PACIFIC JOURNAL OF MATHEMATICS
Vol. 95, No. 1, 1981

BROWNIAN MOTION AND SETS OF
HARMONIC MEASURE ZERO

BERNT (JKSENDAL

Using Brownian motion the following results are estab-
lished:

(1) Harmonic measure and Keldysh measure are always
singular with respect to area measure in the plane. More
generally, this holds for the distribution of the first exit
point for Brownian motion of a given Borel set.

(2) If U is open and K C 9U is compact, then K has
harmonic measure 0 w.r.t. U if oU satisfies a certain metric
density condition at each point of K and, in addition, K
satisfies one of the following two conditions:

(i) K has zero length and is lying on a straight line
or

(ii) K has a-dimensional Hausdorff measure zero, for
some « < 1/2.

1. Introduction. Let U be a connected open set in the complex
plane C whose complement has positive logarithmic capacity. If ae U
we let A7 denote the harmonic measure at o with respect to U.
What are the metric properties of A,? In particular, what can be
said about sets of harmonic measure zero?

In this paper we use the Brownian motion characterization of
harmonic measure to give some answers to these questions. If bZ(t)
denotes the two-dimensional Brownian motion starting at o (i.e.,
b2(0) = @), let Ty = T¢(w) = inf {t > 0; bs(t) ¢ U} be the first exit time
for b2 in U. Then for Borel sets G — oU, the topological boundary
of U, we have

No(G) = P(bu(Tr) €G)

where P°® is the probability measure of the Brownian motion starting
at a. (See for example [10], p.264.) In other words, )\ (G) is the
probability that b2(¢) hits G before it hits any other part of aU.

In [16] (Corollary 1.5) it is proved that harmonic measure is
always singular with respect to area measure, using methods based
on analytic capacity and function algebras. In §2 we prove a result
which implies this, using Brownian motion. The same proof applies
to the hitting distribution of b%(f) on any Borel measurable set, in
particular to the Keldysh measure.

If U is a Jordan domain with rectifiable boundary, a -classic
theorem due to F. and M. Riesz (see [4], Theorem 3.3) states that
N, 18 equivalent to arc length on oU. However, for non-rectifiable
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boundaries it is not true in general that harmonic measure is equiva-
let to 1-dimensional Hausdorff measure on oU, even if U is simply
connected. Lavrentiev [12] was the first to give an example of a
Jordan domain U with a subset E of dU of zero length and ), (&) > 0.
A simpler example can be found in McMillan and Piranian [15]. And
Lohwater and Seidel [13] constructed a Jordan domain whose boundary
meets a line segment in a set of positive length and harmonic measure
zero with respect to the domain. In §3 it is proved that if K c oU
is a compact set of zero length and K is lying on a straight line,
then 2\, (K) = 0, provided oU satisfies a certain density condition at
each point of K. (This density condition is trivially satisfied if U is
simply connected, for example.)

In §4 we consider the general case when K is a compact subset
of o0U, not necessarily linear. For the case when U is simply con-
nected, Carleson [3] has proved that there exists a constant g > 1/2
(which does not depend on U) such that A\, is absolutely continuous
with respect to 8-dimensional Hausdorff measure on dU. For general
sets U we prove that if K has r-dimensional Hausdorff measure zero
for some » < 1/2, then A\, (K) = 0, provided oU satisfies a density
condition at each point of K.

It seems clear that all—or almost all—the arguments involving
Brownian motion in this paper can be translated into the language
of classical potential theory. Our main reason for preferring the
Brownian motion version is that it brings more intuition into the
subject, which again makes it easier to find the necessary arguments.

I wish to thank J. Brennan, T. W. Gamelin, D. Marshall and A.
Stray for useful communications about a preliminary version of this
paper. And I am greatly indepted to A. M. Davie for his many
valuable comments.

2. First exit distribution is singular with respect to area.
We introduce the following notation:

If x€oU, r >0 let L(z, ) = m,(UN{|z — x| =7}) and Az, 7) =
my(U N 4(x, r)), where m,, m, denote 1- and 2-dimensional Lebesgue
measure, respectively. Here and later 4(x, ) denotes the open disc
{lz — x| < 7).

THEOREM 1. Let U be an open set, ac U. There exists ¢ >0
(tndependent of U and a) such that if we define

£ feeotiimeu (_ it L2 <

then N, (&) = 0.
In particular, N, 1s singular with respect to area measure.
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Note. The last statement follows from the preceding since
clearly {xecoU;lim,_, A(x, r)/zr* = 0} — E for all ¢ >0, so that all
the points of density of oU w.r.t. m, is included in E for all ¢ > 0.

Proof of Theorem 1. Choose ¢ > 0, to be determined later. For
N=1,2 .- let

EN={xeaU; inf L7

2—n—lgr<2—n Tr

< ¢ for allngN}.

Then K = U3-; Ey, so it suffices to prove that \,(Ey) = 0. Fix x e Ey.
For each » = N choose a cirele I', = {|z — x| = »,}, s.t. 27" <
r, < 2™ and

Lz, 1) _
2rr,

Choose 0 < p < 27! and put 4 = 4(x, p). Let

Ck = I'yio
T, = inf {t; bi(t) € U\A(w, 7y+2)}
and
T=inf{t;b2(t)e U}, k=0.
Then
T.<T,.=T forall £1=0.

Using conditional expectation we get

(1) PoDed=|  POUDIBT) = nap@)

0

where f, is the distribution of b,(T,) on C,N U (¢#(H) = P*(b.,(T,) € H)
for Borel sets H < C,N U). By the strong Markov property,

(2) P(b,(T) e 4|b,(Ty) = «) = P*(b,(T)ed) .
So
(3) P(b,(T)ed) = SC . P(b,(T) € 4)d () .

Repeating the argument (1)-(3) on the integrand, we obtain
PoDen = (|  PibmeDinw))an@,
conu \Jepnu

where p, is the distribution of 6,(T,) on C;N U. Repeating this &
times, where p < 27"-*-', we have

() Pomen=| (-(]  PremeDam@)-- i,

Ck
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where p; is the distribution of ,(7T;) on C;NU; 1< j < k. Since
C; C {#; 277" < |z — x| < 277%}, the ratio of the radii of C;;, and
C; is at most 1/2. Therefore there exists a universal constant M
such that

(5)  Penp(T)eCnU) = M™G0U) ~pres 1<i<k.

Y N+25
This gives
(6) PW(T)ed) < (M)t for o< 21,

If we choose k so large that 2=¥=*** < p we have
1 1
> = 2 N -
(7) k= 2<log<p) N 3),

where the log is taken with base 2.
Combining (6) and (7) we get

( 8 ) Pa(b(T) e ZT) é (M8><—N_3)/2'p(1/2) log(1/M¢) .
Now choose ¢ so small that
1 1
= — ) >
(9) 2log<M€>=3.
Then
(10) Pb(T)e ) < Myt

where M, does not depend on p or .
To complete the proof, choose 7 > 0 arbitrary, cover Ky by discs
A(xy, 0y), - - -, 4, 0,) With o, < 277" and

él oL < 7.
Then by (10)
Pe(b(T) € Ey) < z Mo} < M.

Since 7 was arbitrary the proof is complete.

Let E Z C be Borel measurable with cap (Q\E) > 0, where cap
denotes logarithmic capacity. For a fixed a € E we define the first
exit time of E

Ty =inf {t > 0;0% ¢ E},
and the “first exit distribution”
1E(@) = PYb(Tx) eG), G Borel measurable.

nf is a probability measure supported on JF.
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If E is open, pf coincides with harmonic measure 2. If E is
compact, p¢Z coincides with the Keldysh measure for a with respect
to E. This is proved in [5].

For more information about Keldysh measures, see also [7] and
[8]. The proof of Theorem 1 also applies to the Keldysh measure.
More generally, the proof gives:

COROLLARY 1. The first exit distribution pf is singular with
respect to area, for any Borel measurable set K.

It seems reasonable to conjecture that ¢ is singular with respect
to a-dimensional Hausdorff measure, for any a > 1. (See §4 for
definition of Hausdorff measure.)

3. Linear zero sets. In this section we consider linear sets,
i.e., sets lying on straight lines. If K is a compact, linear set of
zero length, it need not have harmonic measure zero in general, but
the next result shows that the harmonic measure of such a set is
zero if 0 U satisfies a density condition at each point of the compact.

The circular projection of a plane set E about a point =z, is
defined as follows:

E*@x) = {|z — x,|;2€ E} .

THEOREM 2. Let K be a compact subset of 0U, assume that K is
lying on a straight line segment v and has zero length. Then if

(*) lim inf ml«aU)*(tx) NI0tD ~ 0 for all wek,

t—0

K has harmonic mearsure zero with respect to U.
An immediate consequence is

COROLLARY 2. Assume U is simply connected and K C oU is a
compact, linear set of zero length. Then K has harmonic measure
zero with respect to U.

Therefore the examples of Lavrentiev and MacMillan/Piranian
mentioned in the introduction, must be nonlinear sets.

REMARKS. (i) If U is simply connected, a shorter and more
direct proof can be given. See [17].

(ii) We conjecture that Theorem 2 holds for all rectifiable arcs
~v. This would constitute a nice generalization of (one half of) the
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F. and M. Riesz theorem stated in the introduction.

Before we give the proof of Theorem 2 let us illustrate the result
by an example.

ExAMPLE 1. Consider the following linear Cantor sets: Let
D1, Dy -+ be numbers greater than 1. Start with the interval G, =
[0, 1]. The first step is to remove the middle interval of length
1—1/p,. The remaining part C, consists of 2 intervals, each of length
1/2p,. In step 2 we remove from each of these 2 intervals the middle
interval of length (1 — 1/p,)(1/2p,). After » steps we are left with
a set C, consisting of 2" intervals, each of length 2" []:., »;'. Put

C=NC,.

Then C has positive length iff >}7_, log », < <.

Therefore we see that if we let X be such a linear Cantor set
of positive length and put U = C\X, then the density condition (*)
in Theorem 2 is satisfied at each point of X. In fact, the density
defined in (*) is equal to 1 for all € X. We conclude that harmonic
measure is absolutely continuous with respect to 1-dimensional
Lebesgue measure on X in this case.

Proof of Theorem 2. We may assume K C [0, 1] and U bounded.
Fix acU. For n =23, --- let

K, = {ve K;limint @U@ A0.2) 11
' n

t—0 t

Then K = ., K,, so it is enough to prove the result when there
exists 7 > 0 such that

lim inf 7(@U )*(tw) N0 tD - p for all wek.

t—0
Let {6,}7_, be a sequence of positive numbers decreasing to zero. Put

Ffu(@) = m,((0 U)*(;C) N[0, 4.1 ; zeK,

Gn: {xeK;fn(m) <7]} and EN: UnzN Gn; N: 1: 2; Tt Then nﬁ:xEN =
@Dy 80 N(Hy) — 0 as N — oo,
Therefore, if ¢ > 0 is given, there exists N such that if we put

Hy = {xeK; fu(x) = 7 for n = N}

then we have
M(EK\Hy) < €.
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We conclude that it is enough to prove the result for the case when

(1) ml((aU)*(;c)ﬂ[O,aﬂ])gn for xeK, n=N.

We will choose 0, = (9/2)"; n=1,2, ---.

Let Uy=Un{z;Imz > 0}. We may assume a € U,.

Let T, = Ty, and T = Ty, be the first exit times for b(t) of U,
and U respectively. Then clearly 7, < T and since harmonic measure
for the half-plane is absolutely continuous, we have \{:(K) = 0, and
therefore

(2) P(b(T)e K) = SJ P(b(T) € K)dto(w) ,

where J = UN R and g, is the distribution of 5(T)).
Let I,, L, - - - be the complementary intervals of K N R in [—R, R],
where R is chosen so large that U c 4(0, R). Set

(3) Vi=U\J\L) ,

and let T, be the first exit time for b(¢) of V, k=1,2, ---. Then
we claim that there exists a constant ¢ > 0 independent of x and %
such that

(4) P*(B(T)edlU)=c forall xzel,, k=12 ---.

Let us complete the proof under the assumption that (4) holds. By
(2) and the F. and M. Riesz theorem we get

(5)  Pomer) = (| o) e Kidv, w))ap)

where vy, is the distribution of b(T,), when xz € I,. Repeating this »
times we get

(6) P(b(T)eK)
=L (1 (] Py e Kyav., @) -+ e -

By (4) we have

(7) ”zi(J)él—c!
so by (6)
(8) Pbp(T)eK)=(1 —o)",

and since n is arbitrary, the result follows.

It remains to prove the claim (4):
Let W, = C\(R\I,), I, = (x}, x.), d, = %, — %;. Put 4= 4(=,, d,) and
assume % € I,.
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Let 7, be the first exit time of U N 4\[x,, ) and let o, be the
first exit time of W, = 4\[x;, ). Then by the Hall projection theo-
rem (see [6])

(9) P*(b(Tw) eoU) =z P*(b(zy) €0U) = ¢-P*(b(on) e F) ,

where F' = (0U)*(x,)-

Put A, = {#; 6, = |2 — x,| <4,}, where 4, = (/2)* as above.

We can write d\)#(t) = g,(¢)dt for t € [z, x, + d,], where g,(t) > 0
and decreasing.

Let n, be the smallest integer satisfying », = N and 4, < d,.
Then we have, using (1):

(10)  P(b(oy) e F)
= 3 P e FNA) Z 355 guas + 0. m(F 0 A)

2 5 otm+00-(2)7 = () 2 (L) 0.t + 00
=

<‘Z‘>2‘§Zwlg At)dt = (’Z‘)z'P “(b(0y) € [@s, @ + apil) -

We assert that
11) P*(b(0}) € [@4, @ + 0yp—1]) is bounded away from 0 for xeJ .
To see this consider the two possible cases:

(i) 0y =d,: Then the assertion follows from the fact that U is
bounded.

(ii) 6y >d,;: Then by minimality of n, we have d, < 0,,, and (11)
follows.

We now combine (9), (10) and (11) and obtain the claim (4).
That completes the proof of Theorem 2.

4. Connection with Hausdorff measures. Let h(t) be a con-
tinuous increasing function on [0, «) such that A(0) = 0. Let E be
a bounded, plane set. For 6 > 0 we consider all coverings of E with
a countable number of discs 4; with radii p; < J, and define

A4(B) = int {S}h(op)}

the inf being taken over all such coverings. The limit

A(E) = lim A(E)
-0

is called the Hausdorff measure of E with respect to the measure
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function k. If A(t) = t*, for some a > 0, 4, is called a-dimensional
Hausdorff measure and denoted by 4,. For measurable subsets of
rectifiable arcs 4, is equivalent to arc length. See [2] and [9] for
more information about Hausdorff measures.

For a general set U, )\, need not be absolutely continuous with
respect to 4,, for any @ > 0. However, in this section we prove
that if 0U satisfies a density condition at each point of a compact
set K Cc oU, then 2\,(K) = 0 provided 4,(K) = 0 for some a < 1/2.

If the density condition is weakened, a similar connection can be
established, but with lower values of a.

It is not clear to what extent these upper bounds for a can be
improved.

We will need the following well known result (see for example
[11], p. 366-367 for an explicit calculation).

LEMMA 1. Let q be a point on the y-axis and put V = C\R.
Then for Borel subsets G C R

dx -
¢ |b|(1 + (2/[b])*)

PO(T,) e G) = S

LEMMA 2. Let a be a point on the x-axis. Put V = C\iR, W=
C\iR\B, where B = 4(0, p). Then, if |a| > o > 0.

Pb(Ty) € BU (—2pt, 207)) = 2-P*(b(Ty) € (—201, 207)) .
Proof. Let ¢ > 1 be a positive constant. Then
(1) P«b(Ty) € BU (—cp1i, cor))

= P(b(Ty) & (—cpi, coi), b(Ty) € B U (—cpi, cpi))
+ PY(b(Ty)| > co, b(Ty) € BU (—cpi, coi)

< PUO(T)) & (—cpi, cpi)) + | PIKT)]| > cp)dpta) ,

where g is the distribution of 5(T,,) on 6B. By Lemma 1

. dy
2 POUIN >0 S| e

§1——2—Arctan(c—1),
T

where x = rez, z€dB.
Combining (1) and (2) we get
(3) P*(b(Ty,) € B U (—cpi, cpi))
< 1
= 2 Arctan(c — 1)

- P*(b(Ty) € (—cpt, cor)) .
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Therefore we obtain the result by choosing ¢ = 2.

LEMMA 3. Suppose y, 6, @ > 0. Then

Soo <i>a dx _ 1 .<—3—>a
o \x/ Tyl + (x/y)?)  2-cos (wa/2) \y
Proof. The substitution w = (x/y)* transforms the integral to
1 . i agoc u(l/a)—Z
Ta <y> o1 +22/°‘du
The value of this integral can be found in tables, and we get
Lemma 3.

LEMMA 4. Let U be open, z,€0U. Let 0 < e < 1/4 and b, = 27"
n=12 ---. Suppose

m,(QU)*(2) N 10,0, ~ 1 _ for all mn=N.
3 B Bl

Choose o > 0 such that

1
cos’ (M) > =+ 2.
2 2
Then there exists a constant A depending only on ¢ and N such that

P(b(Ty) € d(zo, ) < A- (!_g_‘)

for all a with |z, — a| = 0y/2; o > 0.
Proof. We may assume that z, = 0 and that a is a point on the

negative z-axis, |a| > p. Put B = 40, p), F = (0U)*(0) and let D =
C\F\B. Then by the Beurling projection theorem (see [1])

(1) P*(b(Ty) e B) = P*(b(Tp) e B) .
Using Lemma 2 and its notation, we get, setting o = 2p,

(2) Pb(Tp)e B)
= P*(b(Tp) € B, b(Ty) € BU(—01, 1)) + P*(b(T'p) € B, |b(Ty)| > )

= 2P*(b(Ty) € (=01, 69)) + 2 S:o P*(6(Tp) € BIb6(Ty) = y)dv(y)

— 4.Arctan (!_j_]) 2 S:’ P*(b(T») € B)dy()

where dy(y) = dy/(z|a|d + (y/|a])?) by Lemma 1.
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Repeating this procedure, we get

(3)  PYb(T») e B) < 4 Arctan (I-f/_') +{, Pt e By,

where E = (—o0, d) U (6, )\F and p, is the distribution of 5*(T¢\x)
on R:

dx
Tyl + (/|y))?)

Repeating (1)-(3) » times and combining, we obtain:

d#y(x) =

(4) P*(b(T,) e B) < 4-Arctan <Tg‘|>

e (0 At o)+ st
raE 0 vt (2 e o ) s

+4-2n§5°°(SE<- . (SE Poa(b(T,) € B)d/.eyn(x,)). : -))dv(yl) .

The last term is less than

4.2%.27".¢", where c¢=max{yg,(F)}<1,

ly|>é

so it will tend to zero as n — .
Let A, ={reR;2"*'<x=<2". For n=N we have, by hy-
pothesis,

(5) m,(E N A,) < e-my(4,) .

Therefore, if f(x) is positive and decreasing,

(6)

A (@) £ 3% fOn)—— 0 A
F@att,(@) = 2 fOu) = i

< . — . ml(Ak+1)
= de 2 fOun) Ty |1 + Grsd/ 1Y DH

1e- [ r@ydpn @)

SEF\[O,BN]

IA

By (6) and Lemma 38 we get

(7) SE(T%)Q;RI—%WQ})T)— = SEn[o,le + SR\[O,JN] = (1 + 48) S: + S::V

= emmam ) T2
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Since Arctan (6/|y]) = d6/|y| = (6/|y|)* for |y| > 6, we get by using
(7) repeatedly:

(51 G0 (L Aretan (00 0)-- st
k a a 7 k—j

= [4 C(l)sj_(;z/Z)J (|%|> + _;_(;:) ;[4 cisj(73§z/2):l <_%_) j )

The terms in the other sum in (4) are estimated similarly. There-

fore, combining (4) and (8) we get the estimate

(9) Py eB s () e Sk T

where ¢, is a constant.
By the choice of a this series converges, and Lemma 4 is proved.
We are now ready for the main result of this section:

THEOREM 3. Let U be an open set, K a compact subset of oU
such that

(%) lim 7@ @O0, ) _ 1 £ a1 geK.

t—0 t

Then if A, (K) =0 for some a < 1/2, K has harmonic measure zero
with respect to U.

Proof. Choose a < 1/2 such that 4,(K) = 0. As in the proof of
Theorem 5 we may assume that there exists N < « s.t.

0, o

for all » = N, where §, = 2", and ¢ > 0 is chosen such that

1
cos? <ﬂ) > — + 2.
2 2

Let D, = 4(z,, 6y/4); k=1, -+, M be dises centered at K such that
M
Kc kl:j D,.

Choose a,coD, N U for k=1, ---, M. Choose 7 > 0. Cover K by
dises {4(x;, p;)}7- centered at K with radii o; < o5 such that

8

i <7.

j=1

Fix ae U. Then there exists a constant C such that
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M(K) < O\I(K) for 1<k<M.

Then Lemma 4 gives

M

MK N D) S CE MK N D)

A

A (K)

<C3 3 M, 0)) S C-3 5, AfS

=1lz5eDy

3&

where A is a constant which does not depend on 7. Since 7 was
arbitrary, the proof is complete.

Note that the same argument also gives that if

lim inf @U@ 010, 8D > 1 _ ¢ for all zeK,
t

t—0
then K has harmonic measure zero with respect to U provided

A(K)=0 for some «a >0 satisfying

cos’ (%) > % + 2¢ .

We end this section by illustrating Theorem 3 with an example:

ExAMPLE 2. Let C be a linear Cantor set of positive length, as
described in § 3.

Let FFc R be any closed set. Put X =C X F and U = C\X.
Then the condition (**) of Theorem 3 is satisfied at each point of
X. Therefore

N K A,
for all @ < 1/2 in this case.
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