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QUASIREGULAR, PSEUDOCOMPLETE, AND BAIRE SPACES

AARON R. TODD

J. C. Oxtoby obtains the essence of the classical Baire
category theorems in his pseudocomplete spaces. In doing
so, he reduces the role of points in his auxilary definitions
of quasiregular spaces and pseudobases. With a natural
modification of his definition of pseudobase that continues
this reduction, a topological space is quasiregular if it has
a pseudobase of closed sets. With this change, strong nest-
ing is explicitly required in the definition of pseudocomplete
spaces. The change also leads to an equivalence relation
on the topologies of a set X: Topologies σ and τ are S-
related if τ*=τ\{φ} is a pseudobase for σ. It also leads to
conditions for which a topology finer or coarser than a
pseudocomplete topology is itself pseudocomplete. Several
examples illustrate the utility of quasiregularity, and there
is a discussion of extensions of topological spaces. In
particular, it is noted that a 7\-space is quasiregular iff it
has a quasiregular compactification, and a topological space
has a quasiregular one-point compactification iff the space
has pseudobase of closed compact sets.

1* Introduction* In the concept of pseudocompleteness, Oxtoby
[16] effectively distilled the major features of the proofs of the
classical Baire category theorems. Often authors who find conditions
implying that a space is a Baire space could as easily have shown
that the conditions imply the stronger property of pseudocomplete-
ness. In particular, the proofs of the Baire category theorems of
Hajek [6] and McCoy [15] could as well serve to give the following
results respectively: (1) A relatively Hausdorff compactification
<F,/> of a regular space X is pseudocomplete, and (2) A quasire-
gular lightly compact space is pseudocomplete. Such results and
necessary definitions are discussed later.

Since a pseudocomplete linear metrizable space is a completely
metrizable space (Todd [19]), and an infinite dimensional Banach space
has proper dense linear subspaces that are Baire (Kelley, Namioka,
et al. [11] p. 95, prob. 10.B) pseudocompleteness strictly implies the
Baire property. Another way of observing the difference: A pro-
duct of pseudocomplete spaces is pseudocomplete (Oxtoby [16]) and
there exist (nonempty) Baire spaces with squares that are not Baire.
The existence of such Baire spaces has an interesting literature
(see [16], [1] and especially [4] and [17] for citations).

Other permanence results for pseudocompleteness often resemble
those for Baire, yet there are simple results for the Baire property
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that are only partially known for pseudocompleteness. Aarts and
Lutzer [1] raise questions on two such results: (1) Is the continuous
open image of a pseudocomplete space, pseudocomplete, and (2) Is a
dense Gβ-subspace of a pseudocomplete space, pseudocomplete? A
partial result for the latter appeared in Oxtoby ([16], 5.2): // Y is
a quasίregular space with a pseudobase & consisting of sets whose
closure is countably compact, then any dense GΓsubspace X of Y is
pseudocomplete. Neither question is fully answered here, however,
Theorem 4.1 gives an improvement on Oxtoby's result and Corollary
3.8 is cast as a start on the first question.

The fastest definition of a Baire space is the following: A topo-
logical space is a Baire space if the intersection of each countable
family of dense open sets is dense. If such intersections are non-
empty the space is nonmeager. If the space is meager, then by
complementation the space is the union of a countable family of
rare sets (a set is rare if its closure has empty interior). Fleissner
and Kunen [4] give a brief indication of the usefulness of Baire
space throughout mathematics.

Quasiregularity and pseudobases, defined in Oxtoby [16], can be
seen as usefully reducing the emphasis on points in topology and
directing attention to collections of sets with close relationships to
the family of open sets: A topological space (X, τ) is quasiregular
if each nonempty open set Ueτ* = τ\{φ} contains the closure of a
nonempty open set F e τ * . That this may be a useful variation on
regularity is suggested by the following: A regular iϊ-closed space
is necessarily compact (Willard [20], p. 127, prob. 17 K.3). However,
a quasiregular if-closed space need not be compact as shown by
Example 2.5. Nonetheless, it is pseudocompact as shown in § 2.

Oxtoby [16] requires that a pseudobase be a collection & of
nonempty open sets such that each nonempty open set contains a
member of &. We further deemphasize points by the following
definition of pseudobase.

DEFINITION 1.1. A collection & of subsets of a topological
space (X, τ) is a pseudobase of the topology τ if (i) for each B in
^ , intτB Φ φ and (ii) for each U in τ*, there is B in & with B
contained in U.

This definition leads to an equivalence relation on the family of
topologies on a given set X: Topologies σ and τ on X are in this
relation if and only if r* is a pseudobase for σ. It turns out that
if one member of an equivalence class is Baire, then all members
are Baire. The definition also simplifies descriptions of properties
of spaces in terms of properties of members of a pseudobase. For
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example, the quasiregular property is immediately seen to be equi-
valent to the existence of a pseudobase of closed sets. Also see the
result of Oxtoby quoted above and, of course, results given through-
out this paper.

The definition of pseudobase entails a change in the definition
of pseudocomplete spaces:

DEFINITION 1.2. A topological space (X, τ) is pseudocomplete if
it is quasiregular and there is a sequence ( ^ J of pseudobases for
τ such that f\n Bn Φ φ, whenever Bn is in έ%?n and intr Bn contains
clr Bn+1 f or n = 1, 2, 3, .

If a pseudobase is required to consist of open sets, as in
Oxtoby's definition of pseudobase, then the strong nesting property
mtτBnZDc\τBn+1 in Definition 1.5 becomes, simply, BnZDclτBn+1 giving
Oxtoby's original definition of pseudocompleteness. Therefore Oxtoby's
original property is formally stronger than this notion of pseudo-
completeness. Whether or not it is strictly stronger is an open
question. The results of this paper suggest that the present notion
of pseudocompleteness is an appropriate and interesting answer to
the unification problem discussed in Aarts and Lutzer [2]. 7s there
a natural class of spaces that contains all completely metrizable
spaces and all locally compact Hausdroff spaces and for which the
conclusion of the Baire category theorem holdsΊ

The second of the following is a formal result, the others fol-
low from standard arguments found in Oxtoby [16] (or Todd [18]
for the third).

THEOREM {Oxtoby). If a topological space is pseudocomplete,
then it is a Baire space.

THEOREM 1.4. {Oxtoby). Any completely metrizable topological
space or locally compact Housdorff space is pseudocomplete.

THEOREM 1.5. {Oxtoby). The Cartesian product of pseudocom-
plete spaces is pseudocomplete.

Other presently known permanence properties of pseudocomplete-
ness are undisturbed, yet the change does ease the establishment of
additional interesting properties.

2* Quasiregular spaces and pseudocompleteness* Here we
discuss the incidence of the quasiregular property and some pro-
perties which when associated with it imply pseudocompleteness.

A regular space is clearly quasiregular. The usefulness of the
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quasiregular property is that it gives just the local property need-
ed for the standard Baire category argument but without the em-
phasis on points that regularity has. The following gives an ex-
ample of a space that is quasiregular yet has no point at which
there is a neighborhood base consisting of closed sets.

EXAMPLE 2.1. Let X be the set of real numbers and σ be the
topology on X generated by basic open sets of the form [α, b)\D
where D is a countable subset of the half-open interval [α, 6) =
{x e X: a ^ x < b} and D\[a, a + 1/n) is finite for all n = 1, 2, 3, .
Now suppose, for some ε > 0, [α, a + ε)\E is contained in [α, b)\D with
D infinite and a$D. But clσ ([α, a + ε)\E) = [α, a + έ) and this meets
D. Thus clσ ([α, a + ε)\E) = [a, a + ε) is not contained in [a, b)\D, so
that X is not regular at a. On the other hand, let a' = (supD + δ)/2,
then [a', b) is a nonempty open subset of X that is closed and con-
tained in [α, b)\D. Therefore (Xf σ) is a quasiregular space that is
regular at no point. •

The next item is part of the folklore.

PROPOSITION 2.2. A dense subspace of a quasiregular space
(Y, τ) quasiregular.

Proof. Let X be a dense subset of (Y,τ) and let U be in
(τ\X)*. There is W in τ* so that W f] X= U. As (Γ, τ) is quasi-
regular, there is V in τ* with clr V contained in W9 and so F i l l
is in (τ\X)* with c\T]x(V Π X) c (clr F ) ί l l c l f n l = U. Therefore
(X,τ\X) is quasiregular. •

An extension of a quasiregular space need not be quasiregular
as the next example shows. By an extension of a topological space
X, we mean a pair < Y, /> where / is a dense embedding of X in
the topological space Y. A compactification of X is an extension
(Y, /> of X with F compact. However, a one-point compactifica-
tion of X is obtained by appending to X an object °o that is, not
in X and taking as the topology of Y = X{j{oo} all open subsets of
X and all complements in Y of closed compact subsets of X (see
Kelley [10] p. 150).

EXAMPLE 2.3. Let Y=QU{°°} be a one-point compactification of
the rational numbers Q with the usual topology. Now Q is a non-
empty open subset of Y, and we suppose that U is a nonempty
open subset of Y that is contained in Q. U is open in Q. If if is
a subset of Q that is closed and compact in Q, then K is closed and
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compact in the reals R. As Q is dense in R, K is rare in Q and so
UςtK. Therefore U meets Y\K, and so ©o is in clFZ7. Thus no
nonempty open subset of Y has its closure contained in Q. The
space Y is not quasiregular, yet it is an extension of a regular (in
fact, completely normal) Hausdroff space Q. Π

A topological space X is H-closed if any continuous image in a
Hausdorff space is closed. It is well-known (Liu [13]) that this is
characterized by the following: Each filterbase <%S in the lattice of
open sets of X has an accummulation point, i.e., Π{clί7: ί / i n ^ } ^ .
Hajek and Todd [7] have shown that a similar property characteri-
izes the lightly compact spaces (those spaces for which each locally
finite family of open sets is finite (Bagley, Connell, and McKnight
[3]): A space X is lightly compact if each countable filterbase in
the lattice of open sets has an accummlation point. Also in [7], an
infra H-closed space was defined to be a space for which any conti-
nuous image of it in a first countable Hausdorff space is closed. We
have the following implications:

countably compact \(b)

compact Jι lightly compact =η-=> infra fZ-closed
^ Zf-closed /(a)

Implications (a) and (c) are discussed in [7]. Bagley, Connell and
McKnight [3] cite an example of a lightly compact topological space
that is locally compact and completely regular yet not countably
compact. This also shows the strictness of (a) as a regular iϊ-closed
space is compact. Implication (b) is also shown to be strict from
Example 2.5 which gives a quasiregular if-closed Hausdorff space
that has a sequence ((n, 0))n with no accummulation point. We now
connect this with pseudocompleteness.

PROPOSITION 2.4. // a quasiregular space X is lightly compact,
then it is pseudocomplete.

Proof. Let each 3?n equal the set of all nonempty open sets of
X. If Bn is in ^ and int Bn contains cl Bn+1, then (int Bn)n is a
countable filterbase in the lattice of open sets of the lightly compact
space X, so f]nBn contains the nonempty set Γ\nc\Bn+1. Since X is
also quasiregular, it is pseudocomplete from Definition 1.5. •

Example 2.3 shows that a lightly compact space need not be a
pseudocomplete or even a Baire space.

Bagley, Connell and McKnight [3] show the following: A topo-
logical space is lightly compact if and only if each proper subset S
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with S = cl int S is lightly compact. Thus, from Proposition 2.4,
the closure of any open subset of a lightly compact space is pseudo-
complete. Of course this is a property of any pseudocomplete space,
in fact, for an open subset U of a pseudocomplete space, if UaXa
cl U, then X is a pseudocomplete subspace.

As an iϊ-closed space is compact if and only if it is regular, it
is interesting to consider an example of Willard ([20] p. 127, Prop.
17K. 4):

EXAMPLE 2.5. Let N be the natural numbers, iV* = {1/n: n in
iV}U{0} with their usual subspace topologies, and X = NxN* U{°°}
where U is an open subset of X if and only if U is an open sub-
set of NxN* with its product topology or ί/\{°°} is open in
NxN* and U contains Uk = {(n, 1/m): m, n in N and n ^ k) U{°°}
for some natural number k. Now X is Hausdorff and, in fact, H-
closed. The latter may be verified by using the following charac-
terization of Jϊ-closed spaces (see Liu [13]): A space is H-closed if and
only if each open cover has a finite subcollection whose union is dense.
Each cl Uk contains the point (fe, 0) so that X is not regular at the
point °°, and thus is not compact. The set of isolated points of X
is Nx {1/m: m in N} which is dense in X, so that, as X is Haus-
dorff, each nonempty open set U contains a clopen set{#}. Thus X
is quasiregular, and since it is lightly compact it is pseudocomplete
by Proposition 2.4. Therefore the Hausdorff space X is a noncom-
pact iί-closed space that is pseudocomplete. •

An infra ίf-closed space, even if it is regular, need not be
pseudocomplete or even Baire as is now shown.

EXAMPLE 2.6. The space X discussed in Hajek and Todd [7] is
a slight modification of an example of Herrlich [8]. This modifica-
tion gives a regular Hausdorff space with the property that any
continuous image of X in any first countable Hausdorff space is a
singleton. Therefore X is an infra iί-closed space. From the ori-
ginal construction X = \JnXn where a subset U of X is defined to
be open if and only if UΓ\Xn is. open in Xn for each n = 1, 2, 3,
Moreover, each Xn is a closed subset of Xn+1 with empty interior
in Xn+1. It is now simple to show that each Xn is rare in X, so
that X = \JnXn is meager ((X\Xn)n is a sequence of open dense sets
with empty intersection). Therefore X is a Hausdorff infra iϊ-closed
space that is regular and not a Baire space. •

That an if-closed space may be very close to being pseudocom-
plete but fail to be so because it is not quasiregular will be seen
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shortly. First here is a simple device for enlarging a topology τ
on a set X: For any subset S of X let τ(S) = {U[j Vf]S: U, V in
τ}. It is easily shown that τ(S) is a topology on X that is strictly
larger than τ if S is not in τ. Such enlargements have been studi-
ed by Levin [12].

EXAMPLE 2.7. Let S be a dense subset of a topological space
(X, τ) and σ = τ(S). A little work shows that clrΫF = clσ W ίoτ any
IF in σ". Using the characterization of iί-closed spaces given in
Example 2.5, we see that (X, σ) is ίf-closed if (X, τ) is. Also if
X\S is τ-dense, (X, <x) is not quasiregular in a rather catastrophic
way. For suppose WΊ is in σ*. Then W2 = WΊΠS is in σ*. For
W= C/U F n S i n σ * , clσTF = clrTF = clr(C7U VfΊS)=)clr((ί7U V) ΓiS) =
clΓ(ί7U V) contains elements of the τ-dense set X\S. Therefore W2

does not contain c\σW. Thus each Wλ in σ* contains some W2 in σ*
that does not contain the σ-closure of any nonempty σ-open set.

In particular, let X = [0, 1], τ be the usual topology and S be
the set of irrational numbers in X. Both τ and σ = τ{S) coincide
on S which has a complete metric (Kelley [10] p. 207 Prop. 6. K(b))
and so is pseudocomplete. (X, τ) is compact, so (X, σ) is if-closed.
Now X\S is τ-dense, and so (X, σ) is not quasiregular, although it
is an extension of a pseudocomplete space and so is a Baire space.
Therefore (X, σ) is a Hausdorff iϊ-closed space that is not quasire-
gular yet is a Baire space since it is an extension of a pseudocom-
plete space. •

3* A relation on the topologies for a set* Our definition of
pseudobase allows a simple description of a close relationship be-
tween topologies on a set: Topologies τ and σ on a set X are
S-related if τ* is a pseudobase for σ. Later this will aid in extend-
ing a theorem of Oxtoby. Here we discuss implications based on
this relation.

PROPOSITION 3.1. The S-relation on the topologies for a set X
is an equivalence relation.

Proof. From the definition of pseudobase we see that τSσ
means: For all U and V in τ* and σ* respectively, intσ U Φ φ and
i n t Γ F ^ φ. This gives an equivalence relation on the topologies for
set X. •

The usual and the Sorgenfrey topologies on the real line are
S-related, yet are very different topologies. The topologies in the
next example, though homeomorphic, give quite different S-related
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topologies.

EXAMPLE 3.2. Let σ be the Sorgenfrey topology on the real
line, that is, the basic open sets for σ are of the form [a, b). Let
τ be the topology on the line with basic open sets of the form (α,
b]. Each of these topologies are S-related to the usual topology of
the line and so are S-related to each other. Moreover neither topo-
logy is finer than the other, σ f]τ is the usual topology on the line
and σVτ, the topology generated by their union, is the discrete
topology. •

The next proposition emphasizes the closeness of S-related
topologies.

PROPOSITION 3.3. // σ and τ are topologies on a set X and τ*
is a pseudobase for σ, then for any subset A of X,

intσ A c clσ intΓ A and clσ A z> intα clΓ A .

Proof. Let x be in intσ A and W be a σ-open neighborhood of
x. Now U = intΓ (T7Πintσ A) Φ φ, and the τ-open set U is contained
in A, so W meets intr A. Thus x is in clσ intΓ A and so intσ A is
contained in clσ intΓ A. Using C^A = X\A, for each subset A of
X, we have <gf intσ clr A = <if <ST clσ

 r^c^ intr ^ A = clσ intr ^A which
contains intσ ^A by the first part of the proposition. Taking
complements, we obtain intσ clr A c ^ intσ

 c^ A = clσA, which is the
second inclusion of the proposition. •

If one member of an ^-equivalence class is a Baire space then
all members are by the following:

PROPOSITION 3.4. Suppose σ and τ are topologies on a set X.
If τ* is a pseudobase for σ and (X, τ) is a Baire space, then (X, σ)
is a Baire space.

Proof. Let V be a dense open set of (X, σ) and U = intr V.
Using both inclusions of Proposition 3.3, we obtain X = clσ V = c\σ

int, Vd clσ intr V = clσ U, giving clr Uz)intτ clσ U=>intr X = X. There-
fore U is a dense open set of (X, τ). Now suppose (Vn) is a
sequence of dense open sets of (X, σ) and F is in σ*. Let ί/̂  =
intΓ Vn and ί7 = intΓ V. Since each Un is a dense open set of the
Baire space (X, r), and ί7 is a nonempty r-open set, ί7 meets Π»^»
Therefore V (ZDU) meets ΓL ^ ( D Γ I Un), and so f l * ^ is dense in
(X, σ). Hence (X, σ) is a Baire space. Q
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From this proposition, we see immediately that the Sorgenfrey
line is a Baire space as its topology is S-related to the usual topo-
logy, which is completely metrizable.

The next several propositions use a stronger connection between
topologies than that of being S-related.

PROPOSITION 3.5. Suppose a topological space (Y, τ) is the image
under a continuous function f of a topological space (X, σ) and
each member of σ* contains a member of f~ιτ\{φ). If (Y, τ) is
quasiregular than (X, σ) is quasiregular.

Proof. Let V be in σ*. There is U in τ* with f-'UaV and
W in τ* with clΓ Wd U, so that φ Φ f~ι W = int, f~ι Waf-ιc\τ Wa
f^UaV. Since f~ιc\τ W is σ-closed, f~~λW is a nonempty <τ-open
set whose σ-closure is contained in V. Therefore (X, σ) is quasi-
regular. •

COROLLARY 3.6. Suppose σ and τ are topologies on a set X, τ
is coarser than σ and each member of σ* contains a member ofτ*.
If (X, τ) is quasiregular, then (X, σ) is quasiregular.

Proof. Apply the previous proposition for / the inclusion map
of (X, σ) in (X, τ). •

PROPOSITION 3.7. Hypotheses are as in Corollary 3.6. If (X, τ)
is quasiregular and (X, σ) is pseudocomplete, then (X, τ) is pseudo-
complete.

Proof. Suppose {&n) is a sequence of pseudobases of σ verify-
ing the pseudocomplete property for (X, σ). Since each member of
r* is a member of σ* and each member of <τ* contains a member
of τ* the topologies σ and τ are S-related. Thus σ* is a pseudo-
base for τ, and it is simple to verify that each &n is a pseudobase
for (X, τ). Now suppose Bne^?n with

intΓ £„ => clr Bn+1 .

Then as τ c σ, we have

int, J5% z> intr β% and clr Bn+1 =) clσ Bn+1 ,

so that

intσ Bn z) clσ J5%+1 ,

and thus ΓL S% ̂  φ. Therefore, as (X, τ) is quasiregular, it is
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pseudocomplete. •

A slightly different way of looking at this result is the fol-
lowing.

COROLLARY 3.8. If a quasiregular topological space (Y, τ) is
the image under a continuous one-to-one function f of a pseudocom-
plete topological space (X, σ) and fσ\{φ} is a pseudobase for τ, then
(Y, τ) is pseudocomplete.

Proof. The topology η = f~ιτ on X is contained in σ. Also
{X, -η) is quasiregular. Now for V in σ*, U = intr fV Φ ψ, and, since
/ is one-to-one, f~rU is in η* with f~ιU(zV. Thus η c σ and each
member of <J* contains a member of η* so Proposition 3.7 applies,
and (X, rj) is pseudocomplete. Now (Y, τ) is homeomorphic to (X, 17),
so (Y, r) is pseudocomplete. Π

Note that the requirement that fσ\{φ} be a pseudobase is weaker
than requiring / to be both continuous and open.

We offer two ways of obtaining topologies τ and σ on a set X
with τ aσ and τ* a pseudobase of o\

EXAMPLE 3.9. Let τ be a topology on X and S a subset of X
such that Scc l Γ int r S. Let σ = τ(S) = {ί/U F n S : E7, F in r}. As
in Example 2.7, rccr, strictly if S is not in τ. Now for C/U FfΊ
S ^ φ either ^ ^ J7c ?7U F Π S or ^ Φ F(Ί intr S c U U FίΊ S, so that
τ* is a pseudobase for σ. •

The next example is related to Example 2.1.

EXAMPLE 3.10. Suppose τ is a topology on a set X with each
t/ in τ* uncountable. Let

jr = {U\D: Ueτ,DdU,D countable, Dd finite} ,

where Ad is the derived set of a subset A of X, that is, the set of
all points x in X such that x is in clr(A\{#}). Now as (f7AA)Π
(U2\D2) = C/ΊΠ ί72\(AU A), it is easily seen that 3^ is in fact, a base
for a topology σ on X. Also U\(DΌDd) = U\c\τD(zU\D, and clearly
τ c σ , so τ* is a pseudobase for cr. (Here it is useful to have each
Ueτ* uncountable, D countable, and Dd finite.) By Corollary 3.6,
(X, σ) is quasiregular if (X, τ) is quasiregular. Note that if a is a
nonisolated point of (X, τ) at which τ is first countable, then (X, σ)
is not regular at a. •
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4* Light ly c o m p a c t pseudobases a n d pseudocompleteness* In

this section we shall use the relation discussed in the previous sec-
tion and light compactness to extend a theorem of Oxtoby [16] on
topological spaces with pseudobases of closed countably compact
sets.

THEOREM 4.1. Suppose X is a dense Gδ-subset of a quasivegular
topological space (Y, τ) that has a pseudobase ^ of lightly compact
sets. If σ is a topology on Y finer than τ with τ* as a pseudobase,
then the subspace (X,σ\X) is a pseudocomplete space.

Proof. Let C be in <&. As (F, τ) is quasiregular, there is U
in τ* with clr Z7cint rC The set clΓZ7 is lightly compact since C is
lightly compact, clΓ U = (clr U) n C = clrισ U, and Ueτ\C. We may
therefore assume that ^ consists of closed lightly compact sets of
(F, τ). Since τ c σ and r* is a quasibase for σ, the topological space
(F, σ) is quasiregular by Corollary 3.6. Also clσ X z> intσ clΓ X = int,
F = F, so that the dense subspace (X, σ \ X) of (F, σ) is quasiregu-
lar by Proposition 2.2.

Now let (GJ be a sequence of τ-open sets with X = Γ\«,Gn and
let ^ n = [Cf] X:Ce9f and C c G J . For C n l in ^ , we have
φ Φ intr C c intσ C, so ^ ^ (int, C ) f l l c intσ,x(C n X). For V in <j*,
there is U in τ* with Ua V and C in ^ with CaUf] Gn so that
C n l e ^ a n d C n l c ί / n l c F n l . We have shown that each
&n is a pseudobase for (X, σ|-X").

Suppose JB%6 &n and intσlxJS%Z)clσ|XJ5%+1. There are Ck in ^ with
and Ckf)X = Bk. Let Ffc 6 σ be such that Vkf]X = mtσ]zCk Π X
^ F p Π L ! F f c Π X - F . n l ^ 0andCfc = clσC,3clσ (Vkf]X) =

clσ Ffc 3 Vkf so that Πϊ-i intr Ck =) intr Πϊ=i ^ * Φ Therefore {Π^i
intΓ Cfc}̂ ! is a countable filterbase of open sets of the lightly com-
pact τ-closed subspace (d, τ|CΊ), and so f\n Cni)Γ\n clz intΓ C Φ φ. But
e a c h C . c G . so that fl ^ c ΓI G, = X, and ΓL-δ. = Π.C%n X -
(fiL Q ί l l = Π% Cn Φ Φ. Therefore (X, σ\X) is a pseudocomplete
space. •

The following is an immediate application of the theorem and
will be used later.

COROLLARY 4.2. A topological space with a pseudobase of closed
lightly compact sets is pseudocomplete.

As a quasiregular lightly compact space has a pseudobase of
closed lightly compact sets Proposition 2.4 is a corollary of the
above.
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COROLLARY 4.3. Suppose (Y,τ) has a pseudobase ̂  of closed
lightly compact sets. If σ is a topology on Y finer than τ with τ*
as a pseudobase, then any dense Gδ-subspace of (Y, a) is pseudo-
complete.

Proof. First note a few facts: By Corollary 4.2 (Y, τ) is pseudo-
complete, and so, by Theorem 1.3 it is a Baire space. By Proposi-
tion 3.4, (Y, σ) is also a Baire space. From the proof of that pro-
position, the r-interior of a dense open subset of (Y, a) is dense in
(Y, τ) and vice versa.

Let Z be a dense G^-subspace of (Y,σ). There is a sequence
(Hn) of dense open sets of (Y, σ) with Z — f\nHn. Using the above
noted facts, we see that X = f\n intΓ Hn is a dense (-^-subset of
(Y, τ). As it contains f]n intσ mtT Hnf which is dense in (Y, σ), X is
also dense in (Y, σ).

From Theorem 4.1, (X,σ\X) is a pseudocomplete space. By
Corollary 3.6, (Y, σ) is quasiregular, and so, by Proposition 2.2, (Z,
σ\Z) is quasiregular. Thus (Z,σ\Z) is a quasiregular extension of
the pseudocomplete space (X, σ | X) and is, itself, pseudocomplete by
Proposition 5.3. •

It turns out that the Sorgenfrey line is pseudocomplete in
Oxtoby's sense (for each ^ n use the family of nonempty basic open
sets [α, b) with rational endpoints for even n and irrational for odd
n). We get the following from the previous corollary.

COROLLARY 4.4. Each dense Gδ-subspace of the Sorgenfrey line
is pseudocomplete.

Proof. Let Y be the set of real numbers, τ be the usual
topology, σ be the Sorgenfrey topology, and ^ be the family of
τ-compact intervals [a, b] with a < b. Now ̂  is a pseudobase for
τ consisting of τ-lightly compact τ-closed intervals, σ is finer than
τ and r* is a pseudobase for σ. Corollary 4.3 applies, and so any
dense Gδ-subspace of (Y, σ) is pseudocomplete. •

The following leads to interesting Sorgenfrey type topologies
to which the theorem may be applied.

EXAMPLE 4.5. Let X = RxR be the Cartesian plane with τ as
the usual product topology. The family of sets of the form

(a,b)x(c,d)U{(a,c)}

is a base for a topology α o n l t h a t is s t ronger t h a n τ for which
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τ* is a pseudobase. Moreover, ^ = {[α, b] x [c, d]: a,b,c,deR,a<
6, c < d} is a pseudobase for τ of τ-closed and τ-compact sets. By
Theorem 4.1, (X, <?) is pseudocomplete. (The same conclusion may
be obtained for topologies based on σ as in Example 3.10). It may
be noted that (X, σ) is strictly stronger than the product topology
on X when each factor is given the Sorgenfrey topology. This
product topology is pseudocomplete by Corollary 4.4 and Theorem
1.5. •

In another direction we shall improve on the Baire category
theorem of Hajek [6]. An extension <Y, /> of a topological space
X is a relatively Hausdorff extension if fx and y have disjoint neigh-
borhoods whenever x is in X, y is in Y and fx Φ y.

PROPOSITION 4.6. If Y is a relatively Hausdorff extension of a
topological space X and each point of a dense subset S of Y has a
neighborhood whose closure is compact, then Y has a pseudobase of
closed compact sets. Moreover Y is pseudocomplete.

Proof. For convenience, we consider X as a dense subspace of
(Y, τ), so that the relatively HausdrofF property means that elements,
x and y of X and Y respectively, have disjoint neighborhoods when-
ever x Φ y. Let & = {cl U: Ϊ7eτ* and cl U is compact}. We shall
show that & is a pseudobase for τ. Let W be in τ*. As S is
dense in (Y, τ) there is an s in Wf) S. There is an open neighbor-
hood U of s with cl U compact. As X is dense in Y, there is an
x in UΠ WΠX. Let F = (cl U)\W.

Since Y is a relatively Hausdorff extension of X, for each y in
F, there are disjoint open neighborhoods Uy and Vy of x and y re-
spectively. As the open sets {Vy:yeF} cover the compact set F,
there is a finite subcollection {Vy{k)}t=1 that covers F. Let Uo =
Πί=i Uy{k) Π Z7 Π W, so that Z70 is an open neighborhood of x that is
contained in U and disjoint from the open neighborhood V = Πϊ=i
F,(fc) of F = (cl tO\TF. Thus t/oC(cl ί/)\FcTf. Since (cl [/)\F is
closed, FT contains cl Uo. Moreover, as cl U is compact, so is cl Uo.
Finally x is in Uo, so Uo is in τ*, and therefore cl ί70 is a member
of ^ that is contained in W. Also each member of & has non-
empty interior, so & is a pseudobase for τ consisting of closed
compact sets, and from Corollary 4.2 (Y, τ) is pseudocomplete. •

Hajek [5] shows that a topological space is regular and Haus-
dorff if and only if it has a relatively Hausdorff compactification.
Then in [6], Hajek shows that such an extension of a nonempty
topological space is nonmeager. This is now strengthened in the
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following immediate result.

COROLLARY 4.7. A relatively Hausdorff compactification (Y, / )
of a topological space X has a pseudobase of closed compact sets.
Moreover Y is pseudocomplete.

5* Extensions* In this section are discussed some results on
extensions and pseudocompleteness including a characterization of
spaces with quasiregular one-point compactifications.

After constructing, for each topological space X, a Baire exten-
sion XF, McCoy [14] asks if each regular space has a regular Baire
extension. In this context, a natural modification of this question
is to replace "regular" by "quasiregular". It is easy to see that
McCoy's Baire extension XF of X is quasiregular if X is, so the
modified question has an affirmative answer. Aarts and Lutzer [1]
give a stronger result by constructing, for each quasiregular space,
a pseudocomplete extension. This extension is, in fact, an iϊ-closed
extension, and so we may characterize quasiregular spaces in a
manner similar to Hajek's [5] characterization of regular Hausdorff
spaces: A topological space is quasiregular if and only if it has
a quasiregular H-closed extension. In case, the space is 2\ (single-
tons are closed), we have the following.

PROPOSITION 5.1. A T^space (X, τ) is quasiregular if and only
if it has a quasiregular compactification.

Proof. One implication is clear as a dense subspace of a quasi-
regular space is quasiregular. We shall be using the Wallman com-
pactification (W(X), ψx) of the Trspace (X, τ) so we note: (i) W(X) =
{^ an ultrafilter in the lattice of closed sets of (X, τ)}, (ii) a basis
for the closed sets of W(X) is the family of all sets of the form
C(A) = {J^e W(x): Aej^} where A is closed in (X, τ), and (iii) the
dense embedding φx of X in W(X) is given by φx(x) = {A c X:
X\A e τ and xeA) (see Kelley [10] p. 167, prob. 6.R.) Now let V
be a nonempty open subset of W(X), so there is a proper closed
set A of X with W(X)\C(A) c V. As (X, τ) is quasiregular, there
is U in τ* with clr Uc:X\A. We need only show that

W(X)\C(X\U) c C(c\τU)c:W(X)\C(A) .

Suppose ^ is in W(X)\C(X\U). Then X\U is not in ^ . But, as
(X\t/)U clΓ U = X, we have clr U in ^ so that &~ is in C(clr 17).
Now, as clr U(zX\A, c\τU is disjoint from A. Therefore clri7 is in
no closed ultrafilter containing A, and so ^~ in C(clΓί7), does not
contain A. Thus ^ is not in C(A), and the second inclusion holds.
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Hence (W(X), φx} is a quasiregular compactification of X. •

Here we shall verify that a quasiregular extension of a pseudo-
complete space is pseudocomplete. The argument seems somewhat
more delicate that than for which pseudobases are collections of open
sets ([1] Prop. 2.2(a)).

LEMMA 5.2. // a quasiregular topologίcal space (Y, σ) has a
dense subspace X with pseudobase &, then & — {CaY: CΓ\X&&,
and intσCz) intσ!x(C (Ί -X")} is a pseudobase for (Y,σ).

Proof. In the above definition of <g% each C ίl I is in . ^ so
mtσϊx(C Π X) is nonempty, and as intσC contains intff|X(C Π X), each
member of <g* has a nonempty σ-interior. We need to show that
each V in σ* contains a member of ^ . As (Y, σ) is quasiregular
there is Vλ in <7* with c l ^ c V\ There is B in & with B c ^ Π X .
Let W be in σ* with W f) X = intσ]xB, and set C = WϋB. Now
CΠX= l f n l U δ n I = (intσ l xβ)U5 = Be^f and intσC=) FΓ=) TFίΊ
X = intσ |Xβ, so that C is a member of <&. Moreover, Wac\σW =
( c U T F n X W c c l ^ c c U ^ Π X ) ^ c l . ^ c F , SO that C = i f U δ c F .
Therefore ^ is a pseudobase for Y. Π

Now we have the extension property of pseudocompleteness.

PROPOSITION 5.3. // a topological space (Y, f) is a quasiregu-
lar extension of a pseudocomplete space X, then Y is pseudocom-
plete.

Proof. For convenience, assume that (X, τ) is a dense pseudo-
complete subspace of quasiregular space (Y, σ) so that τ = σ \ X.
Suppose (&n) is a sequence of pseudobases for (X, τ) verifying that
(X, τ) is a pseudocomplete space. Define the sequence ( ^ J by ^ =
{Cd Y:CΓι I c ^ and intσCz> intΓ(C Π X)}. By Lemma 5.2 each ίfΛ

is a pseudobase for (Y,σ). Suppose Cne^n with intσ Cn Z) clσ Cn+U

and note that Bn = Cn Π I e ^ . Now Bn = Cnf]X^> (int,Cn) Π -Z"=)
(intr BJ Π X = intr Bn, so that intr Bw = (int, Cn) Π X=)(clσ Cn+1) Π X=^
(clσ J5n+1) Π X = clσβ%+1. Therefore, by assumption, Γ[nBn Φ ψ, and so
Γ\nCn Φ φ. Thus (Y, <j) is a pseudocomplete space. •

Topological spaces in which compact sets are closed are called
KC-spaces. The following definition will be useful to us: An ex-
tension < Y, /> of a topological space X is called a relatively KC-
extension if fK is closed in Y for each compact subset K of X.
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PROPOSITION 5.4. // a topologίcal space (X, τ) has a pseudobase
& of compact sets and <Y, f) is a relatively KC-extension of X
then there is a dense open subset U of Y contained in the em-
bedding fX of X in Y. Moreover, f<%? is a pseudobase for Y of
closed compact subsets.

Proof. We shall treat (X, τ) as a dense subspace of (Y, σ) so
that τ = σ\X. Let U = U{intσ B: ΰ e . ^ } . Clearly U is σ-open and
contained in X. Let V be in σ*. Since X is cr-dense, there is a
member B of & contained in F i l l and intσclσi? is nonempty. Since
B is compact and Y is a relatively KC-extension of X, clσ B = B.
Now φ Φ intσclσ.B = intσ B c S c F f l l , so V meets U. Therefore U
is a σ-dense open set of Y that is contained in X. It is clear that
έ%? is a pseudobase for (Y, σ) consisting of σ-closed σ-compact sets. •

The next gives a simple kind of converse to the above and will
not be proved.

PROPOSITION 5.5. If a topological space (Y, σ) has a pseudobase
& of closed (lightly) compact sets, then for any open set U and
any subset X of Y with Uc Xc clσ J7, the subspace (X, σ\X) has
a pseudobase of closed (lightly) compact sets.

We now consider some results connected with one-point compac-
tifications.

PROPOSITION 5.6. // a topological space (X, τ) has a pseudobase
& of closed compact sets, then the one-point compactification X* =
1U{°°} of X has & as a pseudobase of closed compact sets.

Proof. If (X, τ) is compact, the result is simple. Suppose other-
wise. Since each member B or & is closed and compact in (X, τ),
X*\J5 is, by definition, open in X*. Therefore B is a closed subset
of X*. It was at this point in the proof of Proposition 5.4 that
the relatively KC-property was used, so this present proposition is
essentially a corollary of that proposition. •

By a locally compact space is meant a space such that each
point has a compact neighborhood.

PROPOSITION 5.7. // a topological space (X, τ) is quasiregular
and locally compact, then it has a pseudobase of closed compact
sets.
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Proof. Let & = {cl V: F e τ * and cl V is compact}. Suppose
Z7 is in r* and x is in U. There is a compact neighborhood N of
x. Since Nf]U is a neighborhood of &, there is a F in τ* such
that cl F is contained in (int N) Π U. Thus the closed set cl V is
compact and is a member of <2§ that is contained in U. Therefore
& is a pseudobase for (X, τ) of closed compact sets. •

We may now give a characterization of topological spaces with
one-point compactifications that are quasiregular.

THEOREM 5.8. The one-point compactίfication X* = IU{°°} of
a topological space (X, τ) is quasiregular if and only if (X, τ) has
a pseudobase of closed compact sets.

Proof. Suppose that X* is quasiregular. Since it is compact,
it has a pseudobase ^ of closed compact sets by Proposition 5.7.
Now X is an open subspace of X* so that & = {CaX: Ce^} is a
pseudobase for (X, τ) of closed compact sets of (X, τ). Conversely,
suppose (X, τ) has a pseudobase & of closed compact sets. By Pro-
position 5.6, X* has a pseudobase of closed compact sets, and so is
quasiregular. Π

6* Questions* The notion of pseudocompleteness discussed here
forms an answer to the unification problem mentioned in § 1. A
related question is what permanence properties does such a unifying
property share with the Baire property. Aarts and Lutzer [1, 2]
cite two specific questions for Oxtoby's notion of pseudocompleteness
that also remain open for the notion defined in this paper:

Question 6.1. Is a dense Gδ-subspace of a pseudocomplete space
pseudocompletel

Question 6.2. Is the open continuous image of a pseudocomplete
space pseudocompleteΊ

Some partial results for these are given in §§ 3 and 4, and, in a
much restricted form, the second question has also been considered
in.Todd [18].

The following remains open:

Question 6.3. Is the notion of pseudocompleteness discussed here
equivalent to Oxtoby's pseudocompletenessΊ

Oxtoby [16] discusses countability conditions on pseudobases.
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Pseudobases consisting of sets satisfying a compactness condition
have been discussed here. What other interesting local properties
might be usefully expressed in terms of pseudobases?

For more on Baire extensions, see R. A. McCoy and J. Porter,
General Topology and its Applications, 7 (1977), 34-58.
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