is a complement to the latter result.

COROLLARY 3.4. Let (X, ^) be a minimal ragular Cauchy space.
(a) (X, ^ ) is complete iff (X, q&) is a minimal regular conver-

gence space.
(b) (X, ^ ) is totally bounded iff (X, q&) is almost topological.

There follows an example of a maximal minimal regular Cauchy space,
this is to say, a minimal regular Cauchy space whose underlying
convergence structure is as fine as possible (in view of Condition B).

EXAMPLE 3.5. Let X be an infinite set, a and b two points in
X, and _^7 Ŝ  two free u.f.'s on X. Let q be the regular topology
on X with neighborhood filters given by: Tq{a) = &~ Π a; Tq(b) -
& Γl b; Tq{x) = *, for x Φ a and xΦb. & = ^q. It is easy to see
that (X, <gf) satisfies Condition B. Thus, by Theorem 1.3 and Corol-
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lary 3.3, (X, <&) is minimal regular. Note that there is no finer
convergence structure on X for which a compatible Cauchy structure
Condition B.

The final result is an immediate consequence of Theorems 2.5
and 3.2.

COROLLARY 3.6. A noncomplete minimal regular Cauchy space
has no regular completion.
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