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ε-COVERING DIMENSION

A. CALDER, W. JULIAN, R. MINES, AND F. RICHMAN

A compact metric space T has Lebesgue covering dimen-
sion at most n if for each positive ε the space T has an
ε-cover of order at most n. We show that if T is a com-
pact subset of Euclidean w-space and T has an ε-cover of
order at most n~2, then any two points whose distance
from T is greater than e can be joined by a path bounded
away from T. This refines, and provides a constructive
proof for, the theorem that the complement of an (n—2)-
dimensional compact subset of Euclidean w-space is connected.

0* Introduction* In this paper we deal with arbitrary totally
bounded metric spaces, rather than just compact ones, as complete-
ness plays no role. Let T be a totally bounded metric space and
F a finite family of subsets of T. If there is s > 0 so that each
point in T is bounded away by s from all but at most n + 1 sets
of Ff then we say that F has order at most n with separation s
and write o(F) ^ n. (This was written o(F) ^ n + 1 in [7] and
[1].) If the union of F is dense in T, we say that F is a cover of
T. A cover F is an ε-cover provided there is ε' < ε such that if x
and y are points in a set in F, then d(x, y) < ε\ Classically this
means that diam U = sup {d(u, v): u, v e U} < ε for all U in F, but
diam U may fail to be computable. Note for any ε" > ε' that F
is an ε"-cover. We can now make precise the notion of approxi-
mate ^-dimensionality.

DEFINITION 0.1. Let T be a totally bounded metric space and
ε > 0. We say that T has ε-cover ing dimension at most n with
separation s, and write ε-cov T ^ n, if there is an ε-cover of T of
order at most n with separation s.

A totally bounded metric space T has dimension at most n in
the sense of Lebesgue if ε-cov T ^ n for all ε > 0. Thus if ε-cov
T <ί nf then T is approximately w-dimensional. For example the
red yellow and black stripes of a coral snake form an ε-cover of its
skin, showing the skin to have ε-dimension at most 1. However,
when a coral snake swallows a mouse of cross-sectional diameter
2ε its ε-dimension increases. More precisely, the Jordan Brouwer
theorem says that a homeomorph T of the 2-sphere divides 3-space
into two connected components, but if ε-cov T ^ 1, then there is no
ε-ball inside. Thus the Little Prince was correct when he observed
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that a boa constrictor loses its one dimensionality when it swallows
an elephant [8]. More generally we will prove

THEOREM A. Let T be a totally bounded subset of Rn such that
ε-eov T 5̂  n — 2 with separation s. If d({p, q}, T) is more than
ε/VΎ and if 0 < θ < φ = inf {β/2, (V~2 - l)(d({p, q), T) - ε\V 2")},
then there is a path joining p and q, bounded away from T by θ.

These investigations were motivated by attempts to give a
constructive proof that the complement of an (n — 2)-dimensional
subset of Rn is connected. Such a proof is given via Alexander
duality and Cech cohomology in [5]. However, Theorem A is
stronger than this result even from the όlassical standpoint. Our
treatment uses simplicial homology and, like [5], is constructive in
the sense of Bishop [2], [3]. Menger's proof that the complement
of an (n — 2)-dimensional subset of Rn is connected uses inductive
dimension and is not constructive [6].

1* Dimension theory* The basic references for constructive
dimension theory are [7] and [1]. In these works the elements of
an ε-cover were required to be totally bounded (located). This is
occasionally inconvenient and, as we will show in this section,
unnecessary.

Let K be an arbitrary subset of a metric space T. For θ > 0
the θ-neighborhood of K is the open set

NΘ{K) = {y e T: there is x in K, with d(α, y) < 0} .

A family F of subsets of a metric space T has a Lebesgue number
s > 0 if for each x in T there is U in F with N8(x)(zU.

LEMMA 1.1. Let F be an ε-cover of a totally bounded metric
space T, such that o{F) <Ξ n with separation s. If θ is small
enough, then Ff = {NΘ(U): U in F] is an open ε-cover having
Lebesgue number θ/2, and order at most n with separation s — θ.

Proof. Choose s' < ε so that F is an ε'-cover and let 2β =
inf{ε — ε\ s). To establish the order of Ff we let xeT, and let
UeF. Suppose d(x, u) ^ s for all u in U. Let v e Nθ{ U) and
choose u in U with d(v, u) ^ θ. Then d(x, v) ^ d(x, u) — d(v, u) ^
s — θ. Thus o{F') <; n with separation s — θ.

To obtain the Lebesgue number we let x e T. Then there is U
in F and u in U so that d(x, u)<θ/2. If d(x, y)<θ/2, then d(y, u)<
θ. Hence Nθ/2(x) c Nθ( U) and F' has Lebesgue number θ/2. •
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Next we show that a finite family with Lebesgue number
admits a partition of unity.

LEMMA 1.2. Let F be a finite family of subsets of a totally
bounded space T. Then F has a Lebesgue number if and only if
there is a partition of unity subordinate to F. Moreover, the
functions in the partition can be chosen with totally bounded
support.

Proof. Let {φσ} be a partition of unity subordinate to F.
Choose s > 0, so that if d(x, y)<s then d(φσ(x), φσ(y))<l/(l + cardjF)
for all U in F. We shall show for fixed x that there is a U in F
with N8(x) contained in U. As the sum of φυ(%) over all U in F
is 1, it follows that there is U in F with φσ(x) > 1/(1 + cardF).
Hence φσ(y) > 0 and so yeU. Therefore Ns(x) is contained in U.

Conversely let s be a Lebesgue number of F. Choose X a finite
(s/2)-approximation to T. Let x e X and define

fx{t) = sup {0, 1 - a/8)d(fi, x)} .

Partition X into finite subsets Xυ so that xeXσ implies Ns(x) a U.
Choose a positive number ε < 1/(4 card F), so that

{t e T: Σ /.(*) > ε}
xexσ

is totally bounded for each U in F [7, Theorem 0]. Define \c(t) =
sup {0, Σsez^ΛOO — e} for Z7 in F. Then the support of λ^ is
totally bounded and ΣueF^u ^ Σ*ez/β - e card JP7 > 1/4, as Σ*exΛ
> 1/2. Finally let ^(ί) - XcWfever λF(t). D

THEOREM 1.3. Lei T be a totally bounded metric space and F
an ε-cover. Let o(F) ̂  n with separation s > 0. T%ew ί/̂ ere is an
open ε-cover F' satisfying:

( i ) o(Fr) <; n with separation s/2.
(ii) Each Uf in Fr is totally bounded.
(iii) Fr has a Lebesgue number.
(iv) Each set in Fr is nonempty.

Proof. By Lemma 1.1, we may assume that F is an open
ε-cover such that o{F) <J n with separation s/2 and has a Lebesgue
number. By Lemma 1.2, there is a partition of unity {φσ} so that
the support U' of φσ is totally bounded and is contained in U and
so Ff = {UΊ UeF} is an open ε-cover satisfying (i) and (ii). Note
that {φσ} is subordinate to Ff so (iii) holds by Lemma 1.2. As
each set in Fr is totally bounded we may omit the empty ones. •
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2* Simplicίal homology* We employ the standard simplicial
homology of triangulable spaces (the treatment in [4] is essentially
constructive).

A point sufficiently far from a set is bounded away from its
convex hull; more precisely we have:

LEMMA 2.1. Let p be a point and X a subset of a real inner
product space. Let teX and ε > 0. // for some a > 0 and each
x in X we have \t — x\ ^ ε and \p — x\ g: a + ε/"l/~2~ then \p — q\ ^
a for each q in the convex hull of X.

Proof. Let the inner product be denoted by < , >. We may
assume p = 0. We will first show that if xeX then <£, x) ^ \t\a.
As radial projection onto the sphere of radius a + εjV~2 around 0
decreases \t — x\ and <t, a?>/|ί|, we may assume that \t\ — \x\ = a +
ε/l/Ύ. Then ε2 ^ \t - x\2 = ε2+2v/~2aε+2a2- 2<ί, x). JΓhus <ίf a?>^
α(α + vΊΓε). Then <ί, #>/1t \ ̂  α(α + V 2 ε)/(α + ε/i/2) > a. So if
q is a finite convex combination of points in X, then \q\^(t, q)l\t\ > α.

•
We now relate ε-dimension to homology.

LEMMA 2.2. Let T be a polyhedron in En such that ε-cov T <;
n — 2. Lei peRn and d(p, T) ^ εjV~2. Then radial projection
onto any sphere S with center p and radius at most a = d(p, T) —
ε/l/ΊΓ induces the zero map from Hn^(T) to H^S).

Proof. By Theorem 1.3 there is an ε-cover F of T such that
F has a Lebesgue number, o{F) <L n — 2, and each set in F is
nonempty. Let {φσ} be a partition of unity subordinate to F (Lemma
1.2). For each U in F choose xσ in U. Define a map/: T-*Rn by
/(*) = ΣjueFΦσ(t)Xu- Define a homotopy h:T x I->Rn by Λ(t, λ) =
λί + (1 — λ)/(ί). This is a homotopy between / and the injection,
iy of T into i2\ If t e T and λ 6 /, then h(t> λ) is a convex combi-
nation of t and the xσ. Let e' < ε be such that F is an ε'-cover of
!\ Either d(t, xσ) > εr in which case φσ(t) = 0 so xσ does not enter
into h(t, λ), or d(t, Xu)<ε. Hence Lemma 2.1 applies, so d(h(t, λ), p)^a.

Let S be a sphere with center p and radius at most a and let r
be the radial projection of the exterior of S onto S. As the
domain of r contains the range of h the map r°h is a homotopy
between r°i and r°/. But, since o(F) <S w — 2, the map / factors

^through a simplicial complex of dimension at most n — 2. Thus
r°/, and therefore roΐ, induces the trivial map from H^T) to

D
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3* Proof of the main theorem Choose #', Θ", and m satisfying
θ < θf < θ' + m < 0" < φ. Let F be an ε-cover of T such that
o(F) 5̂  n — 2 with separation s. We first replace the totally bounded
set T by a finite complex. Let Δ be an ^-simplex containing a
neighborhood of Γ and p. We will show that there is a path
joining p to the boundary of Δ, bounded away from T by θ. Form
J(fc), the fcth derived complex of Δ, with fc so large that the
diameter of each simplex λ in A{k) is less than m. By translating
Δ slightly we may assume that p is in the interior of an ^-simplex
λ0. Let T" be a set of w-simplices in Δ{k) so that for each ^-simplex
λ in Δ{k)

if λ e T\ then d(x, T) < θ' ,

and

if λ £ Γ', then d(\ T) > θ .

Let F' = {U': Uf = T Π iV,.(C/) with U in .P}.
We first show that F' has a Lebesgue number. If xeT',

then there is ί in Γ with d(α?, t) < θ' + m. There is [/ in F and
w in U with d(t, w) < (l/2)(0" - θ' - m) = ψ. Then iV .̂(̂ ) contains
iV (̂ίc) so Z7' contains T" n Nγ(%). Hence f is a Lebesgue number
of F'.

Next we show that F* is an (ε + 2^")-cover. For x, y e U',
there are u and v in U so that d(x9 u) < θ" and d(v9 y) < θ". Thus
d(x, y) ^ d(α?, w) + d(u, v) + d(v, y) < 2Θ" + ε.

Finally we show that the order of F' is at most n — 2. For
α? in T", there is t in Γ, so that d(x, t) < ff + m. If d(ί, w) ^ s for
all u in U9 then for u' in U', we have d!(aj, %') ^ d(ί, u') — d(a?, t) ^
(s - β") - (β' + m). So F ' = {CΓ: C/eί7} has order at most n - 2
with separation (s - 6>" - θf - m) > s - 2Θ"_> 0.

As d(p,_Γ') ^ d(p, Γ) - ί " ^ ( e + 2ί")//2" we have α=<%, Γ') -
(ε + 2θ")lV 2 > 0. By Lemma 2.2, with ε replaced by ε + 20",
radial projection onto a small sphere S c λ 0 centered at p induces
the zero map from H^T') to H^S).

Let G be the connected component of Δ{k)\T' containing p.
Now Hn_x of the (% — l)-skeleton of G is the direct sum of the
groups ϋr

w_1(λ) where λ ranges over the w-simplices of G. Radial
projection onto λ0 induces the trivial map from Hw_i(λ) to iϊw__i(λ0)
for λ Φ λ0, and the identity on ϋΓ^^λo). But the combinatorial
boundary of the sum of the w-simplices of G is a cycle in H^G)
and has a nonzero coordinate in each Jϊίt_1(λ). Thus radial projec-
tion induces a nonzero map from JSΓΛ_1(G) to J ϊ^λo) .

If the boundary of G were contained in I", then radial pro-
jection would induce a nonzero map from H^T') to Hn_1(S)f which
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is precluded. Thus there must be a point of G on the boundary
of Δ{k) and we are done, as λ ί Γ implies d{\ T) > θ. •

4* Applications and questions* Theorem A gives a new
proof of the Pflastersatz:

THEOREM B. If F is a 0.5-cover of Sn, then o(F) ^ n.

Proof. Let s > 0 and assume that o(F) <̂  n — 1 with separation
s, then the origin can be joined to infinity by a path which is
bounded away from Sn, an impossibility. Thus it follows easily
that o(F) ^ n [7, Theorem 1]. •

Theorem B indicates the scale at which the ^-dimensionality of
Sn manifests itself. This suggests that, for any totally bounded
metric space, we define

en(T) = inf {ε: ε-cov T ^ n}

if the infinimum exists. Note that eo(Γ) is the diameter of T for
a connected set T, that εn(T) = 0 if and only if cov T t^n, and
that εn(T) > 0 implies cov T > n.

It seems likely that e%_t(S*) = 2, and e^dO, If) = 1. This
holds for n=l and 2. If Bn is the w-ball, then e1(JB

2) = i/"8". What
is ε^CS )? _

Can the requirement that d(p, T) > ε/ϊ/ 2 in Theorem A be
replaced by d(p, T) > ε/2? It can if n = 2.
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