
PACIFIC JOURNAL OF MATHEMATICS
Vol. 95, No. 2, 1981

COMMON FIXED POINT THEOREMS FOR
MULTIVALUED MAPPINGS

M. S. KHAN

Some results on common fixed points for a pair of
multivalued mappings defined on a closed subset of a com-
plete metric space are obtained. Our work extends some of
the known results due to Itoh; Isέki; and Rus.

1* Introduction* There have been several extensions of known
fixed point theorems for multivalued mappings which take each point
of a metric space (X, d) into a closed subset K of X. However, in
many applications, the mapping involved is not a self-mapping of K.
Assad and Kirk [1] gave sufficient conditions for such mappings to
have a fixed point by proving a fixed point theorem for multivalued
contraction mappings on a complete metrically convex metric space
and by putting certain boundary conditions on the mappings.
Similar results for multivalued contractive mappings were obtained
by Assad [2]. Itoh [4] extended the results given in [1] and [2]
for more general types of contraction and contractive mappings.

In this note, we shall extend the results of Itoh [4] for a pair
of generalized contraction and contractive mappings. We also prove
some other results for multivalued mappings which are partial gen-
eralizations of fixed point theorems due to Iseki [3] and Rus [9].

2* Preliminaries* Let (X, d) be a metric space. Then follow-
ing Nadler [6], we define

( i ) CB(X) = {A : A is a nonempty closed and bounded subset
of X).

C(X) — {A: A is a nonempty compact subset of X).
BN(X) = {A: A is a nonempty bounded subset of X}.
(ii) For nonempty subsets of A and B of X, and xeX
D(A, B) = inf {d(a, b):aeA, beB).
H(A, B) = max ({sup D(a, B): a e A}, {sup D(A, b): b e B}).
d(x, A) = inf {d(x, a): aeA}.
δ(A, B) = sup{d(a9 b):aeA, beB}.
It is known (Kuratowski [5]), that CB(X) is a metric space

with the distance function H. We call H the Hausdorff metric on
CB(X).

We shall make frequent use of the following lemmas.

LEMMA 2.1 {Nadler [6]). Let A, B be in CB(X). Then for all
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ε > 0 and aeA, there exists beB such that d(a, b) ^ H(Af B) + e.
// A, B are in C(X), then one can choose beB such that d(a, b) <L
H(A, B).

LEMMA 2.2 (Rus [10]). Let AeCB(X) and 0 < θ < 1 be given.
Then for every xeA, there exists aeA such that d(x, a) ^ θδ(x, A),
and d(x, a) ;> ΘH(x, A).

Next two lemmas can be easily proved.

LEMMA 2.3. For any xeX, and any A, B in CB(X),

\d(x, A) - d(x, B)\ ^ H(A, B) .

LEMMA 2.4. For any x and y in X, AaX.

\d{x,A)-d(y,A)\£d(x,y).

DEFINITION 2.5. A metric space (X, d) is said to be metrically
convex if for any x,yeX with xφy, there exists zeX, xΦzΦy such
that

d(x, z) + d(z, y) = d(x, y) .

Following result is borrowed from Assad and Kirk [1].

LEMMA 2.6. If K is a nonempty closed subset of a complete and
metrically convex metric space (X, d), then for any xeK, y & K,
there exists a zedK (the boundary of K) such that

d(x, z) + d(z, y) = d(x, y) .

DEFINITION 2.7. Let K be a nonempty closed subset of a metric
space (X, d). A mapping T: K->CB{X) is said to be continuous at
xQ e K if for any e > 0, there exists a δ > 0 such that H(Tx, Tx0) < ε,
whenever d(x, x0) < 3. If T is continuous at every point of K9 we
say that T is continuous at K.

Motivated from Park [7], we introduce the following:

DEFINITION 2.8. Let K be a nonempty closed subset of a metric
space (X, d) and S, T be mappings of K into CB(X). Then (S, T)
is said to be a generalized contraction pair of K into CB(X) if
there exist nonnegative reals a, β, j with α + 2/3 + 2τ < 1 such
that for any x, y eK,

H(Sx, Ty) ^ ad(x, y)

+ β{D(x, Sx) + D(y, Ty)} + j{D(x, Ty) + D(y, Sx)} .
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Similarly, we define generalized contraction pair of K into C(X).

DEFINITION 2.9. Let K be a nonempty closed subset of metric
space (X, d). Let S and T be mappings of K into CB(X). Then
(S, T) is said to be a generalized contractive pair of K into CB(X)
i f t h e r e e x i s t n o n n e g a t i v e r e a l s α , β 9 7 s u c h t h a t f o r a n y x,yeX
w i t h x Φ y ,

H(Sx, Ty) < ad(x, y)

+ β{D{x, Sx) + D(y, Ty)} + y{D(x, Ty) + D(y, Sx)} ,

where 0 < 2a + 2/3 + 47 ^ 1.

REMARK. When S and Γ are single valued mappings then we
simply say that (S, T) is a generalized contraction (contractive) pair
of K into X.

3* Results*

THEOREM 3.1. Let (X, d) be a complete and metrically convex
metric space, K a nonempty closed subset of X. Let (S, T) be a
generalized contraction pair of K into CB(X). If for any xedK,
S(x)aK, T(x)<zK and (a + β + y)(l + β + 7)/(l - β - 7)2 < 1, then
there exists zeK such that zeS(z) and zeT(z).

Proof. Put θ = (α + β + τ)(l + £ + τ)/(l - β - 7)2. Then 0 ^
# < 1. Without loss of generality we may take θ > 0 since for
θ = 0, the conclusion of Theorem 3.1 trivially holds. We shall con-
struct sequences {xn} and {yn} in if and X, respectively, as follows:

Let x0e3K and xx = yLeS(x0). Then by Lemma 2.1 we can
choose a y2 e T(xλ) such that

d(ylf y2) ^ H(Sx0, Txλ) + (* ~ β ~ Λθ .
\1 + β + 7/

If i/2 6 K, put x2 = y2. If i/2 g if, use Lemma 2.6 to choose an ele-
ment x2edK such that d(xu x2) + d(x2f y2) — d(xu y2). Continuing in
this manner, we obtain sequences {xn} and {yn} satisfying:

( i ) y% e S(a;Λ_1), for an odd n, and
yn e T(#Λ_i), for an even n.

(ϋ) d(tf« ».+,) ^ H(S{x^)9 T(xn)) + (1 - β - 7/1 + /3 + 7)^; if
w is odd and

even.
(iii) # Λ + 1 = xn+1 if i/n+16 if, for all n, or
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(iv) d(xΛf xn+1) + d(xn+l9 yn+1) = d(x%, yn+1), if yn+1 e K for all n

and xn+1edK.

We wish to estimate the distance d(xn, xn+1) for n ^ 2. Let us
write P = fo 6 {xn}: xt = 2/J and Q = {&< e {a?.}: &, ̂  yt}. Note that if
a. 6 Q then a?..! and xn+1 will be in P by boundary condition.

Case I. Let xΛ, xn+1 e P. Then for an odd n we have,

d(xnf xn+i)

β +
ix-d) + D(xn, Txn)}

+ β
»-i, x*) + d(x%, xn+1)}

d(xn, x j } + ( } ~ β ~
Vl + β +

So

A similar inequality can be obtained when n is even.

Case II. #„ e P and a?Λ+16 Q. Then by (iv) we see that

d(xn, xΛ+ί) ^ d(xnf yn+1) = dd/», yH+1) .

By method similar to Case I, we have for even and odd n

d(Xn> Xn+ι) <S
- β - 7 '

III. ccw e Q and # Λ + 1 e P. Then xn_x = yn_x holds. So we
get

d(xn, xn+1) ^ d(xnf yn) + d(yn, xn+1)

= rf(» , y ) + d(yn, yn+1) .

Then for an odd n, we have

f yn+1) ^ H(Sxn_lf Txn)
+ β + Ί<

^ ad(xn_ι, x j + /3{D(xΛ_i, Sx»_i) + D{xn, Txn)}

,-u Txn) -
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ad{xn_u x.) + β{d(x«_u yn) + d(xn, yn+

(»._x, v +0 + d(xn, yκ)}

^, xn) + βldix^, yn) + d(xn, xΆ

d(xκ, yn)} + (] ~ β ~
+ β + Ί

ad(xn_u xj + β{d(xn_u yn) + d(xn, xn+ι)}

(x^u xn) + d(xκ, ».+1) + d(xn, yn)}

As 0 £Ξ (9 < 1, and <?(»„_!, xB) + d(xn, yn) = d(xn_u yn), we obtain

d(xn, a?«+0 ^ (1 + Ύ)d(a;», 2/J + (α + τ)d(a;κ_l) a?.)

+ (β + y)d(x», xB + l ) + ( i " g -

M + β +

Therefore,

A similar inequality is obtained for an even n. Since
and yn Φ xn, as in the Case II we have for an odd n,

d{Xn_u yn) z

Similarly, we can obtain an inequality for even n. Combining the
above two inequalities we have

V 1 - / Q - 7 / U + /9 + 7//Q-7/ U + /9 + 7/

Then, as noted in Itoh [4], it can be shown that {#„} is a Cauchy
sequence, hence convergent. Call the limit z. By the way of
choosing {xj, there exists an infinite subsequence {xnt} of {xj such
that a;, (sP. Then for an even nu we have

D(xH, Sz) ^ H(Txni_u Sz)

H_u z) + β{D(vH-u Txn_t) + D(z, Sz)}

K-i , Sz) + D(z, Txni_d)
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^ a{d{xH_u xK() + d(xH, z)} + β{d(xH^, xH)

+ d(xH_u xH) + d(z, xH) + D{xn, Sz)}

+ Ύ{d(xH-i, xn) + D(xH, Sz) + d(z, xKi)} .

So

D(xH, Sz) ̂  (a + f + Ύ W* B i , xnι) + d(xH, z)) .
\1 — β — 7/

Using this and the inequality

D(z, Sz) ^ d(z, xni) + D(xH, Sz) ,

we see that D(z, Sz) = 0. As Sz is closed, z e Sz. Similarly, we can
show that zeTz. Thus z is a common fixed point of S and Γ.
This finishes the proof.

We can also prove the following result:

THEOREM 3.2. Let (X, d) be a complete and metrically convex
metric space, K a nonempty closed subset of X. Let (S, T) be a
generalized contraction pair of K into C(X). If for any xedK,
S(x) c K and T(x) czK and (α + β + y)(l + β + 7)/(l - β - 7)2 < 1,
then S and T have a common fixed point in K.

Proof. As in the proof of Theorem 3.1, we shall construct two
sequences {xn} and {yn} which satisfy (i), (iii) and (iv). The condition
(ii) is replaced by the following:

( " ) ' d(yw yn+1) ^ H(Sx%_u Txn) , if n is odd

and

d(yn, Vn+ι) ^ H(Txn_l9 Sxn) , if ^ is even .

These relations are possible due to Lemma 2.1. The rest of the
proof is identical with Theorem 3.1.

As every Banach space is metrically convex, we have the follow-
ing corollaries for singlevalued mappings:

COROLLARY 3.3. Let X be a Banach space and K be a nonempty
closed subset of X. Let (S, T) be a generalized contraction pair of
K into X. If S{dK) c K and T(dK) <zK and (α + β + 7)(1 + β + 7)/
(1 — β — 7)2 < 1, then S and T have a unique common fixed point
in K.
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REMARK. The technique of the proof of Theorem 3.1 and
Theorem 3.2 can be used to extend a result of Rhoades [8] for a
pair of singlevalued mappings.

Next theorem extends Theorem 2 of Itoh [4] for a pair of
multivalued mappings, and hence generalizes a fixed point theorem
of Assad [2].

THEOREM 3.4. Let (X, d) be a complete and metrically convex
metric space and K be a nonempty compact subset of X. Let (S, T)
be a generalized contractive pair of K into CB(X), and S, T are
continuous on K. If for any x e dK, S(x) c K, T(x) c K; S(x) Π
T(x) Φ 0 for all xeK and (a + β 4- τ)(l + β + 7)/(l - β - 7)2 ^ 1,
then there exists a common fixed point of S and T in K.

Proof. Consider /: K-+ R+ (the nonnegative reals) defined by
f(x) = d(x, Tx), xeK. Then using Lemma 2.3, Lemma 2.4 and the
continuity of T we have for x,yeK

!/(*) - f(v)\ ^ \d(x, Tx) - d(y, Tx)\ + \d(y, Tx) - d(y, Ty)\

^ d(x, y) + H(Tx, Ty) .

Thus / is continuous on the compact set K. Let zeK such that
f(z) = inf {f(x): x 6 K}. Suppose that f(z) > 0. Then for each n =
1, 2, 3, , we can choose xn e T(z) such that

d(xn} z) ^ f(z) + 1 .
n

As K is compact, if xneK for very large n, then there is a sub-
sequence {xH} of {xn} which converges to an element x0 e K. We may
assume that xoφ z. Then

f(xQ) = d(x0, Tx,)

^ H(Tz, Tx0)

^ H(Tz, Sz) + H(Sz, Tx,)

< ad(z, x0) + β{D{z, Sz) + D(x0, Tx0)}

+ 7{D(z, Tx0) + D(x0, Sz)}

< a{d(zf Tz) + H(Tz, TxQ)} + β{d(z, Tz)

+ H(Tz, Sz) + f(x0)} + y{d(z, Tz) + H(Tz, Tx0)

+ f(x0) + H(Tx0, Tz) + H(Tz, Sz)} .

Then we get
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Since ((a + β + τ)/(l - a - β - 3τ)) ^ 1, we have f(x0) < f(z) which
contradicts the minimality of z. Therefore f(z) — 0.

If some subsequence {xn.} of {xn} is such that xH g K, then z g dK.
For the sake of convenience, we may assume that xn&K, n =
1, 2, 3, . Then by applying Lemma 2.6 we see that for each n
there is a ynedK such that d(a?n, yΛ) + cZ(yΛ, s) = d(xΛf z). As K is
compact and S(yn) c ίΓ there exists wn e S(y J such that d(αj%, w J ^
Jϊ(T2;, SyJ + ε by Lemma 2.1. We may further assume that {yn}
converges to some yoedK. Let

8ε =.αd(tf0, s) + /8{d(ί5, Γ«) + d(y0, Sy0)} + y{d(z, Sy0) + d(yOf Tz)}

- H(Tz, Sy0) .

Then e > 0 as yQΦ z. For this choice of s, we can find a positive
integer iV such that for all n^ N,

(a) d(y0, z) - d(yn, z) < 2e,
(b) Ay*) ~ e < f(yn),
(c) d(α?.f s ) < /(«) + 2e,
(d) £Γ(T ,̂ SyJ < H{Tz, Sy0) + ε, (here continuity of S is used).
Then for any n^ N, we get

ΛVo) - e
^ d(yΛ, xn) + («(«„ wj + d(wn> Tyn)

^ d(yn, xn) + H(Tz, Syn) + e + H(Syn, Tyn) .

Here last term vanishes and xneTz. Then we have

- e < d(yn, xn) + H(Tz, Sy0) + 2ε

< d(xn, yn) + ad(z, y0) + β{D(z, Tz) + D(yQ, Sy0)}

+ 7{D(z, SyQ) + D(y0, Tz)} - 6ε

< d(xn, yn) + ad(yQ, z) + β{D(z, Tz) + D(yQ, z) + D(z, Tz)

+ H(Tz, Sy0)} + 7{D(z, Tz) + H(Tz, Sy0) + d(y0, z)

+ D(z, Tz)} ~ 6ε .

Then this yields

- . < d(xn, y^z) + (
β — y / \ 1 — β — 7

< d{xn, y.) + div* z) + (J£L±2ϊ-)f(z) - 6s

< d(xn, y.) + d{yn, z) + (M±2L-)f(z) - 4ε
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(Λ

2β t 2Ύ

^ I — B —β

So

- 2 e .

Now choose u e S(y0) Π 2XΪΛ>) such that <%0, Γi/0) = d(y0, u). As
/(z) > 0, we see that u Φ y0. Then

f(u) = D(u, Tu) ^ H(Sy0, Tu)

< ad(y0, u) + β{D(y0> Sy0) + D(u, Tu)}

+ 7{D(y0, Tu) + D(u, Sy0)}

< a{D(y0, Ty0) + D(Ty0, u)} + β{D(y0, Ty0)

+ H(Ty0, Sy0) + D{u, Tu)} + y{D(y0, Ty0) + H(Ty0, Sy0)

+ H(Sy0> Tu) + D(u, Sy0)} .

Then using the facts D(u, Ty0) = 0 and D{u, Sy0) = 0, we have

- β - 7

Now using previous relation between f(y0) and f{z) we have

This contradicts the minimality of z. Hence f(z) = 0 and as Tz is
a closed subset of X, we find that zeTz. Further, D(z, Sz) ^
D(z, Tz) + jff(Γ ,̂ Sίδ), implies that zeSz. Therefore 2 is a common
fixed point of S and T. This completes the proof.

For Banach space we have the following:

COROLLARY 3.5. Let K be a nonempty compact subset of a
Banach space X and (£, T) be the generalized contractive pair of
K into X and S, T are continuous on K. If S(dK) c K, T(dK) c K,
and (a + β + τ)(l + β + 7)/(l - β ~ 7)2 ^ 1, then there exists a
unique common fixed point of S and T in K.

Now we prove two results concerning unique common fixed
points of a pair of multivalued mappings defined on a nonempty
complete subset of a metric space which are not necessarily metri-
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cally convex, and also the mappings involved do not satisfy any
boundary conditions.

THEOREM 3.6. Let (X, d) be a metric space and K a nonempty
complete subset of X. Suppose that S, T: K—> CB(X) are multivalu-
ed mappings such that for all x, y in K:

δ(Sxf Ty) ^ ad(x, y) + β{δ(x, Sx) + δ(y, Ty)}

+ y{δ(x, Ty) + δ(y, Sx)} ,

where a, β, 7 ^ 0 and a + 2β + 2τ < 1.

Then S and T have a unique common fixed point in K.

Proof. Put θ = (a + 2β + 2τ)1/2. Then θ is positive. We shall
now define singlevalued mappings Sx and 3\ of K into itself such that
Sx(x) e S(x), Tx{x) e T(x) for all x,yeK, and

d(x, £(*)) ̂  θδ(x, S{x)) ,

d(x, T,(x)) ̂  θδ(x, T(x)) ,

for all xeK.
Lemma 2.2 justifies our choice of S^x) and Tt(x). Then one gets

, T(y))

^ ad(x, y) + β{δ(xf S(x)) + δ(y,

+ l{δ(x, T(y)) + δ{y, S(x))}

^ ad(x, y) + β{θ~ιd{x, S&) + d~λd{y, Txy)}

, S,x)} .

As θ~\2β + 2τ) + a <; (?~1(2/3 + 2y + a) = a + 2β + 2y < 1 and if is
complete, it follows from Theorem 1 of Wong [11] that S, and ϊ\
have a unique common fixed point, say z in K. Consider

0 = d(z, S&) ^ θδ(zf S(z)) .

This shows that δ(z, S(z)) = 0 giving thereby that zeS(z)f as S(z)
is closed. Similarly, we have z e T(z). This ends the proof.

The method of proof of Theorem 3.6 can be used to prove the
following as well:

THEOREM 3.7. Let (X, d) be a metric space and K a nonempty
complete subset of X. Suppose that S, T: K-> BN(X) are multivalu-
ed mappings such that for all x, y in K:
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δ(S(x), T(y)) £ ad{x, y) + β{H(x, Sx) + H(y, Ty)}

, Ty) + H(y, Sx)} ,

where a + 2β + 2y < 1, a, β, 7 ̂  0.
Then S and T have a unique common fixed point in K.

REMARKS. Theorem 3.6 and Theorem 3.7 are slight extensions
of results obtained by Iseki [3] and Rus [9].
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