CONCERNING THE MINIMUM OF PERMANENTS ON DOUBLY STOCHASTIC CIRCULANTS

Gerald E. Suchan

Let P_{n} be the permutation matrix such that $\left(P_{n}\right)_{i j}=1$ if $j=i+1(\bmod n)$. Minc [2] proved that the minimum of the permanent on the collection of $n \times n$ doubly stochastic circulants $\alpha I_{n}+\beta P_{n}+\gamma P_{n}^{2}$ is in $\left(1 / 2^{n}, 1 / 2^{n-1}\right]$, and if $n \geqq 5$ then the minimum is not achieved at $(1 / 3) I_{n}+(1 / 3) P_{n}+(1 / 3) P_{n}^{2}$. This paper proves that if $n \geqq 3$ then the minimum of such permanents is less than $1 / 2^{n-1}$, and if $n \in\{3,4\}$ then this minimum is uniquely achieved at $(1 / 3) I_{n}+(1 / 3) P_{n}+(1 / 3) P_{n}^{2}$.

Introduction. Let n be a positive integer, let I_{n} denote the $n \times n$ identity matrix, and let P_{n} denote the full cycle permutation matrix such that $\left(P_{n}\right)_{i j}=1$ if $j=i+1(\bmod n)$. Minc [2] studied the permanent of circulants $\alpha I_{n}+\beta P_{n}+\gamma P_{n}^{2}$ and proved the following three theorems:

Theorem 1. If $n \geqq 3$ then

$$
\begin{aligned}
\operatorname{per}\left(\alpha I_{n}+\beta P_{n}+\gamma P_{n}^{2}\right)= & \left(\frac{\beta+\sqrt{\beta^{2}+4 \alpha \gamma}}{2}\right)^{n} \\
& +\left(\frac{\beta-\sqrt{\beta^{2}+4 \alpha \gamma}}{2}\right)^{n}+\alpha^{n}+\gamma^{n}
\end{aligned}
$$

Theorem 2. If α, β, γ are nonnegative then

$$
\frac{1}{2^{n}}<\min _{\alpha+\beta+\gamma=1} \operatorname{per}\left(\alpha I_{n}+\beta P_{n}+\gamma P_{n}^{2}\right) \leqq \frac{1}{2^{n-1}}
$$

Theorem 3. If α, β, γ are nonnegative, $n \geqq 5$, then

$$
\min _{\alpha+\beta+\gamma=1} \operatorname{per}\left(\alpha I_{n}+\beta P_{n}+\gamma P_{n}^{2}\right)<\operatorname{per}\left(\frac{1}{3} I_{n}+\frac{1}{3} P_{n}+\frac{1}{3} P_{n}^{2}\right) .
$$

Main Results. Let $S=\{(\alpha, \gamma) \mid 0 \leqq \alpha, 0 \leqq \gamma, \alpha+\gamma \leqq 1\}$, and let f_{n} denote the function on S such that

$$
f_{n}(\alpha, \gamma)=\operatorname{per}\left(\alpha I_{n}+(1-\alpha-\gamma) P_{n}+\gamma P_{n}^{2}\right)
$$

Theorem 4. If $n \geqq 3$ then f_{n} is not minimum on the boundary of S.

Lemma to Theorem 4. The minimum of f_{n} on the boundary of
S is $1 / 2^{n-1}$. If n is even this minimum is achieved only on $\{(1 / 2,0),(0,1 / 2)\}$, and if $n>1$ and n is odd this minimum is achieved only on $\{(1 / 2,0),(1 / 2,1 / 2),(0,1 / 2)\}$.

Proof. The lemma is clearly true is case $n \in\{1,2\}$. Suppose $n \geqq 3$. Since

$$
f_{n}(1 / 2,0)=f_{n}(0,1 / 2)=\frac{1}{2^{n-1}}<1=f_{n}(1,0)=f_{n}(0,0) f_{n}(0,1)
$$

then it is sufficient to consider only points belonging to the interior of the boundary of S. The only real number α satisfying $D_{1} f_{n}(\alpha, 0)=0$ is $1 / 2$. Therefore, since $f_{n}(\alpha, \gamma)=f_{n}(\gamma, \alpha)$, then the minimum of f_{\varkappa} on $\{(\alpha, \gamma) \mid \alpha \gamma=0\}$ is $1 / 2^{n-1}$. Let $g(\alpha)=f_{n}(\alpha, 1-\alpha)$. If n is even, put $k=n / 2$ and observe that $g(\alpha)=\left(\alpha^{k}+(1-\alpha)^{k}\right)^{2}$. If n is odd then $g(\alpha)=\alpha^{n}+(1-\alpha)^{n}$. In either case, $1 / 2$ is the only real number α such that $g^{\prime}(\alpha)=0$. If n is even then $f_{n}(1 / 2,1 / 2)=$ $1 / 2^{n-2}>1 / 2^{n-1}$, and if n is odd then $f_{n}(1 / 2,1 / 2)=1 / 2^{n-1}$.

Proof of Theorem 4. By the lemma it is sufficient to show there is a point q of S so that $f_{n}(q)<f_{n}(1 / 2,0)$. Observe that $D_{1} f_{n}(\alpha, \gamma)$ is

$$
\begin{aligned}
& \frac{n}{2}\left(\frac{1-\alpha-\gamma+\sqrt{(1-\alpha-\gamma)^{2}+4 \alpha \gamma}}{2}\right)^{n-1}\left(-1+\frac{-1+\alpha+3 \gamma}{\sqrt{(1-\alpha-\gamma)^{9}+4 \alpha \gamma}}\right) \\
& \quad+\frac{n}{2}\left(\frac{1-\alpha-\gamma-\sqrt{(1-\alpha-\gamma)^{2}+4 \alpha \gamma}}{2}\right)^{n-1}\left(-1-\frac{-1+\alpha+3 \gamma}{\sqrt{(1-\alpha-\gamma)^{2}+4 \alpha \gamma}}\right) \\
& \quad+n \alpha^{n-1} .
\end{aligned}
$$

Thus $D_{1} f_{n}(1 / 2,0)=0$ and therefore, since $D_{1} f_{n}(\alpha, \gamma)=D_{2} f_{n}(\gamma, \alpha)$, then $(1 / 2,0)$ is a critical point for f_{n}. Now observe that $D_{1,1}(\alpha, \gamma)$ is
$\frac{n}{2}\left[\frac{(n-1)}{2}\left(\frac{1-\alpha-\gamma+\sqrt{(1-\alpha-\gamma)^{2}+4 \alpha \gamma}}{2}\right)^{n-2}\left(-1+\frac{-1+\alpha+3 \gamma}{\sqrt{(1-\alpha-\gamma)^{2}+4 \alpha \gamma}}\right)^{2}\right.$
$\left.+\left(\frac{1-\alpha-\gamma+\sqrt{(1-\alpha-\gamma)^{2}+4 \alpha \gamma}}{2}\right)^{n-1}\left(\frac{(1-\alpha-\gamma)^{2}+4 \alpha \gamma-(-1+\alpha+3 \gamma)^{2}}{\left((1-\alpha-\gamma)^{2}+4 \alpha \gamma\right)^{3 / 2}}\right)\right]$
$+\frac{n}{2}\left[\frac{(n-1)}{2}\left(\frac{1-\alpha-\gamma-\sqrt{(1-\alpha-\gamma)^{2}+4 \alpha \gamma}}{2}\right)^{n-2}\left(-1-\frac{-1+\alpha+3 \gamma}{\sqrt{(1-\alpha-\gamma)^{2}+4 \alpha \gamma}}\right)^{2}\right.$
$\left.+\left(\frac{1-\alpha-\gamma-\sqrt{(1-\alpha-\gamma)^{2}+4 \alpha \gamma}}{2}\right)^{n-1}\left(\frac{-(1-\alpha-\gamma)^{2}+4 \alpha \gamma+(-1+\alpha+3 \gamma)^{2}}{\left((1-\alpha-\gamma)^{2}+4 \alpha \gamma\right)^{3 / 2}}\right)\right]$
$+n(n-1) \alpha^{n-2}$.
Thus $D_{1,1} f_{n}(1 / 2,0)=n(n-1) / 2^{n-3}$, and since $D_{2,2} f_{n}(\alpha, \gamma)=D_{1,1}(\gamma, \alpha)$ then $D_{2,2} f_{n}(1 / 2,0)=0$. Finally, observe that $D_{1,2} f_{n}(\alpha, \gamma)$ is

$$
\begin{aligned}
\frac{n}{2} & {\left[\frac{(n-1)}{2}\left(\frac{1-\alpha-\gamma+\sqrt{(1-\alpha-\gamma)^{2}+4 \alpha \gamma}}{2}\right)^{n-2}\left(-1+\frac{-1+3 \alpha+\gamma}{\sqrt{(1-\alpha-\gamma)^{2}+4 \alpha \gamma}}\right)\right.} \\
& \times\left(-1+\frac{-1+\alpha+3 \gamma}{\sqrt{(1-\alpha-\gamma)^{2}+4 \alpha \gamma}}\right)+\left(\frac{1-\alpha-\gamma+\sqrt{(1-\alpha-\gamma)^{2}+4 \alpha \gamma}}{2}\right)^{n-1} \\
& \left.\times\left(\frac{3\left((1-\alpha-\gamma)^{2}+4 \alpha \gamma\right)-(-1+\alpha+3 \gamma)(-1+3 \alpha+\gamma)}{\left((1-\alpha-\gamma)^{2}+4 \alpha \gamma\right)^{3 / 2}}\right)\right] \\
+ & \frac{n}{2}\left[\frac{(n-1)}{2}\left(\frac{1-\alpha-\gamma-\sqrt{(1-\alpha-\gamma)^{2}+4 \alpha \gamma}}{2}\right)^{n-2}\left(-1-\frac{-1+3 \alpha+\gamma}{\sqrt{(1-\alpha-\gamma)^{2}+4 \alpha \gamma}}\right)\right. \\
& \times\left(-1-\frac{-1+\alpha+3 \gamma}{\sqrt{(1-\alpha-\gamma)^{2}+4 \alpha \gamma}}\right)+\left(\frac{1-\alpha-\gamma-\sqrt{(1-\alpha-\gamma)^{2}+4 \alpha \gamma}}{2}\right)^{n-1} \\
& \left.\times\left(\frac{-3\left((1-\alpha-\gamma)^{2}+4 \alpha \gamma\right)+(-1+\alpha+3 \gamma)(-1+3 \alpha+\gamma)}{\left((1-\alpha-\gamma)^{2}+4 \alpha \gamma\right)^{3 / 2}}\right)\right] .
\end{aligned}
$$

Thus $D_{1,2} f_{n}(1 / 2,0)=n / 2^{n-3}=D_{2,1} f_{n}(1 / 2,0)$.
Let H denote the Hessian matrix for f_{n} at $(1 / 2,0) . H$ has characteristic values

$$
\lambda_{1}=\frac{n}{2^{n-2}}\left(n-1+\sqrt{(n-1)^{2}+4}\right)
$$

and

$$
\lambda_{2}=\frac{n}{2^{n-2}}\left(n-1-\sqrt{(n-1)^{2}+4}\right) .
$$

Since $\lambda_{2}<0<\lambda_{1}$ then $(1 / 2,0)$ is a saddle point for f_{n}. Let $x=\left(\lambda_{2}, 1\right)$ and put $|x|=\sqrt{\lambda_{2}^{2}+1}$. By Taylor's theorem there is a positive number δ so that if $|x|<\delta$ then there is a number $R(x)$ so that $f_{n}((1 / 2,0)+x)$ is

$$
\frac{1}{0!} f_{n}(1 / 2,0)+\frac{1}{1!} \sum_{k=1}^{2}(x)_{k} D_{k} f_{n}(1 / 2,0)+\frac{1}{2!} \sum_{i, j=1}^{2}(x)_{i}(x)_{j} D_{i, j} f_{n}(1 / 2,0)+R(x)
$$

and therefore, since $(1 / 2,0)$ is a critical point for f_{n}, and since $H x^{T}=\lambda_{2} x^{T}$, then

$$
f_{n}((1 / 2,0)+x)=f_{n}(1 / 2,0)+\lambda_{2}|x|^{2}+R(x) .
$$

Since $\lambda_{2}<0$ then there is a positive number $\omega<\delta$ such that if $|x|<\omega$ then $\lambda_{2}|x|^{2}+R(x)<0$, and therefore $f_{n}((1 / 2,0)+x)<f_{n}(1 / 2,0)$. Let $q=(1 / 2,0)+\omega|x|^{-1} x$, observe that $q \in S$ and that $f_{n}(q)<f_{n}(1 / 2,0)$.

Theorem 5. If $n \in\{3,4\}$ then f_{n} is minimum, uniquely, at ($1 / 3,1 / 3$).

Proof. In [1] Marcus and Newman proved the van der Waerden
conjecture true in case $n=3$, and hence this theorem is also true in this case. Let (α, γ) be a point of S at which f_{4} is minimum. Observe that $f_{4}(\alpha, \gamma)$ is

$$
\begin{aligned}
& 2 \alpha^{4}-4 \alpha^{3}+6 \alpha^{2}-4 \alpha+2 \gamma^{4}+6 \gamma^{2}-4 \gamma-20 \gamma^{2} \\
& \quad+8 \alpha \gamma^{3}+16 \alpha^{2} \gamma^{2}+8 \alpha^{3} \gamma-20 \alpha^{2} \gamma+16 \alpha \gamma+1
\end{aligned}
$$

that $D_{1} f_{4}(\alpha, \gamma)$ is

$$
8 \alpha^{3}-12 \alpha^{2}+12 \alpha-4-20 \gamma^{2}+8 \gamma^{3}+32 \alpha \gamma^{2}+24 \alpha^{2} \gamma-40 \alpha \gamma+16 \gamma,
$$

and that $D_{2} f_{4}(\alpha, \gamma)$ is

$$
8 \gamma^{3}-12 \gamma^{2}+12 \gamma-4-40 \alpha \gamma+24 \alpha \gamma^{2}+32 \alpha^{2} \gamma+8 \alpha^{3}-20 \alpha^{2}+16 \alpha
$$

By Theorem 4, (α, γ) is not on the boundary of S and so $D_{1} f_{4}(\alpha, \gamma)=$ $0=D_{2} f_{4}(\alpha, \gamma)$. Thus $D_{1} f_{4}(\alpha, \gamma)-D_{2} f_{4}(\alpha, \gamma)=0$ and therefore

$$
\begin{equation*}
(\alpha-\gamma)(2(\alpha+\gamma)-1-2 \alpha \gamma)=0 \tag{1}
\end{equation*}
$$

Since $D_{1} f_{4}(\alpha, \alpha)=(\alpha-1 / 3)\left(18 \alpha^{2}-12 \alpha+3\right)$ then the only critical point on the diagonal of S is $(1 / 3,1 / 3)$. Suppose

$$
\begin{equation*}
f_{4}(\alpha, \gamma)<f_{4}\left(\frac{1}{3}, \frac{1}{3}\right) \tag{2}
\end{equation*}
$$

and observe from (1) that

$$
\begin{equation*}
2(\alpha+\gamma)-1-2 \alpha \gamma=0 \tag{3}
\end{equation*}
$$

Let $\beta=1-\alpha-\gamma$. It follows from (3) that $\beta^{2}=\alpha^{2}+\gamma^{2}$ and from (2) and (3) that

$$
f_{4}(\alpha, \gamma)=\beta^{4}+2 \beta^{2}(2 \alpha \gamma)+\left(\alpha^{2}+\gamma^{2}\right)^{2}=2 \beta^{2}(1-\beta)^{2}<\frac{1}{9} .
$$

Hence $\beta(1-\beta)<1 / 3 \sqrt{2}$ and therefore
(4) either $\beta<\frac{1-\sqrt{1-\frac{2 \sqrt{2}}{3}}}{2}$ or $\beta>\frac{1+\sqrt{1-\frac{2 \sqrt{2}}{3}}}{2}$.

It also follows from (3) that $2 \gamma^{2}-2(1-\beta) \gamma+1-2 \beta=0$ and therefore, since γ is a real number, then

$$
\begin{equation*}
\beta \geqq \sqrt{2}-1 \tag{5}
\end{equation*}
$$

Finally, (3) implies that $1-2 \beta-2 \alpha \gamma=0$, and therefore since $\alpha \gamma \geqq 0$, then

$$
\begin{equation*}
3 \leqq 1 / 2 . \tag{6}
\end{equation*}
$$

Inequalities (4), (5) and (6) constitute a contradiction.
I would like to thank Professor Sinkhorn for his assistance and suggestions in the preparation of this paper.

References

1. M. Marcus and M. Newman, On the minimum of the permanent of a doubly stochastic matrix, Duke Math. J., 26 (1959), 61-72.
2. H. Minc, On permanents of circulants, Pacific J. Math., 42 (1972), 477-484.

Received July 3, 1973.
Missouri Southern State College
Joplin, MO 64801

