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SUFFICIENCY, KMS CONDITION AND RELATIVE
ENTROPY IN VON NEUMANN ALGEBRAS

FUMIO HIAI, MASANORI OHYA AND MAKOTO TSUKADA

The sufficiency in von Neumann algebras is discussed
with some applications to classification of normal states.
It is shown that the concept of sufficiency characterizes the
KMS-states and the invariant states with respect to a
modular automorphism group. The relations between the
sufficiency and the relative entropy are established.

Introduction* Since the investigation of sufficient statistics in
abstract measure theoretic terms was initiated by Halmos and Savage
[10], the concept of sufficiency has been developed by many mathe-
matical statisticians in terms of various relations given by compar-
ison of experiments, risk functions within the framework of stati-
stical decision problems and so on. A characterization of sufficiency
was given in [12] through the measure of Kullback-Leibler informa-
tion.

The concept of sufficiency was first generalized by Umegaki [22,
23] to the noncommutative case of semi-finite von Neumann algebras
with some extension of the Kullback-Leibler information (usually
called the relative entropy). Later the related discussions especially
concerning the relative entropy for quantum systems have been
made by several authors, e.g., Araki [2, 3], Gudder and Marchand
[7], and Lindblad [13].

As defined precisely and explained in §§ 1 and 4 of this paper,
the concept of sufficiency is more or less considered through the
informativity of a certain subalgebra with respect to a given alge-
bra for a dynamical system of interest. Namely, in the case that
such a subalgebra is sufficient, the relative entropy on the subalgebra
is equal to that on the given algebra. This fact may or may not
be a reason why the concept of sufficiency has not been entered
into analysis of physical systems, in which the change of entropy
is thought of more relevant.

The Kubo-Martin-Schwinger (KMS) condition was introduced by
these three authors [11, 14] as a boundary condition of the thermal
Green function. Haag, Hugenholtz and Winnink [8] showed that in
the operator algebraic framework this condition is a fundamental
one describing thermal equilibrium of quantum systems. The KMS
condition through the Tomita-Takesaki theory now becomes a core
of studying von Neumann algebras.

Under the above historical basis, our main motivation of this
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work is as follows: How useful for quantum systems is the concept
of sufficiency? How much of the related topics of sufficiency, mostly
done for the commutative case, can be generalized to the noncom-
mutative case?

Having these questions in our mind, we discuss the sufficiency
with some applications to classification of normal states on the basis
of recent development of von Neumann algebras.

In § 1 of this paper, we establish definitions and notations used
throughout and also give some simple facts.

In § 2, it is shown that the concept of sufficiency characterizes
the invariant states and the KMS-states with respect to a modular
automorphism group.

In § 3, we prove some formulas on the relative entropy using
Araki's definition of relative entropy.

In § 4, combining several theorems obtained in the previous
sections, we establish some results which indicate the relations be-
tween the sufficiency and the relative entropy.

As a whole, we like to claim that the concept of sufficiency
might be very useful for analysing von Neumann algebras and hence
some quantum systems.

1* Definition and preliminaries* Throughout this paper, let
3i be a von Neumann algebra with unity I acting on a Hubert
space Jg^, and © be the set of all normal states of 31. A dynamical
system of physically interest is described by a triple (31, ©, α),
where at, teR, is a strongly continuous one-parameter automorphism
group of 31. A state φ e® is said to satisfy the Kubo-Martin-Sch-
wίnger (KMS) boundary condition at a certain constant β > 0 with
respect to at if for every pair A, B e 31 there exists a bounded
function FAtB(z) continuous on and holomorphic in the strip O^Im z<^β
with boundary values:

FA,B(t) = φ(at(A)B) and FA,B(t + iβ) = φ(Bat(A)) .

If φ satisfies the KMS condition with respect to at, then φ is proved
to be α:rinvariant, i.e., <p<>at = φ. Considering aβt, we may take
β = 1 in the sequel discussions. Takesaki showed in [17] using
Tomita's theory that to every faithful state φe® there exists a
unique one-parameter automorphism group (i.e., the so-called modu-
lar automorphism group) σ\ with respect to which φ satisfies the
KMS condition at β = 1.

In this paper, a subalgebra Wl always means a von Neumann
subalgebra of 31 with /. For a subalgebra SDΐ and a state φ e ©, let
Eφ('\W) denote the conditional expectation with respect to 93ΐ and
φ (if it exists), which is characterized as a norm one normal projec-
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tion from 5ft onto 2ft satisfying φ(A) = φ(Eφ(A\W)) for all Ae3l (cf.
[19, 21]). It was shown by Takesaki [18] that for a faithful state
φe® the conditional expectation Eφ{-\W) exists if and only if 2ft is
invariant under the modular automorphism group &ζ.

According to [5], for any two faithful states φ, ψ e© there ex-
ists a strongly continuous function t^-> ut of R into the unitary
group of 31 which is a <p-cocycle, i.e.,

ua+t = usσt(ut) , s,teR ,

and which satisfies

<τf(A) - tttσf(A)w? , t e R , A e 5ft .

This <p-cocycle ut is denoted by wf = (Dψ: Dφ)t and is called the
Connes Rαdon-Nikodym derivative of ψ with respect to φ. Some
discussions are found in [4, 9] concerning Connes Radon-Nikodym
derivatives and conditional expectations.

Let S be a subset of @. A subalgebra 2ft is said to be sufficient
for S if 2^( |3K) exists for each φeS and for every Ae3l. there
exists an Aoe2ft such that

A0 = #9(A|3TC) a.e. [φ] , φeS,

where A = £ a.e. [<p] means 9?(|A — B|) = 0. This definition of suf-
ficient subalgebras is somewhat weaker than that in [22]. Also we
call M to be minimal sufficient for S if 3K is sufficient for £ and
any subalgebra being sufficient for S includes 2ft.

For 9?, fe@, it is said that ^ is absolutely continuous with re-
spect to φ (we write ψ <t φ) if for each A 6 5R, <p(A*A) = 0 implies
ψ(A*A) = 0; that is, ty <φ if and only if s(ψθ <£ «(9>) where s(φ) is
the support projection of φ. We give here the elementary facts of
sufficiency which are readily seen from the definition.

(1°) Let φ, f e(8 with φ<£<p. Then a subalgebra 2ft is sufficient
for {<p, ψ} if and only if Eφ( \Wl) exists and φ(A) = <f(Eφ(A\W)) for
all AeSΪ.

(2°) If a subalgebra 2ft is sufficient for {<pf ψ}9 then φ — ψ on
5JI if and only if φ = 'f on 2ft.

When S(c@) contains a faithful state 9>, then:
(3°) A subalgebra 2ft is sufficient for S if and only if 2ft is

sufficient for every pair {φ, ψ} with ψ e S.
(4°) If 2ft is sufficient for S, then any subalgebra 2ftx including

2ft is sufficient for S whenever Eφ( \Έl^ exists.

2Φ Sufficiency and characterization of states* The following
lemma is a restatement of [4, Lemma 1.6] in our terminology. We
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give the proof for completeness.

LEMMA 2.1. For each subalgebra 9ft and two faithful states
φ, ψ e ©, the following conditions are equivalent:

( i ) 9ft is sufficient for {φ, ψ};
(ii) Eφ(-\W) exists and (Df: Dφ)t e 9ft for every teR.

Proof. Let φ = φ \ 9ft and f = <rjr [Wl. Assume that 9ft is suf-
ficient for {φ, ψ}. Then the conditional expectation Eφ(-\W) exists
and ψ(A) = ψ(Eφ(A\2R)) for Ae3ΐ. By [5, Lemma 1.4.4], we have

(Dψ: Dφ)t = (D(ψoE): D(φoE))t = (Z>f: !>£)« 6 9ft

for every ίe/?, where ^( ) = E9('\3Jt). Conversely assume that
Eφ( \W) exists and (Dψ: Dφ)teWl for all teR. Since σf = σt ΓSft,
it follows that wt = {Dψ: Dφ)t is a <p-cocycle. By [5, Theorem 1.2.4],
there exists a unique faithful normal semi-finite weight ψ on M
such that {Dψ: Dφ)t — ut. Define a faithful normal semi-finite
weighty on 3fc by ^f(A) = f(Eψ(A\W)) for Ae3l. Then it follows
that

'\ Dφ)t = (Z>f: D^) t = ( D t D<P)t , ί e JB .

Hence we have φ' = φ, so that φ(A) = ̂ (^(AiaK)) for every
This shows that 2K is sufficient for {φ, ψ}. •

In this section, let φ be a fixed faithful normal state of 3Ϊ and
of its modular automorphism group. Let Zψ be the subalgebra con-
sisting of all A 6 9?. such that φ{AB) = φiβA) for every B e 9?.. The
subalgebra Zφ is called the centralizer of <p and is exactly the fixed
point algebra of σ\ (cf. [17, Lemma 15.8]), i.e.,

Zφ = {Ae %: σ!(A) = AfteB] .

Let 3 be the center of % i.e., '3 = $Bn9l/. Clearly 3 c ^ . Let
/(£>) be the set of all σt -in variant states in ©, and ϋΓ(̂ ) be the set
of all states in © satisfying the KMS condition with respect to σt
at β = 1. Then we have:

THEOREM 2.2. (1) For each ψ e @ , | 6 % ) if and only if Zψ

is sufficient for {φ, ψ}.
(2) The centralizer Zφ is minimal sufficient for I{φ).

Proof. (1) Let ψ 6 © and take ψx = (ψ + £>)/2. Then we easily
see that ψel(φ) is equivalent to ψ1el(φ)f and the sufficiency of Zφ

for {φ, α/r} is equivalent to that for {φ, ψ^}. Therefore we can assume
that ψ is faithful. Since Zφ is element wise invariant under σf,
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there exists the conditional expectation Eφ(-\Zφ) from 9Ϊ onto Zφ.
Hence, in view of Lemma 2.1, it suffices to show that ψel(φ) if
and only if ( ΰ | : Dφ)teZψ for every teR. If ψel(<p), then by [5,
Lemma 1.2.3] there exists a positive self-adjoint operator h affiliated
with Zφ such that (Dψ: Dφ)t = hueZψ for all teR. Conversely sup-
pose that (Dψ:Dφ)teZφ for every teR. Since

(2.1) σί{A) = (Dψ: Dφ)tσΐ(A)(Dψ: Dφ)f ,

we have

φ(σt(A)) = φ(σϊ(A)) = φ(A) , A 6 91.

Hence it follows that <£> is σf-invariant, and thus ψ is σf-invariant
(cf. [17, Theorem 15.2]).

(2) It follows from (1) that Zφ is sufficient for every pair
{φ, ψ} with ψel(φ). Hence Zφ is sufficient for I(φ). To show the
minimality of Zψf let 3ft be any subalgebra which is sufficient for
I(φ). We now prove that Zφcz$Jl. Take any positive invertible
operator heZφ with φ(h) = 1, and define a faithful state ψ e % by
<̂ (A) = φ(ΛA) for A 6 91. Then we have ψ» 6 !(?>) and (J9α/r: JDφ), = hu.
Since (Dψ: Dφ)te

<M for every ί e i ? by Lemma 2.1, it follows that
hem. Thus Zφa$Jl. Π

THEOREM 2.3. (1) For each ψe®, <feK(φ) if and only if Q
is sufficient for {φ, ψ}.

(2) The center 3 is minimal sufficient for K{φ).

Proof. As in the proof of Theorem 2.2, we can assume that ψ
is faithful. If ψeK(φ), then by [15, Theorem 5.4] there exists a
positive self-adjoint operator h affiliated with ,3 such that ψ(A) =
<p(hA) for Ae% so that (Dψ: Dφ)t = hueg> for every teR. Con-
versely if (Dψ: D<p)te& for every teR, then by (2.1) we have
of = σt and hence ψeK(φ). Thus (1) is proved. The proof of (2)
is analogous to that of Theorem 2.2. •

3* Relative entropy* When ϋft is finite dimensional, for each
φ and ψ in ® the relative entropy S(φ\ψ) is defined by

S(φ I ψ) = tr(/tty log ^ - pΨ log ^ ) ,

where ρφ and ^ are density matrices for φ and ψ. Araki [2, 3]
extended the relative entropy to the case for normal positive linear
functionals of general von Neumann algebras, and studied its seve-
ral properties such as joint convexity, lower semiconitinuity and
monotonicity.
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In this section, we assume as in [3] that 3ΐ has a cyclic and
separating vector. Let V be a natural positive cone (cf. [1]) for 9Ϊ
and let φ and ψ be states in ©. By [1, Theorem 6], there exist
unique vector representatives Φ and Ψ of ψ and ψ in V such that
φ{A) = <Φ, AΦ> and f (A) = (Ψ, AΨ) for all A e 3i. The operator
Sφ>?r with the domain

) = WF + (J - s*

is defined by

= s\Ψ)A*Φ , A e Ή , β*'(y)β = 0 ,

where s*(W)( 6 9ΐ) denotes the Sft-support of the vector Ψ. Then SΦ>Ψ

is a closable conjugate-linear operator (cf. [3]) and the relative
modular operator AΦ,Ψ is defined by

The relative entropy S(φ\ψ) is now given by

if ifr ^ Φ

otherwise .

Then S(φ \φ)^0, and S(φ \ ψ) = 0 if and only if φ = ψ. For each
subalgebra SK, let Sm(φ \ ψ) denote the relative entropy of the restric-
tions of φ and ψ to Wl. By the monotonicity of relative entropy
generally proved in [20], it holds that

(3.1)

for every subalgebra Wl (also see [2, 3, 13, 23]).

THEOREM 3.1. For each φ,ψe®,

\\<P ~ ψ\\

Proof. By [16, p.31], we can take two normal positive linear
functionals φx and φ2 such that φ — ψ = φx — φ2, \\φ — ψ\\ = \\<Pi\\ +
\\φ2\\ and 8(9>i)±s(9>2). Let e = s ^ ) . Then it follows that

\\φ - ψ\\ = (φ - ψ)(e) - (φ -

- 2(φ(e) - ψ{e)) .

Let Wl be the subalgebra generated by e and J — β. By using the
monotonicity, we have

S(φ\ψ) ^ Sm(φ\ψ)

~ β)log+ t(/ β)log ^ 4
ψ{e) φ(I - e)
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It was shown in [6] that

2 \a - β\ ^ I 2 (/9log-£ + (1 - β)\og+ (1 β)\og ^
a 1 — a

for 0 ^ α, /3 ̂  1. Taking a = <p(e) and /3 = α/Ke), we deduce the
desired inequality. •

THEOREM 3.2. Let φ, ψ e © 6e faithful and Έi be a subalgebra
such that maZφ. Define α/r'e© 62/ α/r'(A) = φ(E9(A13K)) /or i e 3 ϊ ,
•if Sw(<P \ψ) < +°°, then

S(ψ'\ψ) = S(φ\ψ) - Sm(φ\ψ) .

Proof. First note that ψ' is well defined from fΰlaZφ. Since
ψ \ 3K is a faithful normal trace, there exists a positive self-adjoint
operator fe affiliated with Wl such that ψ(A) = φ(hA) for all A e 3K.

S oo Γ»

λde(λ) and /&„ = I λde(λ).
0 Jo

Since hneSK, we have for every Ae%l
= lim<p(h%E9(A\W))

= \im<p(hnA) = φ(hA) .

Hence it follows (cf. [5, Lemma 1.2.3]) that (DφΊ Dφ)t = Λ" for all
teR. By the relations

Ί Dψ)t = ( D ^ : Dφ)t(Dφ: Dψ)t = hu(Όφ\ Dψ)t ,

(Dφ;

where Δw = Jr,y» we deduce that {ΔΨ^ΨT = hu(J0t¥)
u for all ί 6 i?.

Moreover since /̂ 4 6 SPΐ c î > and

σf(A) = (^ fy)"A(^,y)-« , A 6 3tt ,

it follows that -fe" and (Aφ^)11 commute. Now let Φ and Ψ be vector
representatives of φ \ SOΐ and ^ |" 2K in a natural positive cone V for
SK. Since 9? t SK is a trace, it follows that Λ$t$ = h. By log /!$,$= —
J(log Δ$tfr)J where J is the modular conjugation operator associated
with V (cf. [3, Remark 3.4]), we have

( ' } = <f, (logh)Ψ) =

which is finite from the assumption. Therefore we obtain

S(ψ'\ψ)=-(Ψ,(logΔΨ,,Ψ)Ψ)
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= S(φ\ψ) - Sm(φ\ψ) . Π

THEOREM 3.3. Let φe® be faithful and W be a subalgebra
such that maZφ. Let ψe® and define ψ'eQbby ψ\A) = ψ(Eφ(A\Sft))
for A e yi. Suppose either (a) ψ is faithful or (b) ψ ^ \φ for some
λ > 0. // Sm(φ\ψ) < + oo, then

Proof. For the case (a), the desired inequality is immediate
from Theorems 3.1 and 3.2. Now suppose that ψ <Lχφ for some
λ > 0. For each ε > 0, let ψε = (1 + ε ) " 1 ^ + e?>) e © and define
^ 6 © by φ't(A) = ψε(Eφ(A\Wl)). By the convexity of relative entropy
(cf. [3, Theorem 3.8]), we have

Hence it follows from the case (a) that

(3.3) || f[ - ψε || ^ {2(S(^ I ^.) -

Since ψε ^ Xφ for each ε > 0, by [3, Theorem 3.7] we have

lim S(φ\ψε) =
ε—>+0

lim

Since ψί = (1 + ε) " 1 ^ ' + ε<̂ ), we obtain the desired inequality by
letting ε-> +0 in (3.3). •

Before closing this section, we have to note that Professor Araki
gave us very important comments to some results of our first ver-
sion of this paper, which make us enable to write them in the above
form.

A* Sufficiency and relative entropy• In this section, let a
faithful state ψ 6 © be fixed as in § 2.

THEOREM 4.1. For each subalgebra Tic:Zφ and each f e®, the
following statements hold:

(1) Suppose the condition (a) or (b) in Theorem 3.3. // SJί is
sufficient for {φ,ψ}, then Sm(φ\ψ) = S(φ\ψ), and conversely if
Sπ(φ\ψ) = S(φ\ψ) < +°o, then 9K is sufficient for {φ, ψ}.

(2) If Έl is sufficient for {φ,ψ}, then Sm(φ|(ψ + φ)/2) =
S(φ\(φ+φ)l2), and conversely if
then Wl is sufficient for {<p, ψ}.
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Proof. (1) We use the notations in the proof of Theorem 3.2.
Let 3JΪ be sufficient for {<p, ψ}, and suppose the condition (a). There
exists a positive self-adjoint operator h affiliated with 3ft such that
ψ(A) == φ(hA) for all A e 3ft. Then we have

ψ(A) = f (£?,(A13ft)) = 9>(fcA) , A e 5β ,

as in the proof of Theorem 3.2. Hence it follows that (Dψ: Dφ)t =
hu, and we have

Since hu and (ΔΦiψ)u commute, it follows that h~u and Δ% commute.
We thus have

s(91ΨO - <y, (-log Λ + log

by Jr?F = Ψ. Prom (3.2) and (4.1), we obtain Sm(φ\ψ) = S(φ\ψ). The
case (b) is proved from the case (a) by taking limits as in the proof
of Theorem 3.3.

Assume conversely that Sm(φ \ ψ) = S(φ \ ψ) < + °°. Then it fol-
lows from Theorem 3.3 that ψf = ψ, which implies that HJΪ is suffici-
ent for {φ, ψ}.

(2) is immediate from (1), since Tt is sufficient for {φ, ψ) if
and only if SK is sufficient for {φ, (ψ + <p)/2}. Π

The above fact (1) extends the result [23, Theorem 5] which
was proved under some strong assumptions. Combining Theorem
4.1 with Theorems 2.2 and 2.3, we have the following:

COROLLARY 4.2. (1) Suppose the condition (a) or (b) in
Theorem 3.3. // | e % ) , then SZφ(φ\ψ) = S(φ\ψ), and conversely
if SZψ{φ\f) = S{φ\ψ) < +oo, then ψel(φ).

(2) If ψe I{φ), then SZφ(φ \ (ψ + φ)/2) = S(^ | (f + y)/2), α^ώ
conversely if SZφ{φ \ (ψ + φ)/2) = S(^ | (ψ* + ?>)/2) < + oo, then ψ e I(φ).

COROLLARY 4.3. (1) Suppose the condition (a) or (b) in Theorem
3.3. If ψe K(φ), then SQ(φ \ ψ) = S(φ \ φ), and conversely if S3(φ \ ψ) —
S(φ\ψ)< + °°, then ψeK(φ).

(2 ) If ψ e K(φ), then S3(φ \ (ψ + φ)/2) = S(?> | (f + φ)/2), and
conversely if S3(φ\(ψ + φ)/2) = S(9>|(ψ + φ)/2) < +°°, thenψeK(φ).

The monotonicity (3.1) says that the restriction of measurement
to a subalgebra 9ft usually makes it more difficult to discriminate be-
tween two states. From Theorem 4.1, the physical meaning of suf-
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ficiency might be explained as follows: If a subalgebra Έl is sufficient
for {φ, ψ}, then we obtain from the measurement of Wl as much
information as from that of ϋft to discriminate between φ and ψ. In
particular, to distinguish ψ e I(φ) (resp. ψ e K(φ)) from φ, the meas-
urement of Zφ (resp. 3) gives as much information as 9ί.
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