CHOOSING /-ELEMENT SUBSETS OF n-ELEMENT SETS

Martin M. Zuckerman

Abstract

We consider axioms that assert the possibility of choosing a subset of an n-element set. We study the interdependence of these axioms and of the more usual axioms of choice for n-element sets.

The discussion takes place within any of the usual systems of set theory without the axiom of choice. Our logical framework is the first-order predicate calculus with identity. Lower case letters stand for natural numbers. Throughout this paper, we let $n \geqq 2$ and $\ell \geqq 1$. At first, we assume $n>\ell$.

Let [n] be the statement: "For every nonempty set X of n-element sets there is a function f with domain X such that for each A in $X, f(A) \in A$." Here, [n] is called the axiom of choice for n-element sets. (See [1].)

Let $S(n, \ell)$ be the statement: "For every nonempty set X of n-element sets there is a function f with domain X such that for each A in $X, f(A)$ is an $<$-element subset of A."

Let $T(n, \ell)$ be the statement: "For every nonempty set X of n-element sets there is a function f with domain X such that for each A in $X, f(A)$ is a nonempty subset of A with at most $/$ elements."

Finally, let $T^{*}(n, n-1)$ be the statement: "For every nonempty set X of n-element sets there is a function f with domain X such that for each A in $X, f(A)=\left\langle A_{1}, A_{2}\right\rangle$, where A_{1} and A_{2} are pairwise disjoint nonempty subsets of A whose union is A.

Observe that $T(n, n-1)$ asserts the possibility of choosing a nonempty proper subset of each n-element set, whereas $T^{*}(n, n-1)$ asserts the possibility of ordering the partition thereby obtained. Clearly, $T(n, n-1) \leftrightarrow T^{*}(n, n-1)$.

The following relationships are also immediate.

$$
\begin{aligned}
& S(n, \ell) \longleftrightarrow S(n, n-\iota) \\
& S(n, 1) \longleftrightarrow S(n, n-1) \longleftrightarrow T(n, 1) \longleftrightarrow[n] \\
& {\left[\binom{n}{\iota}\right] \longrightarrow S(n, \iota)} \\
& {\left[2^{n}-2\right] \longrightarrow T(n, n-1)}
\end{aligned}
$$

For convenience, for $n \leqq \ell$, let $S(n, \ell)=S(n, n-1)$ and $T(n, \ell)=$ $T(n, n-1)$.

Now let k, ℓ, m, n be natural numbers such that $k \geqq 0, \ell \geqq 1$,
$m \geqq 2$, and $n \geqq 2$.
If $\ell<k$, then clearly,

$$
S(n, \iota) \longrightarrow T(n, \ell) \longrightarrow T(n, k) .
$$

Theorem 1 generalizes the first of these relationships.
Theorem 1. For $\ell<n$ and $n-\ell<m \leqq n$,

$$
S(n, \ell) \longrightarrow T(m, \ell)
$$

Proof. Let X be a nonempty set of m-element sets. For each A in X, let A^{\prime} consist of the first $n-m$ natural numbers that are not in A and let $A^{\prime \prime}=A \cup A^{\prime}$. We use $S(n, \ell)$ to obtain an ℓ-element subset of $A^{\prime \prime}$. At least one element of this subset belongs to A.

The next two theorems generalize Tarski's result:

$$
[k n] \longrightarrow[n] .
$$

(See [2], p. 99.)
THEOREM 2. For $\ll n$ and for $k \geqq 0$,

$$
(S(n, \ell) \wedge[k n+\ell]) \longrightarrow[n]
$$

Proof. Let X be a nonempty set of n-element sets and let $A \in X$. We use $S(n, \ell)$ to choose an ℓ-element subset B of A.

If $k=0$, we use [\angle] to pick an element of B.
If $k>0$, we use $[k n+\ell]$ to pick an element of $(B \times\{0\}) \cup$ $(A \times\{1,2, \cdots, k\})$. Let $f(A)$ be the first coordinate of this chosen element.

Theorem 3. Let $k \geqq 1$.
(a) For $\ell<n, T(k n, \ell) \rightarrow T(n, \ell)$.
(b) For ℓ not of the form $j n$ for any $j \leqq k, S(k n, \ell) \rightarrow T(n, \ell)$.

Proof. Let X be a nonempty set of n-element sets and let $X^{\prime}=\{A \times k: A \in X\}$.
(a) We choose a subset of at most < elements of each $A \times k$ in X^{\prime}. For each such chosen subset, let B be the set of first coordinates. Then B is a nonempty subset of A and has at most ι elements.
(b) If $\ell \geqq k n$, then

$$
S(k n, \ell) \longleftrightarrow S(k n, k n-1) \longleftrightarrow[k n]
$$

and

$$
[k n] \longrightarrow[n] \longrightarrow T(n, \ell) .
$$

If $\ell<k n$, we choose an ℓ-element subset C of each $A \times k$ in X^{\prime}. Not every a in A appears the same number of times as the first coordinate of a member of C. Let B be the set of those a that appear the maximal number of times in this role. If $\ell<n, B$ is nonempty and has at most ℓ elements. If $\ell>n, B$ is a nonempty proper subset of A. In both cases, the axiom $T(n, \ell)$ is realized.

Henceforth, let A be a nonempty finite set of natural numbers greater than 1. If $A=\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}$, let $S(A, \iota)$ denote

$$
S\left(a_{1}, \ell\right) \wedge S\left(a_{2}, \ell\right) \wedge \cdots \wedge S\left(a_{m}, \ell\right)
$$

For $n>\ell$, we say that n is an A_{ℓ}-number if for some $j \geqq 1$ and some k satisfying $0 \leqq k<\ell$, $j n+k \in A$. Furthermore, for all $n \geqq 2$ and $\ell \geqq 1$, we say that A and n satisfy condition \mathscr{H}_{e} if either
(i) n is an A_{0}-number, or both
(ii) ${ }_{\mathrm{a}} n=r p$ for some prime p in A, and
(ii) $)_{b}$ whenever $n=n_{1}+n_{2}$ for $n_{1}>\ell$ and $n_{2}>\ell$, then either A and n_{1} or else A and n_{2} satisfy condition \mathscr{A}_{ℓ}.

Lemma. Let p be a prime and let $\ell \geqq 1$ and $r \geqq 1$. Then

$$
S(p, \iota) \longrightarrow T(r p, r p-1)
$$

(The lemma is Theorem 2(g) of [3]. See also [4].)
Theorem 4. Let A be as above, let $n \geqq 2$ and $\iota \geqq 1$, and suppose A and n satisfy condition \mathscr{A}_{ℓ}. Then $S(A, \nearrow) \rightarrow T(n, \iota)$.

Proof. Assume A and n satisfy condition \mathscr{A}_{e}.

If n is an A_{ℓ}-number, then for some $j \geqq 1$ and for some k satisfying $0 \leqq k<\ell, S(j n+k, \ell)$ is true. By Theorem 1, $T(j n, \ell)$ must be true, and by Theorem 3, $T(n, \ell)$ is true.

If n is not an A_{ι}-number, then $n=r p$ for some prime p in A. By our hypothesis, $S(p, \iota)$ is true. By the lemma, $T(n, n-1)$ is true.

If $2 \leqq n \leqq \ell$, then $T(n, n-1)=T(n, \ell)$.
If $\ell<n<2 \ell$, we use $T^{*}(n, n-1)$ to obtain $\left\langle B_{1}, B_{2}\right\rangle$, where $\left\{B_{1}, B_{2}\right\}$ forms a partition of an element B of a nonempty set of n-element sets. At least one of these subsets, B_{1} or B_{2}, has at most / elements. We choose the first of these with this property. Thus, $T(n, \ell)$ is true.

Now assume that for $n^{\prime}<n$, whenever A and n^{\prime} satisfy condition \mathscr{A}_{ℓ}, then $S(A, \ell) \rightarrow T\left(n^{\prime}, \ell\right)$.

Let $n \geqq 2 \iota$ and suppose $S(A, \ell)$ is true. We use $T^{*}(n, n-1)$ to obtain $\left\langle B_{1}, B_{2}\right\rangle$, as in the preceding paragraph. If one of the subsets B_{1} or B_{2} of B has at most ℓ elements, then $T(n, \ell)$ is realized. Otherwise, one of these subsets has n_{1} elements, the other has $n-n_{1}$ elements, and both $n>\ell$ and $n-n_{1}>\ell$. By (ii) ${ }_{b}$, either A and n_{1} satisfy condition \mathscr{A}_{c} or else A and $n-n_{1}$ satisfy condition . \mathscr{A}_{ι}. By the inductive hypothesis, either $T\left(n_{1}, \iota\right)$ or $T\left(n-n_{1}, \iota\right)$ is true. We can therefore choose a nonempty subset of at most / elements of one of the subsets B_{1} or B_{2} of B. Thus, $T(n, \ell)$ is true.

Let A be as above and let $n \geqq 2$. Let $P(A, n)$ be the statement: "For every prime partition of n, that is, whenever $n=p_{1}+p_{2}+\cdots+p_{k}$, one of these primes is in A."

Theorem 5. Assume $P(A, n)$. Then for all $\ell, S(A, \ell) \rightarrow T(n, \ell)$.
Proof. It suffices to show that if $P(A, n)$, then for all $\ell \geqq 1$, A and n satisfy condition \mathscr{A}_{e}.

Assume $P(A, n)$ and let $\ell \geqq 1$.
If n is prime and $n>\ell$, then n is an A_{ι}-number. If n is prime and $n \leqq \ell$, then (ii) ${ }_{\mathrm{a}}$ and (ii) $)_{\mathrm{b}}$ of condition \mathscr{A}_{ι} are satisfied.

Suppose that n is composite and that for all $k, 2 \leqq k<n$, whenever $P(A, k)$, then A and k satisfy condition A_{c}. By $P(A, n)$, each prime factor of n is in A. Let $n=n_{1}+n_{2}$, where $n_{1}>\ell$ and $n_{2}>\ell$. Suppose there is a prime partition of n_{1} with no summand in A. Then by $P(A, n)$, every prime partition of n_{2} has a summand in A. Thus, $P\left(A, n_{1}\right)$ or $P\left(A, n_{2}\right)$. By the inductive hypothesis, either A and n_{1} or else A and n_{2} satisfy condition \mathscr{A}_{c}. Therefore, A and n satisfy condition \mathscr{A}_{c}.

Independence results concerning these axioms can be found in [3].

References

1. A. Mostowski, Axiom of choice for finite sets, Fund. Math., 33 (1945), 137-168.
2. W. Sierpiński, Cardinal and ordinal numbers, 1st ed., Monografie Matematyczne, 34, Warszawa, 1958.
3. M. Zuckerman, On choosing subsets of n-element sets, Fund. Math., 64 (1969), 163-179.
4. -, Errata to the paper "On choosing subsets of n-element sets", Fund. Math.. 66 (1969).

Received October 25, 1978.
The City College of The City University of New York
New York, NY 10031
AND
The Hebrew University
Jerusalem, Israel

