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LINKED QUATERNIONIC MAPPINGS AND THEIR
ASSOCIATED WITT RINGS

MURRAY MARSHALL AND JOSEPH YUCAS

A quaternionic mapping is a symmetric bilinear mapping
q:GxG->B, where G, B are Abelian groups, G has exponent
2 and contains a distinguished element —1 such that q(a, α)=
q(a,—l) VaeG. Such a mapping is said to be linked
if q(a,b)—q{c,d) implies the existence of xeG such that
q(atb)=q(atx) and q(c,d)=q(c,x). The Witt ring W(q) of
such a mapping q can be defined to be the integral group
ring Z[G] factored by the ideal generated by l+(—1) and
the elements (α+6)—(c+d) such that ab=cd and q(a,b)=
q(c, d). If q is the quaternionic mapping associated to a
field or semi-local ring A with 2 e A\ then q is linked, and
W(q) is the Witt ring of free bilinear spaces over A. This
paper gives a ring-theoretic description of the class of rings
W{q), q linked. In particular, all such rings are shown to
be strongly representational in the terminology of Kleinstein
and Rosenberg.

1* Introduction* Throughout this section, F will denote a
field or semi-local ring with 2eF' such that all residue class fields
contain more than 3 elements. Let BF denote the Brauer group of
Ff GF = F'/F'2, and let qF:GF x GF -> BF denote the quaternion
algebra mapping. Then qF satisfies

(A) qF is symmetric and bilinear, i.e.,

Vα, 6, c e GF9 qF(a, b) = qFφ, a)

and

qF(a, be) = qF(a, b)qF(a, c) .

(B) Vα 6 Gr, qF(a, a) = qr(a, - 1 ) .
In the case F is a field (A) is [8, 2.11, p. 61] and (B) is [8, 2.6, p.
58]. The corresponding results for semi-local rings may be found
in [2, p. 22-29].

It is well known that isometry of (quadratic) forms over F is
describable in terms of qF. For forms of dimension one and two
we have (α) = (6) <=> a = 6, and (α, 6) ̂  (c, d)« ab = cd and qF(a, b) =
qF(c, d). The proof of this statement given for fields in [8, 2.9, p.
60] will work as well in the semi-local ring case. For higher
dimensional forms / = g «=> 3 a sequence of forms f = f0, flf , Λ = 0
such that for each i = 1, , kf f< is obtained from /<-1L by replac-
ing two diagonal entries a, b by c, d with (α, 6) = (c, d). For the
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proof of this last assertion, see [11, Satz 7] in case F is a field, and
[7, Lemma 1.14] in case F is a semi-local ring.

In turn, this gives a description of the Witt ring WF of
quadratic forms over F in terms of qF: WF is the integral group
ring Z[GF] factored by the ideal generated by 1 + ( —1) and the
elements (α + b) — (c + d) such that ab = cd and qF{a, b) = qF(c, d).

More generally, consider an abstract mapping q: G x G —> B
where G and B are Abelian groups and G has exponent 2 (i.e.,
a2 = 1 VαeG). If such a mapping satisfies properties (A) and (B)
above for some distinguished element — l e G , we will say g is a
quaternίonic mapping. If this is the case, we can certainly define
isometry of (abstract) forms by the above formulas (see [4]), and
construct an associated (abstract) Witt ring W(q). Certainly some
of the classical quadratic form theory will carry over to this
abstract situation.

The goal of this paper is to develop a much more refined
theory. The key observation is that qF has an additional important
property.

(L) qF(a, b) = qF(c, d)=>lxe GF such that qF(a, b) = qF(a, x)

and qF(c, d) = qF(c, x). In case F is a field, this is an exercise in
Lam's book [8, p. 69, 12]. Here is a sketch of the proof in the
semi-local case: First note that

( 1 ) qr(a, b) = qF(c, d) ~ (1, -a) <g) (1, -b) = (1, -c) ® (1, -d) ,

using [2, 1.19, p. 29], Expanding and using Witt cancellation, this,
in turn, is equivalent to ( — 6, α5)φ(d, — cd) ^ (α, — c ) 0 ( l , —1).
Thus, by transversality [3, 2.7(c)], lxeGF such that (—b,ab) =
( — x, ax) and (d, —cd) = (x, —ex). It follows easily from this
(for example, use (1) again), that qF(a, b) = qF(a9 x) and qF(c, d) =
qF(c, x).

A quaternionic mapping q:GxG-+B is said to be linked if it
satisfies (L). In this paper, we examine the form theory associated
to a linked quaternionic mapping and develop properties of the
associated Witt ring W(q). In Theorem 2.6 the following cancella-
tion property for forms is shown to hold:

f = f and

It follows from this that each form has a well-defined anisotropic
part and Witt index, and that W(q), as a set, can be described as
the equivalence classes of forms with respect to Witt equivalence,
exactly as in [11]. In Theorem 2.7, the following representation
property for forms is proved:
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D(f 0 g) = U {D(a, b)\aeD(f), b e D{g)} .

(Here, D(f) denotes the set of elements of G represented by the
form /.) This implies that W(q) is representational in the termi-
nology of [5]. The exact relationship between linked quaternionic
mappings and representational Witt rings is presented in Theorem
3.8 following the introduction of the signed discriminant and the
Witt invariant. In Theorem 3.11, it is proved that W(q) is reduced
(i.e., has nilradical equal to zero) if and only if q satisfies

(R) Vα e G, q(a, a) = 1 => a = 1 .

This special case is of interest since, as pointed out in [5], the
reduced representational Witt rings are just the Witt rings of
spaces of orderings as presented, for example, in [9].

2* The form theory* Throughout, assume that q: G X G —• B
is a linked quaternionic mapping. Recall, from the introduction,
this means G, B are Abelian groups, G has exponent 2 and a dis-
tinguished element —1, and q satisfies

(A) q is symmetric and bilinear,
(B) q(a, a) = q(a, — 1) VαeG, and
(L) q(a, b) = q(c, d)=>lxeG such that q(a, b) = q{a, x) and

q(c, d) = q(c, x).
It is worth pointing out, to begin with, that Vα, b e G, q(a, 6)2 =

q(a, b2) = q(a, 1) = 1. In particular, the subgroup of B generated by
the image of q has exponent 2. Also, note that q(a, — α) =
q(a, -l)?(α, α) = q{a, - I ) 2 = 1.

By a form of dimension n ^ 1 (over (?) is meant an %-tuple
/ = (̂ 1, * , O with αlf , αn e G. The discriminant and Hasse
invariant of such a form / are defined by

( 2 ) <*(/) - Π ai9 and s(/) = Π q(atf as) .

The s^m of / and g, with / as above and g = (6^ , 6m), is defined
by / 0 g = («i, , αn, 62, , 6m). Isometry of one and two dimen-
sional forms is defined by

( 3 ) (α) ~ (6) <=> α = 6, and
( 4 ) (α, 6) = (c, d) <=̂  α6 = cd and q(a, b) = g(c, d).

For forms of dimension n ^ 3, isometry is defined inductively by

( 5 ) ( α l f , a n ) ~ (blf , b n ) <=> 3 α , 6 , c 3 , - - , c n e G

such t h a t (α2, , α j ^ (α, c8, , c j , (δ2, •••,&») = (6, c3, , c j and
(α l f α) = (δx, 6). I t will follow from 2.4 t h a t this definition coincides
with the one given in the introduction.



414 MURRAY MARSHALL AND JOSEPH YUCAS

THEOREM 2.1. // blf ,bn is a permutation of aly , anf then

<A, •••, <O = (61, ••', δ j .

Proof. We may assume n ^ 3. If bx — aif i ^ 2, take α = aίf

b = α2, and take c3, , cn to be the elements left after alf at are
deleted from au , α». Note that α, c8, , c» is a permutation of
a2, *"t α»; &, c3, , cw is a permutation of δ2, , bn; and δx, 6 is a
permutation of alf α, so the result is true by induction. On the
other hand, if bι — au take a = 6 = α2, and Cj = a iy i ^ 3. •

THEOREM 2.2. If f^g then dim (/) = dim (g), d(f) = d(g), and
s(f) = s(g). The converse holds for forms of dimension n ^ 3.

Proof. It is clear that the theorem and its converse hold for
1 and 2 dimensional forms, by (3) and (4). (Note: if / is 1-dimen-
sional, then s(f) = 1, by definition.) Now let / = (alf , an), g =
(K " -, K), n ^ 3. First suppose f = g, and choose a, b, c3, , cn

as in (5). Then, by induction, α2- -an = αc3- cn, b2- - bn = bc3- cn,
and ata — bj), so αLα2 -an = axacz cn = 6i6c3- cΛ = 6i62 δM. Also,
using

( 6 ) «(/ Θ Λ) = β(/) «(λ) q(d(f), d{h))

(this is easily verified), we have, by induction,

s(f) = s(α2, , αJβCtti, α2- α j

= s(α, c3, •••, Oί(«i, αcβ c j

= s(c3, , cj?(α, c8- -cn)q(al9 ac%* c j

= s(c8, , Oί(ααi, c8- cn)q(alf a)

= β(c8, , cn)q(bblf cs cjg(6!, &)=•••= 8(0) .

Now suppose w = 3, d(f) = d(g)f and s(f) = s(g). Thus ^ = ^
63 = 6x62a5 where cc denotes the common discriminant. Thus using
properties (A) and (B) of q,

s(au a2, axa2x) = q(a2, a1a2x)q(alf a2)q(alf axa2x)

-x, axx) = g(α2, —axx)q{ — x9 -a1x)q(~xf - 1 )

Here, as always, — a denotes the element ( — ΐ)(a)eG. We record
this result:

(7) s(au a2, a±a2x) = q(-atxf -a2x)q(-x, - 1 ) .

If we do the same computation for g, we see that the equality of
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the Hasse invariants implies g ( - α ^ , — a2x) — qi—^x, —b2x). Thus,
by (L), 32/ e G such that q( — aλx, — a2x) = q(<-a1x, y) and g(—δ^, —b2x) =
q{—bjXf y). Take c3 = — xy, a = — cy/, and δ = — b{y. Now it is just
a matter of checking (α2, αxα2^) = (α, c8), (b2f bxb2x) = (f>, cz) and (αlf α) ~
(δ2, δ). Clearly, the discriminants are the same and

q(a2, a,a2x) = g(α2, α1α2cc)g(α2, - α 2 ) =

= ?(-α2α, -ajtiήqi-x, -axx) = qi-a^, y)q(-x, — aλx)

= ?(-<*!&, - ^ ) = ?(-«!», -χy)q(χy, ~χy) = qi-^y,

Similarly g(62, δA^) = (?(&, c8). Finally, using q{ — axxf y) = ?(-6i«,
we have

T/) = g(-a xa;, y)q(-x, y)

-x, V) = ^(&i, 2/) = ?(&i, — &i2/) = 0(δi, 6) - D

THEOREM 2.3. Isometry is a transitive relation.

(Note. Since isometry is clearly reflexive and symmetric, this
implies it is an equivalence relation.)

Proof. Suppose /, #, Λ are w dimensional forms with f=g = h.
We show f ~ h bγ induction on w. By 2.2, we may assume n ^ 4.
Let the elements a,b,ceG and the w — 1 dimensional forms / ' , (/', /*/
be defined by / = (α) © / ' , <? = (6) 0 g\ h = (c) 0 Λ'. Thus, by
assumption, 3α', δ', δ", c'eff and n — 2 dimensional forms i, ^ such
that / ' = (α') 0 ΐ, flr' = (&') 0 i, 0' s (δ") 0 i , V = {c') 0 i , (α, α') s
(δ, δ'), and (δ, δ") = (c, cr). Thus, by induction, (δ') 0 i ~ (δ") © 3,
so 3δ1? δ2 6 G and an π — 3 dimensional form k satisfying i = (bi)φfc,
j=(b2)®k, and (δ', δx)= (δ", δ2). It follows that (α, α', 6X) s (δ, δ', δ j =
(δ, δ", 62) = (c, c', δ2), so, using transitivity in the case w = 3, 3αx, clf xe
G such that (α', 6J = (αx, a;), (c', δ2) ~ (clf a?), and (α, αx) = (c, cx). Take
Z = («) 0 k. Then / ' ^ (α') 0 i ^ (α', 6X) © fc ̂  (αx, a?) © & = (αx) 0 ϊ,
and V = (cf) 0 i = (c', δ2) 0 fc = (clf x) 0 k = (cx) 0 I. Thus, by induc-
tion, / ' = (αj © I and /̂ ' ̂  (d) 0 I. Since (α, αx) ̂  (c, cx), this com-
pletes the proof. •

COROLLARY 2.4. f=g^ there exists a sequence of forms f=f0>

flf " ,fk = g, k ^ 0, such that for each i = 1, , k, ft is obtained
from /i_! by replacing two entries α, af by δ, δ' respectively, where
(α, α') ̂  (δ, δ')

Proof. The implication (==>) is immediate, by induction on
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n — dim (/). To prove (<=), we may assume n ^ 3, and, by 2.3, that
fc = l. Thus, by 2.1, / = (α, α', c3, , cn) and # = (6, 6', c3, , c%). Now
it is clear (α, α', c8l , O = (δ, 6', <*, , O Thus, by 2.3, f=g. Π

LEMMA 2.5. For arbitrary forms f, g, g\ g = g' <=> fφg = fξ&g'.

Proof. We may assume / is 1-dimensional, say / = (αj.
(=>): Define a, cB, , cn by # — (α, c3, , c j and let b = a.

Then f@g^f®g' by (5).
(<=): By (5) 3α, 6, c8, , cΛ such that # = (α, c8, , cn), gf =

(b, c3, , c j and (αlf α) = (αi, 6). Comparing discriminants, this yields
a = 6, so # ^ (α, c8, , c j = ^'. Thus g = g' by 2.3. •

THEOREM 2.6. Suppose f, f, g, gf are forms satisfying f=f.
Then g ~ gf *=*f®g = f'@g'.

Proof. Since / - /', it follows from 2.1 and 2.5 that f@g =
/'Θflr. Thus, f@g^f'@g'~f'®g^f'@g'~g^g' by 2.3 and
2.5. Π

For / = (α^ , α j , gr = (6j, , 6m) and a e (? let us define
α/: = (ααx, , aa%), and /(x) βf: = (aj>lf , αx6m, , aublf , α»6J.
(Thus α / = ( α ) ® / . )

THEOREM 2.7. ( i ) If f= f, then af = af.
(ii) If f= f and g = g', then f®g = f'®g'.

Proof. Let / = (alf , an). (i) is clear if n = 1. Suppose
w = 2, and that / ' = (αί, αί). Then αxα2 = a[a'2 and <jf(αi, α2)=^(αί, αj).
It follows that α/ and α/' have the same discriminant and q(aau aa2) =
q(a, a)q(af a1a2)q{au a2) — q(a, a)q(a9 a[a'2)q(a'ίf a2) = q(aa[f aa2). Thus α / ^

af. The result for n Ξ> 3 follows by a simple inductive argument.
To prove (ii), note / (x) g = axg © 0 ang = aγg

r 0 0 α%sr' =
/ (x) ̂ ', using part (i) and 2.6. Similarly /(g) ^' = / ' (g) gr', so /®flr=
/ ' ® fff- D

We say a form / of dimension w represents x e G if 3#2, ,
xΛeG such that f ~ (x, x2, , x j . Let us denote by D(/) the set
of elements x e G represented by / in this sense.

THEOREM 2.8. // / and g are arbitrary forms, then

D(f Θ g) = U {D(x, y)\xe D(f), y eD(g)} .

Proof. To prove the nontrivial inclusion let / — (al9 , ak),
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9 = (a>k+i, , <O, and suppose fφg = (blf , δ j . Choose α, δ, c3, , cn

as in (5). Thus ^eΌfa, a). This completes the proof if k = 1
(take # = a19 y = a). If & ;> 2, then, by induction on k, 3#'e
D(βz9

 m' , «*)» yeD(g) such that aeD(x',y). Thus, δ x e D ^ , α) £
jD(α!, a?', 2/) = £>(?/, αlf a?'), so by the case fc = 1, 3&e £>(<&!, &') such
that bίeD{y, x) = D(x,y). Since D(alf x') Q D(f), this completes
the proof. •

Note that (α, — α) = (1, —1) VaeG by (4), since g(α, — α) = 1 =
q(l, — 1). Any form (a, —α), α e G will be called a hyperbolic form.
A form / will be called isotropic if 3 a form g such that / =
(1, —1)©<7 Otherwise / will be called anisotropic. The following
version of 2.8 is useful.

COROLLARY 2.9. Let /, g be forms, and suppose f @ g is
isotropic. Then ixeD(f) such that —xeD(g).

Proof. (Compare to [5, 2.4] and [9, 2.2].) Let α, / ' , and h
be such that f = (a)@f and / φ f l f Ξ ( l , - l ) φ i = ( o , - c ) φ * .
Thus /'0flf = ( - α ) φ A by 2.6. Suppose dim (/') ^ 1. Then, by
2.8, lbeD(g), ceD(f'), deG such that (6, c) = (-α, d). Adding
(α, —6) to both sides and cancelling using 2.6, this yields (a, c) =
(—6, d). Thus, —6 6 D(α, c) £ -D(/), i.e., x= — δ satisfies the required
conditions. If, on the other hand, dim (/')==(), then x — a works. Π

3* The Witt ring* We can now define the Witt ring associated
to the linked quaternionic mapping q exactly as in [11]. First note
that every form / over G decomposes as

(8) /s/.0*x(l, -1)

with fa an anisotropic (possibly zero dimensional) form, and k ^ 0.
Here, k x g denotes g 0 0 g (k times) or the zero dimensional
form if k = 0. Using the cancellation property 2.6, k is uniquely
determined by /, and fa is determined, up to isometry, by /. Let
us refer to fa as the anisotropic part of f, to k as the Witt index
of f, and to (8) as the Witt decomposition of f.

Two forms /, g (not necessarily of the same dimension) are said
to be Witt equivalent, denoted f ~ g, if their anisotropic parts are
isometric. It is clear that

( 9 ) f~g=>dim(f) = dim(g) (mod2)

and

(10) f=g<=>f~ g and dim(/) = dim (g) .
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Let us denote by W the set of equivalence classes of forms with
respect to Witt equivalence. It is easily verified, using 2.6 and
2.7, that 0 and (g) induce binary operations on W, and by the same
elementary arguments as in [11], W becomes a commutative ring
with unity. We will refer to the ring W so constructed as the
Witt ring associated to q, and will denote this by writing W= W{q).

We remark in passing that we have the following description
of W{q).

THEOREM 3.1. W(q) is isomorphic to the integral group ring
Z[G] factored by the ideal generated by 1 + ( —1) and the elements
(a + b) — (c + d) where (α, 6) = (c, d).

Proof. On the basis of 2.4 the proof is the same as in the
classical case, cf. [8, Exc. 1, p. 49]. •

Denote by I(q) the ideal of even dimensional forms in W(q)-
Clearly W(q)/I(q) ~ Z/2Z. Since (α, b) ~ (1, a) - (1, -6), I(q) is gener-
ated additively by the 1-fold Pfister forms (1, — α), aeG. Thus
I\q) is generated additively by the k-fold Pfister forms (1, — α^ (x)
(1, —α2) ® (8) (1, — αfc), αlf " -, akeG.

We now modify the discriminant and Hasse invariant in a
standard way (eg. see [8, p. 123]) to obtain invariants with respect
to Witt equivalence. Namely, we define the signed discriminant
and the Witt invariant by

(11) d±{f) - ( - l ) W ) , where a = n(n - l)/2, n = dim (/) ,

and

(12) w{f) = s(f)q(-l, d(f)Yq(-l, -1)* ,

where ε = (n - ΐ)(n - 2)/2, η = (n + l)(n)(n - ϊ)(n - 2)/24, and n =

THEOREM 3.2. ( i ) d±: W{q) —> (? is well-defined.
(ii) The restriction of d± to the additive group I(q) is a group

homomorphism.
(iii)

Proof Suppose f=g in W(q). We may assume/^#0fcx(l, —1)
for some keZ. By 2.2, d(f) = d(g) if k = 0 (mod4) and d(f)=-d(g)
if k ΞΞ 2 (mod 4). Consequently, d±(f) = d±(g) and (i) is proved.
Suppose fί9 f2 e I(q) and dim/; = mx, dim/2 = m2. Then



LINKED QUATERNIONIC MAPPINGS AND THEIR ASSOCIATED WITT RINGS 419

and (ii) is proved. Since d±((l, — α ) ® ( l , — δ)) = d±(l, — α, —6, α6) = l,
the kernel of d±:I(q)->G contains J2(g). Since (1, - α ) 0 ( l , - δ ) ~
(1, — α δ ) 0 ( l , — α)<g)(l, — δ), every element fel(q) has the form
/ = (1, — a) modulo P(q). Hence d±(f) = 1 <=> eZ±(l, — α) = 1 <=> α =
1 => / e /2(#). Thus the kernel is exactly P(q). This proves (iii). •

THEOREM 3.3. ( i ) If f is an arbitrary form and g is a form
satisfying d±{g) = 1, dim(£) = 0(mod2), then w(f 0 g) = w(f)w(g).

(ii) w: W(q)->B is well-defined.
(iii) w: P{q) —> B is a group homomorphίsm with P(q)Q ker (w).

Proof. ( i ) Note that dim (/ 0 g) - dim (/) + dim (g), d{f@g) =
d(/)d!(ff) and s(f 0 ff) = s(f)s(g)q(d(f), d(g)) by (6). By hypothesis,
dim(#) = 2k, and ώ±(^) = 1, so d(g) is either 1 or —1 depending on
whether k is even or odd. The conclusion of (i) now follows from
a lengthy (but elementary) computation.

(ii) Taking g = (1, -1) in ( i ) , we have w ( / φ (1, -1)) =
w(f)w(l, -1) = w(f). It follows from this and 2.2, that f~h=>

(iii) By 3.2, /2(#) consists of those elements of W(q) represented
by forms / satisfying dim (/) = 0(mod 2) and d±(f) = 1. Thus the
fact that w: P{q) -> J? is a group homomorphism is a special case of
(i). Finally observe that

s(a(l, — δ) (g) (1, — e)) = β(α, — αδ, — αc, αδc)

= g(α, a)q( — ab, — δ)g(—αc, αδc) = g(α, a)q( — a9 — b)q( — ac, b)

c, δ) = g ( - l , - l)?(δ, c) .

It follows that

(13) w(a(l, - δ ) ® (1, -c)) = β(6, c) Vα, δ, c e G .

Thus,

1, - c )

0 - α ( l , - δ ) (g) (1, ~c)) - g(6, c)g(δ, c) = 1 Vα, δ, c 6 G ,

so /8(g) C ker(w). Π

COROLLARY 3.4. Lβί α, δ, c, ώ 6 G. T/^β^ ίfee following are
equivalent.

( i ) q(a, δ) = g(c, d),



420 MURRAY MARSHALL AND JOSEPH YUCAS

(ii) (1, - α ) <g> (1, -b) = (1, -c) ® (1, -d),
(iii) (1, - α ) (X) (1, -6) = (1, - c ) (g) (1, -d)(mod P(q)).

Proof. By (7), β(-α, - 6 , αδ) = g(α, δ)g(-l , - 1 ) , so ( i ) =>
( —α, — 6, αδ) ~ (—c, —d,cd) by 2.2. This, in turn, clearly implies
(ii). The implication (ii) => (iii) is clear. Finally, if one applies w
to each member of (iii) and uses (13) and 3.3 (iii), one obtains (i). •

Suppose Qi'. GiXGi —> Bt is a linked quaternionic mapping, i = l, 2.
We will say qt and #2 are equivalent, denoted qx ~ q2, if 3 a group
isomorphism a: G1 = G2 such that α( — 1) = —1 and qx{a, b) = 1*=>
q2(a(a), a(b)) ~ 1 Vα, beG^ Note that ^ — #2 implies

?i(α, 6) = qx(c, d) <=> g2(α(α), a(b))

?(«(c) α(d)) Vα, 6, c, d e Gi .

This follows since <?(α, 6) = g(c, d) <=> 3x 6 G such that q(a, bx) = 1,
g(c, (ZOJ) = 1 and g(αc, a?) = 1, by the linkage condition.

COROLLARY 3.5. Define q': G x G -> I\q)/I\q) by q'(a9 b) = (1,
— α)(x)(l, — 6) + /3(tf). Tfoew g' is α linked quaternionic mapping
and q — qf.

Proof. This is clear, using 3.2 and 3.4. Π

COROLLARY 3.6. Let qt: Gt x Gt~^ Bt be a linked quaternionic
mapping, i — 1, 2. Then qt ~ q2 <=* W{q^ = W(g2)

Proof. (=>): In view of the definition of W{q^), it is enough
to verify (α, b) ̂  (c, d) <=> (α(α), α(6)) = (α(c), α(d)) Vα, b, c, de G.
This follows from (14) and the fact that a is a group isomorphism.
(«=): In view of 3.5, it is enough to show q[ ~ q'2. Now it is clear
(since I(qt) can be characterized as the unique ideal of index 2 in
W(Qi)) that the given isomorphism φ: W{q^ —> W(?2) carries Ik(qι)
onto /fc(gf

2) V& Ξ> 1, and hence induces isomorphisms J2(<jfi)//3((h) =
I\q.)II\q*) and Gx ̂  KqJUKqd - I(q2)/P(q2) = G2 (using 3.2). More-
over, we claim that the following diagram

G2xG2 >P(q2)/P(q2)

commutes. First recall as in 3.2 (iii) that for every x e Glf φ(l, x)
can be written in the form (1, y)ζ&f for some yeG2 and feP(q2).
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Consequently, for al9 bλ e Gx we have

(au bt) > (1, -aίf -blf αA) + P(q,)

I
(α2, ό2) > (1, -α 2 , -δ 2 , α2δ2) + P(q2)

where φ(l, -aj = (1, - α 2 ) θ / i and φ(lf -b,) = (1, - δ 2 ) 0 / 2 with
/ u/ 2e/ 2(g 2). Now, by an elementary computation it follows that
φ((l, -au —bu ajbi) + /3(<2Ί)) = (1, -α 2 , -δ 2 , α2δ2) + P(q2) and the dia-
gram commutes. Finally, since the isomorphisms (?* = I(q%)jP(q^
carry —1 to 2 and 2el(q1) is mapped to 2el(q2)f the isomorphism
Gx = G2 carries —1 to - 1 . This proves q[ ~ q[. •

In case q "= qF, F a field, the following Arason-Pfister property
is known to hold V& ^ 2.

AP (k): If / is a form satisfying dim (/) < 2k and/e P(q), then

For the proof see [1]. It is open whether this is true for F
a semi-local ring. However we do have the following.

COROLLARY 3.7. For q an arbitrary linked quaternionic mapp-
ing, AP (Jo) holds for k — 2, and 3.

Proof, Let dim (/) < 2\ fe Ik(q). Suppose first that k = 2,
/ = (a, b). Applying d± this yields — ab = 1, by 3.2, i.e., b — —a.
Thus / = (α, — α) ~ 0. Now suppose k — 3. Adding enough hyper-
bolic forms, we can assume / = (au α2, , α6). Scaling / by axa2a3,
if necessary, we can assume α3 = α ^ . By 3.2, d±(f) = 1, i.e., αβ =
-α 4α 5. Thus / = (»!, α2, a,a2f α4, α,, -α 4 α 5 )-( l , αx) (g) (1, α2) - (1, -α4)(g)
(1, -α 5) 6 /8(9), so / - 0 by 3.4. •

We now relate the theory just presented with the theoy of
representational Witt rings developed in [5]. For the reader's
convenience we first record some definitions. Let G be a group of
exponent 2. A ring W — Z[G]/K is called an abstract Witt ring if
the torsion subgroup of W is 2-primary, [7, Def. 3.12]. Through-
out this section we will assume without loss of generality that G
is a subgroup of the multiplicative group W, and that — leG
(simply replace G by the subgroup of W generated by its image
and —1). For reW, dimr is the smallest number n such that
r = Σ?=i Qi in W, gt 6 G, and D(r) = {g e G \ r = g + p f or some p e W
with dimp< dimr}, [5, Def. 1.1 and Def. 1.2]. W will be called
representational if for r1 Φ 0, r2 Φ 0 in W with dim (rx + r2) =

! + dimr2 and g in D(rt + r2), there exist g3 in D(χi)t j = 1, 2
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such that geD{gt + g2), [5, Def 2.2], W is strongly representational
if for gly g2eG, with g± + g2 Φ 0 in TF and g^D(gxΛ- g2) we have
0 + 00102 = 0i + 02, [5, Def 4.1].

It is convenient to associate to W a theory of forms. Namely,
for aίf bά e G, one defines (αx, , α j ~ (δx, , δ j to mean αxH 1-
α« = &i + + δw in TF and (au , αJ = (6^ , δ J to mean
(αx, , an) ~ (δx, , δTO) and n — m. Isometry so defined clearly
satisfies 2.1, 2.3, 2.6, 2.7. Notice that our definitions of dimension
determinant, representation, isotropic and anisotropic also make
sense for this definition of isometry. Now, W is representational
if and only if 2.8 holds for forms over W. This follows quite
easily from [5, Prop. 2.29]. Since 2.9 follows from 2.8, 2.9 also
holds if W is representational. Now, suppose W is representational
and (al9 , α j = (bu , δ j . There exists a e D(a2, , an) such
that (alf a) = (bί9 b) for some δeG, by 2.8. Since aeD(a2, « , α j
there exist c3, , cn e G such that (α2, , α j = (α, c8, , cn). Con-
sequently,

(«Ί, α, b2, , 6J = (&!, 6, 62, , bn) = (6, alf , α j

= (δif ĉ i, », c3, , cn)2 ,

so (δ , δ j = (δi, c3, , c4j and (5) holds. 2.4 and 3.1 hold also by
the same arguments given earlier. Clearly W is strongly represen-
tational if and only if (α, b) = (c, d)=*ab = cώ and hence (by an easy
application of 2.4) if and only if / — q=*d(f) — d(g). Consequently,
3.2 holds and hence AP (2) holds (by the proof of 3.7) for strongly
representational Witt rings. This proves part of the following.

THEOREM 3.8. Let W be an abstract Witt ring for G (with G
normalized so that — 1 e G £ W). Then

( i ) W is strongly representational for G <=* W is representa-
tional and satisfies AP (2) for G.

(ii) There exists a linked quaternionic mapping q: G x G —» B
such that W — W(q) *=> W is representational and satisfies AP (&),
k = 2, 3, for G.

Proof. ( i ) We have just proved (=»). To prove (<==) suppose
a + δ = c + d w i t h α, b, c,de G. Then ab — cd = a(a + b) — c(c + d) =

a(a + δ) — c(a + δ) = (α — c)(α + δ) 6 P. By AP (2), this implies α δ -
cd = 0, i.e., ab = cd.

(ii) If q is linked, then W(q) is an abstract Witt ring for G
by 3.1, it is representational by 2.8, and satisfies AP (k), k = 2, 3 by
3.7. This proves (=>). To prove (<=) define q:G x G-+P/P by

, δ) = (1 — α)(l — δ) + /3, where / is the unique ideal of index 2.
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Since (1 - be) = (1 - 6) + (1 - c)(mod P) and (1 - a)2 = 2(1 - a), q is
clearly a quaternionic mapping. Note (1 — α)(l — b) = (1 — e)(l — d)
(mod I 3 ) <=> —a — b + ab + c + d — cdeP <=> —a — b + ab + c + d —

cd = 0 « (1 - α)(l - b) = (1 - c)(l - d) by AP (3). Thus, if g(α, δ) =
q(c, d), then (—6 + ab) + (d — cd) — a — c so by 2.9, AP (2) and part
(i) 3ίc e G such that — & + ab — —x + ax and d — cd = x — ex. This
implies q(a, b) = #(α, #) and g(c, d) = q(c, x) so g is linked. It follows
from 3.1 and the corresponding structure result for W that W =
W(a). D

It is shown in [7, § 3] that some of the structure results in
[10] concerning the nilradical and the reduced Witt ring hold for
any abstract Witt ring. For easy reference, we now summarize
some of these results. For W an abstract Witt ring, denote by
Wt, X, I, and Nil(W), the torsion subgroup, the set of signatures
(i.e., ring homomorphisms σ: W—>Z), the unique ideal of index 2,
and the nilradical, respectively, of W.

THEOREM 3.9. Let W be an abstract Witt ring. Then
( i ) Wt is 2-prίmary,
(ii) wt = {/e W\σ(f) = 0 VσeX}, and
(iii) Nil (IF) =WtnL

(More precisely, in (iii), since Wt £ / if X Φ Φ, whereas I Q Wt =
W, if X= Φ, one has Nil (W) = Wu if Wt Φ W, and Nil (W) = /, i/
^ = PΓ.)

The following result is useful in verifying AP (k) in certain
cases.

LEMMA 3.10. Suppose W is an abstract Witt ring for G with
— leG S W\ If P is torsion free, then AP (ft) holds.

Proof. Suppose / is a form over G, f e /fc, dim (/) < 2fe. Let
σ be a signature of W. If δi, ••-,&* 6 G, then <7(δ<) = ± 1 so
^(1, -&i) (x> (1, - W ® ® (1, -δfc) - 0 or 2K Thus ί7(Jfc) £ 2kZ. On
the other hand, clearly | σ(f) \ ̂  dim (/) < 2fc. Thus σ(f) = 0 for all
signatures σ of TΓ. It follows, from 3.9 (ii), that / is torsion.
Thus, by assumption, / = 0. •

Recall [5, 2.24] that if W is an abstract Witt ring which is
representational, then so is the reduced ring Wΐeά = W/Nil(W).
Moreover (by [5, 2.30]), the abstract Witt rings which are reduced
and representational are just the Witt rings of spaces of orderings
in the terminology of [9]. It follows from 3.8 (ii) and 3.10 that all
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such rings are included in the theory presented here, i.e., are of
the form W(q) for some linked quaternionic mapping q. (By 3.9
(iii), W is reduced if and only if / is torsion free, so 3.10 applies.)
Here is a characterization of the class of linked quaternionic mapp-
ings thus obtained.

THEOREM 3.11. Let q:Gx G->B be a linked quaternionic
mapping. Then W(q) is reduced if and only if q satisfies

(R) q(a, a) = 1 => a = 1 .

Proof. By 3.9 (i) and (iii), W(q) is reduced if and only if

(R') 2 x / ~ 0 = > / ~ 0 V even dimensional forms / over G .

Thus we must verify (R)<^(Rf). Assume (Rf) and q(a, α) = l . Thus
(α, a) ~ (1, 1), i.e., 2 x (1, -a) ~ 0. Thus, by (Λ')f (1, -a) ~ 0, i.e.,
a = 1. Thus (Rf) => (R). Now assume (22).

Claim. D{2 x /) = D(f) V forms / over G. For suppose / =
(au , α j , and that x is represented by 2 x / = (al9 a±) 0 0
(αΛ, α j . Thus, by a repeated application of 2.8., ^xieD{ai9 α<) such
that a 6 D f o , , xn). But (α,, α,) = (xt, xt)f i.e., ( α ^ , atxt) = (1, 1),
i.e., qifiiXt, atxt) = 1, so by (22), »< = <&, Vΐ — 1, , w. This proves
xeD(f) and hence proves the claim.

Now suppose (22') fails. Then 3 an anisotropic form / =
(βi, ' * *, ° ϋ with n even, w ^ 2 and 2 x / ~ 0. But then 2 x (α x )φ
2 x (α2, , an) ~ 0, so by 2.9 and the claim, —a1eD{a2i , α j .
This contradicts the fact that / is anisotropic. Thus (22)=>(22') •
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