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AN APPLICATION OF WERMER'S
SUBHARMONICITY THEOREM

I. GLICKSBERG

Wermer originally introduced his subharmonicity theorem
to find analytic structure in certain polynomial hulls in C2

and later, with Aupetit, applied it to improve a well known
result of Bishop providing analytic structure in the spectra
of certain uniform algebras. We make a simpler application
to yield analytic structure in the presence of an element of
constant modulus on certain fibers provided by another ele-
ment, and to extend Wermer's maximality theorem.

1* Let A be a uniform algebra [4] on its spectrum M— MA,
with X a boundary for A. Our basic observation is contained in
the simple

LEMMA 1.1. Suppose gβA, feA"1 and

(1) for each ζeg(X), \f(g~1(Q)\ is a singleton.

Then the same is true for any ζ in g(M) and

(2) u:ζ >log|/Gr1(ζ))|

is continuous on g(M) and harmonic on g(M)\g(X).

This consequence of Wermer's theorem yields our application,
which in its simplest form is

THEOREM 1.2. Suppose g eA and fe A"1 satisfy (1) and separate
M. If U is a simply connected component of g(M)\g(X) then g~\ U)
can be viewed as a product of U and a closed subset K of the circle
T1 = {\z\ = 1} with U x {z} an "analytic disc"; more precisely, for
any subdomain VcU, g~\V~) is topologically equivalent to V~xK,
and {A\g~λ{V~))~j transported to V~ x K, consists of functions with
sections analytic on V.

When U is not simply connected g~\U) can be viewed as a
product of a (not necessarily closed) subset K of the circle and a
Riemann surface as we shall see, but our correspondence need not be
topological. When / and g do not separate M we can apply our
argument to provide such analytic structure in the part of the
joint spectrum σA(g, f) of g, f over U, πϊ\U) Π σA(g, / ) , or of the
joint spectrum σB(g, f) relative to any subalgebra B containing that
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316 I. GLICKSBERG

generated by g, f and f~\ provided we have some way of insuring
(1) applies when g~\ζ) is replaced by g~\ζ)f the fiber in MB (which
can be different, of course). In particular this is the case if g(X)
is the minimal boundary for R(g(M)), so g~\ζ) c MB is a peak set
for B, and consequently B\g~\ζ) is a closed subalgebra of C(g~\ζ))
with g-\ζ) n l = g~\Q Π X a boundary", so

sup 1/(^(0)1^ sup

while

(since / is invertible), and thus \f(g~"Kζ))\ coincides with the singleton

COROLLARY 1.3. Suppose geA and feA~x satisfy (1), g(X) is
the minimal boundary for R(g(M))y and B is a closed subalgebra
of A containing that generated by g, f and f-1. Then if U is any
simply connected component of g(M)\g(d), π^U f) crB(g, f) has the
iζ analytic structure" given in Theorem 1.2.

To prove the lemma we note that Wermer's subharmonicity
theorem asserts

u+:ζ >suplog|/(flr
1(C))|

is subharmonic on g(M)\g(X) (which of course includes any com-
ponent of C\g(X) it meets [4, 8]), as is

tt_:C >-inflog|/(flΓι(C))l,

since the result also applies to f"1. Consequently u+ + u_ is a non-
negative subharmonic function on g(M)\g(X), which, by compactness
of M and our hypothesis, has limζ_^ (u+ + u_)(ζ) = 0 for each z e
d(g(M)\g(X)) c g{X), and so is nonpositive by the maximum principle.
Hence u+ + u_ = 0 and thus \fg~\ζ)\ is a singleton for each ζeg(M).

Now compactness of If guarantees continuity of u: ζ—>log \f{g~\ζ))\,
and since u — u+ = — u_, u is both sub- and superharmonic, so the
lemma is proved.

In the setting of Theorem 1.2, u has a well defined (and up to
a constant, unique) continuous harmonic conjugate v on U, sou+iv

υ Any element of <Γι(C) is represented on B by a nonnegative measure λ carried

by X, and λ must also be carried by J~1(ζ) as one sees by applying it to hn and

letting τ&—>oo, where h is our peaking function. Thus sup iS^'HCWI^sup Mg'Hζ) Π X) =
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is analytic on U. For any closed disc Da U we thus have (u + iv)°
ge(A\g-\D)y9 so h = fe~{u+iv)09 is an invertible in that uniform
algebra, while by local maximum modulus g~\dD) forms a boundary
for the algebra. Evidently \h\ = l on g~\U) since u(ζ)^log\f(g-\ζ))\f

and if we take ζeD° and let m e g~\ζ), with λ a measure on g~\3D)
representing m then

r
h{m) = \hdX

j

and \h\ = 1 imply h = h(m) on the (closed) support of λ, which is
mapped by g onto the support of2) g*X. But g*X is a measure on
dD which represents ζ on the disc algebra A(D), so it necessarily
has support all of dD. Thus dDag{h~\h{m)))9 and, since we can
apply the same argument to any closed subdisc having ζ in its
interior, we conclude that Dag{h~\h{m))). Hence

( 3) g{h~\z)) = D for all z in K = h(g~%)) c Γ1 .

In fact the compact set K is independent of ζ e ΰ ° , since if ζ ' e D 0

and zeK we have an m' e /^(z) for which g{m') = ζ' by (3), so
m'eg~ι{ζϊ) and thus zeh(g~\C)). Consequently from the connected-
ness of U we have K independent of our choice of the disc D in
U as well.

So far we have not used the fact that / and g separate M.
However for V our relatively compact subdomain of U and B the
closed subalgebra (A\g-\V-))- of C(V')f since / •= he{u+iv)og that
hypothesis implies g and & separate g~\V~) = MB. Thus for each
zeK, g\(h~\z) Π g~\V~)) is 1 — 1, and so maps its domain homeo-
morphically onto its range, which because of (3) must be V~, the
smallest compact set containing all closed discs DaV.

Evidently then g~\V~) is homeomorphic to V~ x K via the
map (g, h). Moreover each element of our algebra is analytic on
V x {z}, zeK (or on h^iz)); more precisely ao(g\h~1(z))~1 is analytic
on V for aeA: for we know g~\dV) provides a boundary for B by
local maximum modulus, so since h~\z) Π g~\V~) is a peak set for
B (since heB has unit modulus), B\(hr\z) Π βΠ^F-")) is a closed
algebra for which h~\z) Π flπXδ F) provides a boundary exactly as
in our observation before 1.3 (cf. footnote 1). In particular for
V~ = Dy a closed disc in U, we have h~\z) Π g"\D) a disc for
which # will provide a coordinate while I? restricted to this disc
must have h~\z) Π g~\dD) as a boundary; thus the elements of B
(and so of A) are analytic functions of g thereon by Wermer's

g*λ denotes the natural image measure: g*X(E)=2(g-1(E)).
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maximality theorem [4]. Our proof is now complete.

To obtain Corollary 1.3, note that by the remarks immediately
preceding it we can apply our lemma to any algebra B as described
and M = MB; the preceding proof applies to show everything but
the (lacking) 1 — 1-ness of our map of MB Π 9~\V~) = g~\V~) onto
V" x K, and of course σB(g, f) is precisely the right quotient space
to yield a homeomorphism.

When U is not simply connected we can apply our argument
locally, and evidently analytic continuation will allow us to regard
g~\U) c MA as a product of a subset of T1 and the Riemann surface
provided by our continuation of u + iv through U; that the corres-
pondence is nontopological can be noted from the following example.

1.4. L e t X - {(z, w)eC2: \z\ = \w\ = 1, o r \z\ = r, \w\^r^},
(1 > r > 0) and let A be the closed algebra of C{X) generated by
z, z~\ w a n d w1. T h e n t h e s p e c t r u m of A is {(z, w): \z\VΓ — \ w\,
r ^ \z\ ^ 1}, as is well known; with g = z and / = w, we obtain
the familiar analytic structure in which M\X is the union of the
graphs z->(z, eίθzVΓ) over r < | s | < l . (For \f(g~\z))\ = l(resp. =rv^)
for 1̂ 1 = 1 (resp. \z\ — r), so u(z)'= V/2log\z\, whence u + iv(z) =
l/ΊΓlogz and h = z~VΓf = wz~VΓ

9 so h-\eίθ) is defined by w = eiθzVΓ).

1.5. In some situations even when U is not simply connected
we can arrive at a single valued harmonic conjugate for u, and
thus the simple structure over U afforded by Theorem 1.2. These
follow from the simple observation that as we analytically continue
u + iv in U, K never varies: [if Dt is any disc centered at d 6 D
and v is defined on Dx so as to give (of course) the original value
at d, then for meg-\ζ^), hx(m) = /(m)exp( —(w + iv)(ζj) = h(m),
whence WflΓ^ζi)) = h(g~\ζ)) = K. For one thing, this implies that
if p is the period of v around some closed curve y in U then

(4) eipK = if

for another, we always have a well defined h on g~\U) with
= iΓ, ζ e C7, and, for eί<? e K, g{h~\eiΘ)) = U.

Consequently we can sometimes conclude p = 0, as, for example
in

COROLLARY 1.6. Suppose g, f and A are as in Theorem 1.2,
and U is a component of g(M)\g(X) whose boundary includes a
point ζ0 for which /(flrXCo)) has no nonvoid subset invariant under
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a nontrivial rotation. Then g~\U) has the form given in Theorem
1.2.

On h~\eiΘ) (for eiθeK) we have /=e'ty +* > ' and since g(h~\eiθ)) =
U, if w is some cluster value of the (multiple valued) function eu+ίv

at ζ0 then w appears as a cluster value of e{u+iv)o9\h~~\eiθ) at some
m0 in h-W)-Γ\ g-\ζ0). Thus weίθ e f(g-\ζQ)) for each eiθ in K, so
w K(zf{g~\Q)y whence eipwK = wKcf(g~\ζ0)) and we conclude
eip = 1 for each period because of our hypothesis on f(g~~\ζ0))-

Instead of starting with an algebra A we can begin with a
compact subset X of C2 (which is where MA lies in 1.2) and more
or less rephrase 1.6 as follows, where & is some collection of
rational functions on C including the identity function z itself.

COROLLARY 1.7. Suppose \πϊ\z)\ is a singleton for each z eπ^,
where π^X—^C is projection onto the first coordinate, and suppose
πxX is the minimal boundary of the subalgebra of C{πxX) generated
by &. Suppose 0gπ2X and let M be the spectrum of the algebra
A in C(X) generated by &, w, 1/w. If U is a component of π1M\
πxX whose boundary includes a z0 with ^(πfX^o)) having no nonvoid
subset invariant under a nontrivial rotation, then π^iU) has the
form given in 1.2. (Here πx is the first coordinate projection on
M, viewed as a subset of C2.)

We only have to note that as in the remark before 1.3, rz =
I πz\z) I a singleton for z in πjί implies | πϊ\z) \ is also (for the same
z), while π^\z0) = πϊ\z^ since π^\z^) provides a boundary for the
closed algebra A\πz\z^ (as in our remark) which is necessarily
C{πϊ\z0)) since πϊ\zQ) is a proper subset of the circle of radius rXQ.
Now Corollary 1.6 applies.

Actually 1.7 does provide some improvement since almost all
hypotheses refer to X and not M.

Rather than assume z is invertible, we can assume πr\z) Π X is
never a full circle. A special case is

COROLLARY 1.8. Suppose the compact set XaC2 has the follow-
ing properties'.

( i ) πxX lies in the boundary of the unbounded component^ of

(ii) π2X does not separate 0 and oo,
3 ) This does not imply πxX has connected interior; cf. Kerekjarto, Topologie I,

Springer, 1923, frontespiece.
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(iii) \πi\z) f) X\ is a singleton for each z in πjί, with πz\z)Γ\
X not a full circle,

where nt now is the projection of C2 onto the ith coordinate. If
X is the polynomial hull of X and, for some component U of C\πxX
we have a zQedU with TΓΓ1^ Π X a singleton, then πϊ1 U Π X is the
graph of a function holomorphic on U, or void.

Suppose the set nonvoid. We take P(X) as our algebra, g = z
and / = w, and (i) implies each z in πtX is a peak point for PfeX)
(since that is a dirichlet algebra [5]), so again A — P(X)\πϊ\z) Π X
is closed with boundary contained in πi\z) Π X Since πϊ\z) Π X is
not a full circle A = C(π^(z) Π X) and MA = πr\z) Π X, so πτ\z) ΓΊ
X = πϊ\z) Π X as before, and (iii) holds with X replaced by X, so
\f(s~~\Q)\ is a singleton for ζ in g(X) by 1.1. Since (ii) implies
/ = w is invertible in P(X) while πrιz0 i l i a singleton implies our
set K must be a singleton {eίθ} (since for any cluster point w of
eu+ίv at z0 we have wKdπ2(πϊ1(z0)), a singleton, as in the proof of
1.6), and so u + iv single valued, we obtain / = e

iθ

e

{u+ίv)°9, or w =

1.9. Some of the preceding holds even when / is not invertible,
provided \f(g~\Q)\ rather strongly approaches constancy as ζ
approaches a value for which Oef(g~\ζ)): for E={ζeC: 0ef(g~\ζ))}
we assume that

( 5 )

In particular then 0 6 f(g~\ζ)) implies {0} = f(g~\ζ)) if E is nowhere
dense, and, in the setting of Lemma 1.1, u+ and u_ are again sub-
harmonic on U\E, u+ + u_^0, and (5) implies limζ^ζoζeU\E(u+ + uJ)(ζ)^
0 for ζ0 in dE. So this inequality applies at each ζ0 in d(U\E)cz
dUU dE, and u+ + u_ = 0 on U\E. Now u = u+ — — u_ is harmonic
on ί7\£7 again, but even with U simply connected we can obtain a
multiple valued extension of u + iv to U\E; of course at least
locally we again can regard g~\D) as a product and / as an analytic
function of g on slices. However in at least one instance matters
are quite simple.

COROLLARY 1.10. Suppose f, geA satisfy (1) and (5), where
U is a component of g(M)\g(X), and separate M.

Iff for some ζ0 e U\E, card f(g~\ζQ)) — n < oo then there is a
bounded holomorphic function H on U and a factorization n — k-l
so that g~\U) is the union of I copies of the Riemann surface of
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Hulc over U (all identified over the branch points H"1^)) on which
the elements of A are holomorphic.

Here, since card f(g~1(ζ0)) = card g~%0) = card h(g-\ζ0)) = card K,
and K = eipK by (4) for each period p of v, the eίp must form the
group G of Mh roots of unity for some k, and K the union of I of
its cosets. Consequently H = βfcu+ίv) is a single valued holomorphic
function on Σ7\i7 = U\H~\ϋ) which is continuous on U, so holomor-
phic on U by Rado's theorem [3, 5]. If K = {eίθ\ , eiθ^}G then on
h~1(eίdή we have

/ * = eiMJHog

and, via the map (#, /) we can identify that part of g~\U\E) with
a part of the Riemann surface defined by wk = eίleθΐH(z); indeed
since if is independent of our ζ in U\E, card flrXQ is constant
over U\E, so that by cardinality it must yield all of the Riemann
surface for each j (and in fact eike* Φ eikθό for j \ Φ j2). Evidently
then since f(m) —> 0 as g(m) in U\E tends to ζ0 6 E — H~\0) we can
conclude (g, f) maps g~\ U) continuously 1 — 1 onto the union of
our Riemann surfaces with identification of the branch points over
ζ in H~\ΰ)f and so is a homeomorphism over g~\V~) for F c U.
The final conclusion is clear.

We can reach an analogous conclusion if we simply know
f(g~1(ζQ)) is not a full circle for some ζ0 in U\E; then the group of
eip can only be the kth roots of unity for some k since eipK — K,
so we again have fk = hk Hog for a holomorphic H, and g~~\U)
appears as a product of {zk: z e K) and the Riemann surface for
H1/k (with an identification over H~\0) — E). (Here one argues
that along with the homeomorph of D a U we originally obtain we
have those corresponding to multiplication by the eip instead of
using cardinality.)

Finally there is one very special instance in which neither (1)
or (5) is explicitly needed: when / and g are inner functions with
bounded ratios. Let D be the unit disc.

THEOREM 1.11. Suppose f and g separate M and are noninver-
tible and of unit modulus on X. If f/g and g/f are bounded on
JlίV'^O) = Af\0Γ1(O) then g~\D°) is a union of analytic discs on
each of which f is a multiple of g; more generally if, for some
a>0, \f\/\g\a and \g\a/\f\ are bounded on M\f-\0) = M\g-\0) then
g~1(D°) is the union of copies of the Riemann surface for w = za

(with f, g corresponding to w, z), all identified over the branch point.
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Because of the abstract Schwarz lemma [6, 4.8] one knows in
the first case that \f/g\ and \g/f\ are bounded by their suprema
over X, i.e., by (1). Thus | / | = \g\ and we know \f(g~\ζ))\ is always
a singleton, and

u:ζ >log|/(flr(ζ))|

is subharmonic on D°ag(M) by 1.1 (or directly from Wermer's
theorem of course). On the other hand u is harmonic on the
punctured disc D°\{0} = D* as we can see by applying 1.1 to
(A\g-\DQ))- where Do is a closed disc in Z)*, since / restricts to an
invertible in that algebra because f~KO) = g~\0). Thus since |M|Ξ=1

on 3D, for some β ^ 0 we have u(ζ) = βlog | ζ | , ζ e ΰ ° , whence u +
ίv(ζ) = β log ζ and for h — fe-{u+ίv)og = fg-? we have by our standard
argument each section h~\eiθ) (for eίθeK) a copy of the Riemann
surface for w = zβ; this is in fact a disc since boundedness of \f/g\
and \f\l\gβ\ force β = 1.

In the second case we again have \f\/\g\a and |flf|α/l/l bounded
by their suprema over X by virtue of a recent extension of the
abstract Schwarz lemma [2, Lemma 3], and again one obtains u(ζ) =
/Slog IζI; but now β = a follows from the boundedness of \f\l\g\β

and \f\l\g\a, and Riemann surfaces really appear. (Instead of /, g
inner we could assume 0 ^ |/l — i#iα o n -X" and obtain the same
conclusion over the component U of g(M)\g(X) containing 0: for
then u(ζ) — αlog|ζI is bounded and harmonic on U\{0}, hence has
an harmonic extension to U which vanishes on dU, whence u(ζ) =
α l o g | ζ | and our conclusion follows as before.)

2* Some remarks* Replacing A by (A\g~\U)~)~ we can
trivially deal with the case in which (1) holds only on g(X)f)dU.
Similarly, although we have phrased our observations in terms of
analytic structure we can equally well ignore structure and produce
functional dependence when / and g do not separate M, or when
A is only presented as a subalgebra of C(X). (For example, (as in
1.8) if geAczC(X), feA-1 and g(X) lies in the minimal boundary
of P(g(X)) (as in 1.8(i)) while (1) holds with f(g~\Q) never a full
circle and f(g~\ζ)) is a singleton for one ζedU for U a component
of C\g(X) then either U misses σA(g) = g{M) or / = Hog on g~\U)
for HeH-(U).)

Because of an old observation of Brian Cole (cf. [3, 4.1]) there
is an extended form of Wermer's subharmonicity theorem which
will allow the replacement of the logarithmic and exponential func-
tions in our considerations. The extended theorem might be called
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2.1. THE COLE VERSION OF WERMER'S THEOREM. Suppose f, ge
A, U is a component of g(M)\g(X) and φ is a real function sub-
harmonic on a neighborhood of the polynomial hull f(g~~\U)). Then

ψ:ζ > suv φ(f(g-\ζ)))

is subharmonic on U.

First, it is routine to see ψ is upper semi-continuous: if ζn —> ζ
in U, ψ(ζn) ^ c implies there is mn e g~\ζn) with Φ(f(mn)) >̂ c — 1/n,
so if m is a cluster point of {mn}, then f(m) is one of {/(mj}; if

then since φ is u.s.c, φ(f(m)) ^ lim0(/(m^)) ^ c.

Now let ζ0 be the center of a closed disc DczU, let m0 6 ίT^Co)
have Φ(f(m0)) — ψ(ζ0), and let λ be a Jensen measure for m0 carried
by g~\dD). Because of the Riesz decomposition theorem we know
there is a nonnegative measure μ carried by a neighborhood of

fiP(U)) with

Φ(w) = \ log I w — z

for w near f{g~~\U)), so

^(ζo) = sup φ(f(g-\ζQ))) = Φ(f(mQ)) = J log |/(m0) -

^ ί (log I /(m) - z I X(dm)μ(dz) - ίφ{f{m))X{dm)
( 6 ) J J J

^ ί sup Φ(f(g-\g(m))))Mdm)= [ψ(g(m))X(dm)

But #*λ is a measure on 3D representing ζ0 on the disc algebra,
and so coincides with the normalized boundary measure dθ/2π,
whence ψ is subharmonic, completing our proof.

Of course the proof is simply the combination of Cole's observa-
tion on the applicability of Riesz's theorem to the theory of Jensen
measures and the well known folk proof of Wermer's theorem, but
the result allows us to repeat our observations in a broader context.
Indeed if we now suppose φ = ReF for F holomorphic near the
spectrum of feA while Φ(f(g~\ζ))) is a singleton for each ζeg(X)
then the argument of lemma 1.1 shows the same is true for ζ in
g(M)\g(X) and that

u:ζ
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is harmonic on that set and continuous on g{M). Let v be the
harmonic conjugate. Again one concludes for H — u + iv that on
a simply connected component U of g(M)\g(X) we have h =
exp(iϊo0 — Fof) unimodular on g~\U) since Re Hog = nog = φof =
Re Fof, and also conclude that K = h(g~ι(Q) is independent of ζ
while g(hr\z)) = Z7; but now our relation between / and g on the
sections h~\z) is implicit: iJo^ = Fof + log h~\z). (For i*7 = log we
have our original case, since clearly F can be multivalued as long
as ReF is single valued.) Of course if j^has a single valued inverse
we can find / explicitly and the situation exactly parallels the
original.

Use of Jensen measures λ and their images g*X on g(X) as in
the preceding proof also show that in all our results we can weaken
(1) to

(1') I f{g~\ζ)) I is a singleton for all ζ 6 g(X)\E, where E is null
for all Jensen measures for points in g(M)\g(X) on R(g(M)).

Indeed, given U, for any ζoeg-\U) as in (6) we have

(7 ) sup log I f(g-\Q) I ̂  J sup log | f{g~\Q) I <7*λ(dζ) ,

where λ is now a Jensen measure for (A\g~1(U)~)~, carried by g~\dU),
for moGflΓ ζ̂o) (which exists because of local maximum modulus);
moreover g*X is Jensen for R(g(M)), since R{g{M))ogaA. Thus for
/ e i " 1 we can conclude from (1') that u+ and u_, as defined in the
proof of Lemma 1.1, have u+ + u_ = 0 on dU\E, so (7) implies
(u+ + uj)(ζo) ^ 0 (hence = 0), and u is harmonic on g(M)\g(X). (Of
course we do not obtain continuity at points of E~.)

Because of [2, Lemma 1] (applied to the algebra R(g(M)), with
/ the identity function) any Borel Eag(X) of (inner logarithmic)
capacity zero is appropriately Jensen null: thus our results hold
with (1) replaced by

(1") I f(9~XQ) I is a singleton for each
ζ e g(X)\E, where E is a Borel subset of capacity zero.

Finally there is an extension of sorts of Wermer's maximality
theorem which I noted because of the observation in Lemma 1.1,
but which follows most simply (as Brian Cole kindly pointed out to
me) from the fact [1, Lemma 1] that the diameter function ζ—>
diam f{g~\Q) is subharmonic on g(M)\g(X); this is another corollary
of Wermer's subharmonicity theorem.
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THEOREM 2.2. Suppose KaC is compact, A is a closed subal-
gebra of C{dK) containing R{K) \ dK, and let π: MΛ-> K be dual to
R(K) —> A so Ko — πMA is the union of dK and certain components
of the interior K°. If dK is the minimal boundary for R{K) {or
just the Jensen boundary [5, p. 28], whose elements have unique
Jensen measures) then

R(K0)\dKc:A(zA(K0)\dK.

In particular if R(K0) = A(K0) for every union Ko of dK and
interior components of K then algebras on dK containing R{K) \ dK
are determined by their spectra, each corresponding to some Ko.
I have no idea whether dK being the Jensen boundary for R(K) is
essential for the result, but it provides the crucial fact that, for z
in dK, π~~\z) is a singleton, since any Jensen measure for m e π~\z)
represents z on R{K). Now for g(z) = z, geA, and for feA,

ζ >diam/(r i(O) - diam/(TΓ-1©)

is a nonnegative subharmonic function on4) K0\dK which has zero
boundary values, so is identically zero. But then π~\Q is always
a singleton, so MA and Ko can be identified, while / is analytic on
any disc in K0\dK by Wermer's maximality theorem so / is analytic
on K0\dK, and feA(K0). Thus A c A(K0) \ dK. On the other hand
for z0 e K°\K0 we have z —> z — z0 invertible in A, so A ZD R(KQ) \ dK
since R(K0)\dK is spanned by R{K) and the inverses of such func-
tions.

COROLLARY 2.3. If R{K) = A(K) has dK as minimal boundary
and Ko = πMA is obtained by deletion of finitely many interior
components of K then A — R(KQ) \ dK.

Because of 2.2 one only has to see R{K) — A{K) is preserved
when one deletes one component U of K\ But that follows from
Vituskin's criteria for this equality: if xedK does not lie in dU
then (v) of [4, VIII 8.2] holds with K replaced by K\U (rd should
appear in the denominator for δ), while if zedU then for 0 < 3 <

4) To argue as in 1.1 instead, one notes that for c complex with |e |> | |/ | | , since
c+feA-1

u(ζ)=suv log Ic+Ztf-HOJI-inf log \c+f(gΛQ)\

is a nonnegative subharmonic function on KJdK with zero boundary values, so ΞΞO.
Evidently this implies /(^~1(ζ)) is always a singleton. We can also see from the
argument that it suffices to assume only that the minimal boundary for R{K) carries
all Jensen measures on dK for points in (Ko)°: for then our u vanishes on enough of
dK to insure u^O on (Ko)Q, as in our argument following (7). Alternately, we could
assume dK is the union of the Jensen boundary and a Borel set of capacity zero.
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l/2diamZ7, Δ(z, Sf\{K\U) contains an arc of diameter ^δ/2 (where
A{z, δ) is the disc of radius <5, about z) so that, as in [4, VIII 8.4],
a(Δ{z9 δ)°\(K\U) ^ (l/8)δ ^ (l/8)α(z/(s, δ)\(K\U)°), which implies (v)
again.
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