ON THE ABSOLUTE CONVERGENCE OF FOURIER
 SERIES OF THE CLASSES $H^{\omega} \cap V[v]$

Z. A. Chanturia

In this paper the absolute convergence of the Fourier series is studied for the class of the function f with the modulus of continuity and the modulus of variation satifying the conditions $\omega(\delta, f)=O(\omega(\delta))$ and $v(n, f)=O(v(n))$ respectively, where the modulus of continuity $\omega(\delta)$ and the modulus of variation $v(n)$ are given. In terms of these properties the sufficient conditions of the absolute convergence are established. We prove that these conditions are unimprovable in certain sense.

1. Let f be a 2π periodic continuous function and let

$$
\begin{array}{ll}
a_{n}(f)=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \cos n t d t, & n=0,1, \cdots \\
b_{n}(f)=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \sin n t d t, & n=1,2, \cdots
\end{array}
$$

be the sequence of its Fourier coefficients.
The paper is devoted to the conditions of convergence of the series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\left|a_{n}(f)\right|+\left|b_{n}(f)\right|\right) \tag{1}
\end{equation*}
$$

or of the series

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}\left|c_{n}(f)\right| \tag{2}
\end{equation*}
$$

where

$$
c_{0}=\frac{a_{0}}{2}, \quad c_{n}(f)=\frac{a_{n}-i b_{n}}{2}, \quad c_{-n}=\frac{a_{n}+i b_{n}}{2}
$$

if the complex form of the Fourier series is used.
The class of functions for which the series (1) (or (2)) converges is denoted by A.

The problem in question has a long history (see monographs [1], Chapter IX, [14], Chapter VI, [8]).

Let us introduce the classes which well be used in what follows. If $f \in C(0,2 \pi)$ then the function

$$
\omega(\delta, f)=\max _{\substack{x y \in 0 \\|x-y| \leqq \delta J}}|f(x) \quad \cdot f(y)|
$$

is called the modulus of continuity of the function f.
The modulus of continuity of an arbitrary function $f \in C(0,2 \pi)$ has the following properties:
(1) $\omega(0)=0$,
(2) $\omega(\delta)$ is nondecreasing on δ,
(3) $\omega(\delta)$ is continuous on $[0, \pi]$,
(4) $\omega\left(\delta_{1}+\delta_{2}\right) \leqq \omega\left(\delta_{1}\right)+\omega\left(\delta_{2}\right)$ for $0 \leqq \delta_{1} \leqq \delta_{2} \leqq \delta_{1}+\delta_{2} \leqq \pi$.

An arbitrary function $\omega(\delta)$ which is defined on $[0, \pi]$ and has the properties (1)-(4) is called the modulus of continuity.

If the modulus of continuity $\omega(\delta)$ is given then H^{ω} denoted the class of functions $f \in C(0,2 \pi)$ for which $\omega(\delta, f)=O(\omega(\delta))$ when $\delta \rightarrow 0$ is denoted.
S. N. Bernstein has proved ([1], p. 608), that if $f \in H^{*}$ and

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \omega\left(\frac{1}{n}\right)=\infty
$$

then $f \in A$.
Bernstein's theorem is best possible in the sense that if the series

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \omega\left(\frac{1}{n}\right)<\infty
$$

then there exists the function $f_{0} \bar{\in} A$ in the class H^{ω}.
This was proved by Bernstein for the class H^{ω} under the condition that there exists $\varepsilon>0$ such that $\delta^{\varepsilon-1} \omega(\delta)$ is decreasing. S. B. Stechkin proved the same for arbitrary classes ([1], p. 625).

If the function f has bounded variation i.e., belongs to the class V, then lesser smoothness of its modulus of continuity may be required. That follows from the theorem of A. Zygmund [15]: If $f \in V \cap H^{\omega}$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n} \sqrt{\omega\left(\frac{1}{n}\right)}<\infty \tag{3}
\end{equation*}
$$

then $f \in A$.
In particular, the absolute convergence occurs when

$$
\begin{equation*}
\omega(\delta)=O\left(\left(\ln \frac{1}{\delta}\right)^{-\eta}\right), \quad \eta>2 \tag{4}
\end{equation*}
$$

Zygmund has pointed out that the latter statement is wrong for $\eta \leqq 1$, because the function

$$
\sum_{n=2}^{\infty} \frac{1}{n \ln n} \sin n x
$$

is absolutely continuous and has the modulus of continuity of order $O\left((\ln 1 / \delta)^{-1}\right)$. He has posed the question whether the absolute convergence is true for $1<\eta \leqq 2$.
R. Salem [9] has proved that if for any $\varepsilon>0$ the modulus of continuity $\omega(\delta)$ satisfies the condition

$$
\sum \frac{1}{n}\left[\omega\left(\frac{1}{n}\right)\right]^{1 / 2+\varepsilon}=\infty
$$

then there exists the function $f_{0} \in V \cap H^{\omega}$ which does not belong to A. This implies that absolute convergence does not hold for the class $H^{\omega}, \omega(\delta)=O\left((\ln 1 / \delta)^{-\eta}\right), \eta<2$.
J.-P. Kahane ([8], p, 24) has sharpened Salem's theorem in the following way: if the modulus of continuity satisfies the condition

$$
\varlimsup_{n \rightarrow \infty} n^{2} \omega\left(2^{-n}\right)=\infty
$$

then there exists the function $f_{0} \in V \cap H^{\omega}$ which does not belong to A.

But neither Kahan's theorem gives the answere in the logarithmic scale for $\eta=2$ and this question has remained open until recently.

Only in 1972 I. Wik [12] proved that there exists the function of bounded variation satisfying the condition (4) for $\eta=2$ for which the absolute convergence does not hold.

As regards the general modulus of continuity the final answer to the question was obtained by S. V. Bochkarev [3]. He has proved that the condition (3) is necessary for the absolute convergence of all Fourier series of the class $V \cap H^{\omega}$.

In what follows we shall use the notation of the modulus of variation of a function introduced by us in 1973 [4].

Definition. Let f be a bounded 2π-periodic function. The modulus of variation $v(n, f)$ of the function f is defined for nonnegative integers n as follows:

$$
v(0, f)=O
$$

and for $n \geqq 1$

$$
v(n, f)=\sup _{\Pi_{n}} \sum_{k=0}^{n-1}\left|f\left(t_{2 k+1}\right)-f\left(t_{2 k}\right)\right|,
$$

where Π_{n} is an arbitrary system of n disjoint intervals ($t_{2 k}, t_{2 k+1}$), $k=0,1, \cdots, n-1$ i.e., $0 \leqq t_{0}<t_{1} \leqq t_{2}<\cdots \leqq t_{2 k-2}<t_{2 k-1} \leqq 2 \pi$.

The modulus of variation of any function is nondecreasing and upwards convex. Functions of an integral argument with such
properties will be said to be modulus of variation. If the modulus of variation $v(n)$ is given, then by $V[\nu]$ we denote the class of 2π periodic functions for which $v(n, f)=O(v(n))$ when $n \rightarrow \infty$.

Note that the Jordan class $V=V[1]$ and the class of 2π-periodic bounded functions $M(0,2 \pi)=V[n]$; if $0 \leqq \alpha \leqq \beta \leqq 1$, then $V[1] \subset$ $V\left[n^{\alpha}\right] \subset V\left[n^{\beta}\right] \subset M(0,2 \pi)$. In general, if $v_{1}(n) \leqq v_{2}(n), n=0,1, \cdots$, then $V\left[\nu_{1}\right] \subset V\left[\nu_{2}\right]$.

In [4] we have extended Zygmund's theorem to the wider classes $V\left[n^{\alpha}\right] \cap H^{\omega}$ and in [5] under some restrictions on ω the necessity of the obtained condition has been proved.
2. In the present paper we extend the Zygmund and Bochkarev theorems to the classes $V[\nu] \cap H^{\omega 1}$.

The following theorem is valid.
Theorem 1. Let $f \in H^{\omega} \cap V[v], v(n)=o(n)^{2}, v(1)=\omega(1)=1$,

$$
\varphi(n)=\max \left\{m ; \frac{v(m)}{m} \geqq \omega\left(\frac{1}{n}\right)\right\}
$$

$I f$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left(\sum_{k=\varphi(n)}^{n+\varphi(n)} \frac{v^{2}(k)}{k^{2}}\right)^{1 / 2}<\infty \tag{6}
\end{equation*}
$$

then $f \in A$.
We shall deduce this theorem from the following theorem of O. Szász ([1], p. 609). If f satisfies the condition

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \omega_{2}\left(\frac{1}{n}, f\right)<\infty,
$$

where $\omega_{2}(\delta, f)=\max _{0<h \leq \delta}\left\{\int_{0}^{2 \pi}|f(x+h)-f(x)| d x\right\}^{1 / 2}$, then $f \in A$.
Although Theorem 1 is a corollary of the Szasz theorem it seems that our theorem is expressed in terms which are more applicable in the field under consideration than those of the Szász theorem.

In order to prove Theorem 1 we need the following lemma.
Lemma 1. Let $v(n)$ be a modulus of variation and $v(n)=o(n)$, $v(1)>0$. Then there exists a natural number n_{0} such that $v(n) / n$

[^0]is decreasing for $n \geqq n_{0}$.
Proof. Since $v(n)$ is upwards convex, for any $n \geqq 1$
$$
v(n)-v(n-1) \geqq v(n+1)-v(n),
$$
therefore
$$
v(n)=\sum_{k=1}^{n}[v(k)-v(k-1)] \geqq n[v(n)-v(n-1)]
$$
i.e.,
$$
\frac{v(n)}{n} \geqq v(n)-v(n-1)
$$
or
$$
\frac{v(n)}{n} \geqq \frac{v(n-1)}{n-1}
$$

So we have proved, that $v(n) / n$ does not increase. Now it is necessary to prove that $v(n) / n$ is decreasing beginning with a certain n_{0}. Assume the contrary. Then there exists a sequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ such that

$$
\frac{v\left(n_{k}\right)}{n_{k}}=\frac{v\left(n_{k}+1\right)}{n_{k}+1}, \quad k=1,2, \cdots
$$

or

$$
\frac{v\left(n_{k}\right)}{n_{k}}=v\left(n_{k}+1\right)-v\left(n_{k}\right), \quad k=1,2, \cdots
$$

i.e.,

$$
\frac{1}{n_{k}} \sum_{m=1}^{n_{k}}[v(m)-v(m-1)]=v\left(n_{k}+1\right)-v\left(n_{k}\right)
$$

But as $v(n)-v(n-1)$ does not increase it follows from the last equality that for $n=1,2, \cdots, n_{k}+1$ we have

$$
v(n)-v(n-1)=v(1)
$$

therefore

$$
v(n)=n v(1), \quad 1 \leqq n \leqq n_{k}+1
$$

Since $\left\{n_{k}\right\}$ is an infinite sequence the last equality is valid for all n, i.e., $v(n) \neq o(n)$. This contradicts the conditions of the lemma.

Proof of Theorem 1. Let

$$
\begin{aligned}
& c_{1}=\sup _{0<\delta \leq \pi} \frac{\omega(\delta, f)}{\omega(\delta)}, \\
& c_{2}=\sup _{n \geqq 1} \frac{v(n, f)}{v(n)},
\end{aligned}
$$

and $c_{0}=\max \left\{c_{1}, c_{2}\right\}$.
Then $\omega(\delta, f) \leqq c_{0} \omega(\delta), \delta \in[0, \pi]$ and $\nu(n, f) \leqq c_{0} \nu(n), n \geqq 0$.
We have

$$
\omega_{2}^{2}\left(\frac{1}{n}, f\right)=\max _{0<h \leq 1 / n} \int_{0}^{2 \pi}|f(x+h)-f(x)|^{2} d x=\int_{0}^{2 \pi}\left|f\left(x+h_{n}\right)-f(x)\right|^{2} d x
$$

where $0<h_{n} \leqq 1 / n$.
Let $l_{n}=\left[2 \pi / h_{n}\right]$, then since f is periodic

$$
\begin{equation*}
\omega_{2}^{2}\left(\frac{1}{n}, f\right)=\frac{1}{l_{n}} \int_{0}^{2 \pi} \sum_{k=1}^{l_{n}}\left[f\left(x+k h_{n}\right)-f\left(x+(k-1) h_{n}\right)\right]^{2} d x . \tag{7}
\end{equation*}
$$

Consider the sum

$$
\xi_{n}(x)=\sum_{k=1}^{l_{n}}\left[f\left(x+k h_{n}\right)-f\left(x+(k-1) h_{n}\right)\right]^{2}, \quad 0 \leqq x \leqq 2 \pi
$$

Assume that $x_{0} \in[0, \pi]$ is the point of maximum of the function ξ_{n}.

Consider the sets

$$
\begin{gathered}
S_{\infty}=\left\{k \in N ;\left|f\left(x_{0}+k h_{n}\right)-f\left(x_{0}+(k-1) h_{n}\right)\right|=0\right\} \\
S_{m}=\left\{k \in N ; \left.c_{0} \frac{v\left(2^{m+1}\right)}{2^{m+1}}<f\left(x_{0}+k h_{n}\right)-f\left(x_{0}+(k-1) h_{n}\right) \right\rvert\, \leqq c_{0} \frac{u\left(2^{m}\right)}{2^{m}}\right\}, \\
m \geqq 0
\end{gathered}
$$

Let us show that for $m<m_{0}(n)=\left[\log _{2} \varphi(n)\right]$ the sets S_{m} are empty.

In fact, for any $k \in\left\{1, \cdots, l_{n}\right\}$ according to the definition of $\varphi(n)$ and the monotonicity of $v(n) / n$ we have

$$
\begin{aligned}
&\left|f\left(x_{0}+k h_{n}\right)-f\left(x_{0}+(k-1) h_{n}\right)\right| \leqq \omega\left(h_{n}, f\right) \leqq \omega\left(\frac{1}{n}, f\right) \leqq c_{0} \omega\left(\frac{1}{n}\right) \\
& \leqq c_{0} \frac{\cup(\varphi(n))}{\varphi(n)} \leqq c_{0} \frac{v\left(2^{m_{0}}\right)}{2^{m_{0}}}
\end{aligned}
$$

So for $0 \leqq m \leqq m_{0}(n)-1, S_{m}=\varnothing$.
Denote by σ_{m} the number of elements of S_{m}. It is obvious that

$$
\sigma_{\infty}+\sum_{m=m_{0}}^{\infty} \sigma_{m}=l_{n}
$$

Because of

$$
\sum_{k \in S_{m}}\left|f\left(x_{0}+k h_{n}\right)-f\left(x_{0}+(k-1) h_{n}\right)\right| \leqq v\left(\sigma_{m}, f\right) \leqq c_{0} v\left(\sigma_{m}\right),
$$

and the definition of the sets S_{m}, we obtain

$$
c_{0} \cup\left(\sigma_{m}\right) \geqq \sigma_{m} \cdot c_{0} \frac{v\left(2^{m+1}\right)}{2^{m+1}}
$$

or

$$
\begin{equation*}
\frac{v\left(\sigma_{m}\right)}{\sigma_{m}} \geqq \frac{v\left(2^{m+1}\right)}{2^{m+1}} \tag{8}
\end{equation*}
$$

But according to Lemma $1 v(n) / n$ is decreasing beginning with a certain N, so it follows from (8) that for $m \geqq\left[\log _{2} N\right]+1$

$$
\begin{equation*}
\sigma_{m} \leqq 2^{m+1} \tag{9}
\end{equation*}
$$

If n is also large that $2^{m_{0}(n)} \geqq N$, then using (9) we have

$$
\begin{align*}
\xi_{n}\left(x_{0}\right) & \leqq \sum_{m=m_{0}}^{\infty} \sum_{k \in S_{m}}\left|f\left(x_{0}+k h_{n}\right)-f\left(x_{0}+(k-1) h_{n}\right)\right|^{2} \\
& \leqq c_{0}^{2} \sum_{m=m_{0}}^{\infty} \sigma_{m} \frac{U^{2}\left(2^{m}\right)}{2^{2 m}} \tag{10}
\end{align*}
$$

Let M be defined according to the condition

$$
\sum_{m=m_{0}}^{M-1} 2^{m+1}<l_{n} \leqq \sum_{m=m_{0}}^{M} 2^{m+1}
$$

Then for $m_{0}(n) \geqq \log _{2} N$, using (10), we obtain

$$
\begin{aligned}
\xi_{n}\left(x_{0}\right) & \leqq c_{0}^{2}\left\{\sum_{m=m_{0}}^{M-1} 2^{m+1} \cdot \frac{v^{2}\left(2^{m}\right)}{2^{2 m}}+\left(l_{n}-\sum_{m=m_{0}}^{M-1} 2^{m+1}\right) \frac{\nu^{2}\left(2^{M+1}\right)}{2^{2(M+1)}}\right\} \\
& \leqq c^{3}\left\{\sum_{m=m_{0}}^{M-1} \sum_{k=2^{m}+1}^{2^{m+1}} \frac{v^{2}\left(2^{m+1}\right)}{2^{2(m+1)}}+\left(l_{n}-\sum_{m=m_{0}}^{M-1} 2^{m+1}\right) \frac{\nu^{2}\left(2^{M+1}\right)}{2^{2(M+1)}}\right\} \\
& \leqq c\left\{\left\{_{k=2^{2} m_{0}+1}^{2_{0}+1+1+l_{n}} \frac{v^{2}(k)}{k^{2}}+\sum_{k=2^{m_{0}}}^{2^{m_{0}+1-1}} \frac{v^{2}(k)}{k^{2}}\right\} \leqq c \sum_{k=2^{m_{0}+1}}^{2^{m+1+1}+l_{n}} \frac{v^{2}(k)}{k^{2}}\right.
\end{aligned}
$$

From the last estimation and from (7) by the definition of $m_{0}(n)$ we have

$$
\begin{equation*}
\omega_{2}^{2}\left(\frac{1}{n}, f\right) \leqq \frac{1}{l_{n}} \cdot c \sum_{k=2^{m_{0}+1}}^{2_{0}+l_{n}+l_{n}} \frac{\nu^{2}(k)}{k^{2}} \leqq c n_{n} \sum_{k=\varphi(n)}^{\varphi(n)+l_{n}} \frac{v^{2}(k)}{k^{2}} \tag{11}
\end{equation*}
$$

Now let us show that

[^1]\[

$$
\begin{equation*}
h_{n} \sum_{k=\varphi(n)}^{\varphi(n)+l_{n}} \frac{v^{2}(k)}{k^{2}} \leqq c \frac{1}{n} \sum_{k=\varphi(n)}^{\varphi(n)+n} \frac{v^{2}(k)}{k^{2}} . \tag{12}
\end{equation*}
$$

\]

Recally, as $v(n) / n \downarrow$

$$
\begin{aligned}
h_{n} \sum_{k=\varphi(n)+n+1}^{p(n)+l_{n}} \frac{v^{2}(k)}{k^{2}} & \leqq h_{n}\left(\frac{v(\varphi(n)+n)}{\varphi(n)+n}\right)^{2}\left(l_{n}-n\right) \leqq c\left(\frac{v(\varphi(n)+n)}{\varphi(n)+n}\right)^{2} \\
& \leqq c \frac{1}{n} \sum_{k=\varphi(n)}^{\varphi(n)+n} \frac{v^{2}(k)}{k^{2}},
\end{aligned}
$$

which since $h_{n} \leqq 1 / n$ implies

$$
\begin{aligned}
h_{n} \sum_{k=\varphi(n)}^{\varphi(n)+l_{n}} \frac{v^{2}(k)}{k^{2}} & =h_{n}\left(\sum_{k=\varphi(n)}^{\varphi(n)+n} \frac{v^{2}(k)}{k^{2}}+\sum_{k=\varphi(n)+n+1}^{\varphi(n)+l_{n}} \frac{v^{2}(k)}{k^{2}}\right) \\
& \leqq \frac{c}{n} \sum_{k=\varphi(n)}^{\varphi(n)+n} \frac{v^{2}(k)}{k^{2}} .
\end{aligned}
$$

It follows from (11) and (12) that

$$
\omega_{2}\left(\frac{1}{n}, f\right) \leqq c \frac{1}{\sqrt{n}}\left(\sum_{k=\varphi(n)}^{\varphi(n)+n} \frac{v^{2}(k)}{k^{2}}\right)^{1 / 2} .
$$

According to the convergence of the series (6) from the previous estimate we obtain that the series

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \omega_{2}\left(\frac{1}{n}, f\right)
$$

is also convergent and by the theorem of 0 . Szász $f \in A$. This completes the proof.

Corollary 1 (S. N. Bernstein, [1] p. 608). If $f \in H^{\omega}$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \omega\left(\frac{1}{n}\right)<\infty \tag{13}
\end{equation*}
$$

then $f \in A$.
Proof. Using the monotonicity of $v(n) / n$ and the definition of $\varphi(n)$ we have

$$
\begin{aligned}
& \left(\sum_{k=\varphi(n)}^{\varphi(n)+n} \frac{v^{2}(k)}{k^{2}}\right)^{1 / 2} \leqq\left(\frac{v^{2}(\varphi(n))}{\varphi^{2}(n)}+\frac{v^{2}(\varphi(n)+1)}{(\varphi(n)+1)^{2}} \cdot n\right)^{1 / 2} \\
& \quad \leqq \frac{v(\varphi(n))}{\varphi(n)}+\sqrt{n} \omega\left(\frac{1}{n}\right) \leqq \frac{v(\varphi(n)+1)}{\varphi(n)+1} \cdot \frac{\varphi(n)+1}{\varphi(n)}+\sqrt{n} \omega\left(\frac{1}{n}\right) \\
& \quad \leqq c \sqrt{n} \cdot \omega\left(\frac{1}{n}\right)
\end{aligned}
$$

i.e.,

$$
\frac{1}{n}\left(\sum_{k=\varphi(n)}^{\varphi(n)+n} \frac{v^{2}(k)}{k^{2}}\right)^{1 / 2} \leqq c \frac{1}{\sqrt{n}} \omega\left(\frac{1}{n}\right) .
$$

Hence by (13) and Theorem $1 f \in A$.
Corollary 2. Let $f \in H^{\omega} \cap V\left[n^{\alpha}\right], 0 \leqq \alpha<1 / 2$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left[\omega\left(\frac{1}{n}\right)\right]^{1-2 \alpha / 2(1-\alpha)}<\infty \tag{14}
\end{equation*}
$$

then $f \in A$.
Proof. It is easy to calculate that in this case

$$
\varphi(n)=\left[\omega^{-1 / 1-\alpha}\left(\frac{1}{n}\right)\right] .
$$

Then

$$
\begin{aligned}
\left(\sum_{k=\varphi(n)}^{\varphi(n)+n} \frac{v^{2}(k)}{k^{2}}\right)^{1 / 2} & \leqq\left(\sum_{k=\varphi(n)}^{\varphi(n)+n} \frac{1}{k^{2-2 \alpha}}\right)^{1 / 2} \leqq c \frac{1}{(\varphi(n))^{1-2 \alpha / 2}} \\
& \leqq c\left(\omega\left(\frac{1}{n}\right)\right)^{1-2 \alpha / 2(1-\alpha)}
\end{aligned}
$$

From this estimate, (14) and Theorem 1 it follows that $f \in A$.
In particular, for $\alpha=0$ Corollary 2 implies Zygmund's theorem.
Corollary 2^{\prime}. If $f \in H^{\omega} \cap V\left[n^{\alpha}\right]$, where $0 \leqq \alpha<1 / 2$ and $\omega(\delta)=$ $(\ln 1 / \delta)^{-(2(1-\alpha) / 1-2 \alpha)-\varepsilon}, \varepsilon>0$ then $f \in A$.

Corollary 3. If $f \in H^{\omega} \cap V\left[\ln ^{\beta}(n+1)\right]$, where $0<\beta<\infty$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n} \omega^{1 / 2}\left(\frac{1}{n}\right) \ln ^{\beta / 2} \frac{1}{\omega(1 / n)}<\infty \tag{15}
\end{equation*}
$$

then $f \in A$.
Proof. It is easy to calculate that for sufficiently large n

$$
\omega^{-1}\left(\frac{1}{n}\right) \ln ^{\beta} \frac{1}{\omega(1 / n)} \leqq \varphi(n) \leqq 2 \omega^{-1}\left(\frac{1}{n}\right) \ln ^{\beta} \frac{1}{\omega(1 / n)}
$$

Then

$$
\begin{aligned}
\left(\sum_{k=\varphi(n)}^{\varphi(n)+n} \frac{v^{2}(k)}{k^{2}}\right)^{1 / 2} & =\left(\sum_{k=\varphi(n)}^{\varphi(n)+n} \frac{\ln ^{2 \beta}(k+1)}{k^{2}}\right)^{1 / 2} \leqq c \frac{\ln ^{\beta} \varphi(n)}{\sqrt{\varphi(n)}} \\
& \leqq c \omega^{1 / 2}\left(\frac{1}{n}\right) \ln ^{\beta / 2} \frac{1}{\omega(1 / n)}
\end{aligned}
$$

This estimate, (15) and Theorem 1 imply that $f \in A$.

Corollary 3'. If $f \in H^{\omega} \cap V\left[\ln ^{\beta}(n+1)\right]$, where $0<\beta<\infty$ and

$$
\omega(\delta)=\left(\ln \frac{1}{\delta}\right)^{-2}\left(\ln \ln \frac{1}{\delta}\right)^{-(\beta+2+\delta)}, \quad \varepsilon>0
$$

then $f \in A$.
Corollary 4. Let $f \in H^{\omega} \cap V\left[n^{1 / 2} \ln ^{-\beta}(n+1)\right]$, where $3 / 2<\beta<\infty$ and

$$
\begin{equation*}
\sum \frac{1}{n} \ln ^{1 / 2-\beta}\left(\frac{1}{\omega(1 / n)}+1\right)<\infty \tag{16}
\end{equation*}
$$

then $f \in A$.

Proof. It may be calculated that for sufficiently large n

$$
\varphi(n) \sim \omega^{-2}\left(\frac{1}{n}\right) \ln ^{-2 \beta} \frac{1}{\omega(1 / n)} \cdot{ }^{4}
$$

Then

$$
\begin{aligned}
\left(\sum_{k=\varphi(n)}^{\varphi(n)+n} \frac{v^{2}(k)}{k^{2}}\right)^{1 / 2} & =\left(\sum_{k=\varphi(n)}^{\varphi(n)+n} \frac{1}{k \ln ^{2 \beta}(k+1)}\right)^{1 / 2} \leqq \frac{c}{\ln ^{\beta-1 / 2} \varphi(n)} \\
& \leqq c \ln ^{1 / 2-\beta}\left(\frac{1}{\omega(1 / n)}+1\right)
\end{aligned}
$$

This by (16) and Theorem 1 imply $f \in A$.
Corollary 4'. If $f \in \operatorname{Lip} \alpha \cap V\left[\sqrt{n} \ln ^{-\beta}(n+1)\right]$, where $\alpha>0$ and $\beta \in(3 / 2, \infty)$, then $f \in A$.

Remark. Theorem 1 implies that for any specific ω for which the series (3) converges Zygmund's theorem may be improved. E.g., if $f \in H^{\omega}$, where $\omega(\delta)=(\ln 1 / \delta)^{-3}$ then the function f may have the modulus of variation of order $n^{1 / 4-\varepsilon}, \varepsilon>0$ but the Fourier series of f is still absolutely convergent; or if $f \in H^{\omega}$ where $\omega(\delta) \sim \ln ^{-2} 1 / \delta(\ln \ln 1 / \delta)^{-3}$ in a neighborhood of $\delta=0$, then the function f may have the modulus of variation of order $\ln ^{1-\varepsilon} n, \varepsilon>0$ to provide $f \in A$.
3. Now we shall show that the condition (6) is necessary for

[^2]absolute convergence of Fourier series of class $H^{\omega} \cap V[v]$ in a sufficiently wide class of moduluses of variation and for arbitrary moduluses of continuity. But first we formulate same subsidiary statements which will be needed below.

Lemma 2 (Gauss identity [11], p. 81). If k is a natural number and n is an integer, then

$$
\left|\sum_{\tau=0}^{2 k} e^{2 \pi i}\right|=\sqrt{2 k+1}
$$

Lemma 3 (Cauchy [7], p. 290). If the sequence $\left\{a_{n}\right\}$ is almost decreasing ${ }^{5}$, then the series $\sum a_{n}$ is convergent or divergent, together with the series $\sum p^{n} a_{p^{n}}$ where $p>1$ is a natural number.

Lemma 4 (N. K. Bari, S. B. Stechkin [2]). The following statements are equivalent for a positive sequence $\left\{a_{n}\right\}$:
(a) $\exists \varepsilon>0$ such that $n^{\varepsilon} a_{n}$ is almost decreasing \Leftrightarrow

$$
\sum_{k=n+1}^{\infty} \frac{1}{k} a_{k}=O\left(a_{n}\right) \quad \text { for } \quad n \longrightarrow \infty ;
$$

(b) $\exists \varepsilon>0$ such that $n^{1-\varepsilon} a_{n}$ is almost increasing ${ }^{8} \Leftrightarrow$

$$
\sum_{k=1}^{n} a_{k}=O\left(n a_{n}\right) \quad \text { for } \quad n \longrightarrow \infty
$$

Lemma 5 (I. Wik [13]). Let a positive sequence $\left\{a_{n}\right\}$ be bounded and $\sum a_{n}=\infty$. Then for any $\alpha \in(0,1)$ and $\beta>1$ there exists a sequence of natural numbers $\left\{q_{\nu}\right\}$ such that

$$
\sum_{\nu=1}^{\infty} a_{q_{\nu}}=\infty
$$

and

$$
\alpha^{q_{\nu+1}-q_{\nu}} \leqq \frac{a_{q_{\nu}}}{a_{q_{\nu+1}}} \leqq \beta^{q_{\nu+1}-q_{\nu}}, \quad \nu=1,2, \cdots
$$

Lemma 6 ([10], p. 111). For any modulus of continuity $\omega(\delta)$

$$
\frac{\omega\left(\delta_{1}\right)}{\delta_{1}} \leqq 2 \frac{\omega\left(\delta_{2}\right)}{\delta_{2}}
$$

for $0<\delta_{2}<\delta_{1}$.

[^3]Lemma 7 ([5]). Let $\left\{a_{n}\right\}$ be almost decreasing and $\sum(1 / n) a_{n}=\infty$. If

$$
b_{n}=\min \left\{a_{n}, \frac{1}{\ln (n+1)}\right\}, \quad n=1,2, \cdots
$$

then

$$
\sum \frac{1}{n} b_{n}=\infty .
$$

Lemma 8. Let $\lim _{m \rightarrow \infty} f_{m}(x)=f_{0}(x)$ for any $x \in[0,2 \pi]$. Then for any $n \geqq 1$

$$
v\left(n, f_{0}\right) \leqq \sup _{m} v\left(n, f_{m}\right) .
$$

Proof. By the definition of $v(n, f)$ for any $\varepsilon>0$ there exist $2 n$ points $0 \leqq x_{0}^{(e)}<x_{1}^{(e)} \leqq x_{2}^{(e)}<\cdots<x_{2 n-1}^{(s)} \leqq 2 \pi$ such that

$$
v\left(n, f_{0}\right)<\sum_{k=0}^{n-1}\left|f_{0}\left(x_{2 k+1}^{(s)}\right)-f_{0}\left(x_{2 k}^{(s)}\right)\right|+\varepsilon .
$$

As

$$
f_{m}(x) \longrightarrow f_{0}(x)
$$

for any $x \in[0,2 \pi]$ there exists m_{0} such that for $m>m_{0}$

$$
\left|f_{m}\left(x_{k}^{(e)}\right)-f_{0}\left(x_{k}^{(e)}\right)\right|<\frac{\varepsilon}{2 n} \quad \text { for } \quad k=0,1, \cdots, 2 n-1
$$

Then

$$
\begin{aligned}
& \sum_{k=0}^{n-1}\left|f_{0}\left(x_{2 k+1}^{(\mathrm{e})}\right)-f_{0}\left(x_{2 k}^{(\varepsilon)}\right)\right| \leqq \sum_{k=0}^{n-1}\left|f_{0}\left(x_{2 k+1}^{(\mathrm{e})}\right)-f_{m}\left(x_{2 k+1}^{(\mathrm{s})}\right)\right| \\
& \quad+\sum_{k=0}^{n-1}\left|f_{m}\left(x_{2 k}^{(\varepsilon)}\right)-f_{0}\left(x_{2 k}^{(\varepsilon)}\right)\right|+\sum_{k=0}^{n-1}\left|f_{m}\left(x_{2 k+1}^{(\mathrm{e})}\right)-f_{m}\left(x_{2 k}^{(\varepsilon)}\right)\right| \\
& \leqq
\end{aligned}
$$

and so

$$
v\left(n, f_{0}\right) \leqq 2 \varepsilon+v\left(n, f_{m}\right)
$$

for $m>m_{0}$. This completes the proof.
Now we shall prove
Theorem 2. If there exists $\varepsilon \in(0,1 / 2)$ such that $n^{\varepsilon-1 / 2} v(n)$ is almost decreasing, $n^{-\varepsilon} v(n)$ is almost increasing and $\omega(\delta)$ satisfies the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left(\sum_{k=\varphi(n)}^{\varphi(n)+n} \frac{v^{2}(k)}{k^{2}}\right)^{1 / 2}=\infty \tag{17}
\end{equation*}
$$

then there exists a function in the class $H^{\omega} \cap V[v]$ for which the series (2) is divergent.

Before we prove this theorem let us explain how the function f_{0} is constructed. The complex function of the real variable f_{0} is the infinite sum of the functions with real part of type

(the imaginary part is analogous). The three parameters k_{n}, the altitude (a_{n}) and the slope $\left(m_{n}\right)$ are selected in such a may that (1) $f_{0} \in H^{\omega}$, (2) $f_{0} \in V[v]$ and (3) $f_{0} \bar{\in}$.

Remark. Note that according to Lemma 4 the first condition imposed on $v(n)$ is equivalent to the following one

$$
\sum_{n=N}^{\infty} \frac{v^{2}(n)}{n^{2}}=O\left(\frac{v^{2}(N)}{N}\right)
$$

and the second condition is equivalent to

$$
\sum_{n=1}^{N} \frac{v(n)}{n}=O(v(N))
$$

Proving this theorem we use the concept of Wik to apply the Gauss identity.

For proving Theorem 2 we need some constructions.
Let m and k be natural numbers and $m>2(2 k+1)$. Define the function $F_{m, k}$ as follows

$$
F_{m, k}(x)=\left\{\begin{array}{ll}
\frac{m}{2 k+1} e^{i(2 \pi / 2 k+1) \tau^{2}} & \text { for } \frac{\tau}{2 k+1}<x<\frac{\tau}{2 k+1}+\frac{1}{m} \\
-\frac{m}{2 k+1} e^{i(2 \pi / 2 k+1) \tau^{2}} & \text { for } \frac{\tau+1}{2 k+1}-\frac{1}{m}<x<\frac{\tau+1}{2 k+1}
\end{array}\right\} \tau=0,1, \cdots, 2 k
$$

Let

$$
f_{m, k}(x)=\int_{0}^{x} F_{m, k}(t) d t
$$

As $f_{m, k}(1)=f_{m, k}(0)=0, f_{m, k}$ is continuous and periodic with the period of 1 .

We shall estimate the modulus of variation and the modulus of continuity of this function.

Lemma 9. The modulus of continuity of the function $f_{m, k}$ is subjected to the estimate

$$
\omega\left(\frac{1}{n}, f_{m, k}\right)= \begin{cases}\frac{2 m}{2 k+1} \cdot \frac{1}{n} & \text { for } n>m \\ \frac{2}{2 k+1} & \text { for } 1 \leqq n \leqq m\end{cases}
$$

Proof. Since $\max _{0 \leq x \leq 1}\left|F_{m, k}(x)\right|=m / 2 k+1$ the estimate for $n>m$ follows from the finite increment formula.

If $x \in[\tau / 2 k+1, \tau+1 / 2 k+1], \tau=0,1, \cdots, 2 k$

$$
\begin{align*}
\left|f_{m, k}(x)\right| & =\left|\int_{0}^{x} F_{m, k}(t) d t\right|=\left|\int_{0}^{\tau / 2 k+1+1 / m} F_{m, k}(t)+\int_{\tau / 2 k+1}^{x} F_{m, k}(t) d t\right| \tag{18}\\
& =\left|\int_{\tau / 2 k+1}^{x} F_{m, k}(t) d t\right| \leqq \int_{\tau / 2 k+1}^{\tau / 2 k+1}\left|F_{m, k}(t)\right| d t=\frac{1}{2 k+1},
\end{align*}
$$

i.e., $\max \left|f_{m, k}(x)\right| \leqq 1 / 2 k+1$.

From this estimate for $n \leqq m$ it follows that

$$
\omega\left(\frac{1}{n}, f_{m, k}\right) \leqq 2 \max \left|f_{m, k}\right| \leqq \frac{1}{2 k+1}
$$

This completes the proof.
Lemma 10. The modulus of variation of the function $f_{m, k}$ is subjected to the estimate

$$
v\left(n, f_{m, k}\right) \leqq\left\{\begin{array}{ccl}
\frac{2}{2 k+1} n & \text { for } & 1 \leqq n \leqq 2 k+1 \\
2 & \text { for } & n>2 k+1
\end{array}\right.
$$

Proof. For $n=1, \cdots, 2 k+1$ using (18) we obtain $v\left(n, f_{m, k}\right)=\sup \sum\left|f_{m, k}\left(x_{2 i+1}\right)-f_{m, k}\left(x_{2 i}\right)\right| \leqq 2 n \max \left|f_{m, k}\right| \leqq \frac{2}{2 k+1} n$.

Now let $n>2 k+1$, then

$$
\begin{aligned}
v\left(n, f_{m, k}\right) & \leqq \operatorname{Varf}_{m, k}=\int_{0}^{1}\left|F_{m, k}(t)\right| d t=\sum_{\tau=0}^{2 k} 2 \int_{(\tau / 2 k+1)}^{(\tau / 2 k+1)+1 / m}\left|F_{m, k}(t)\right| d t \\
& =2 \cdot \frac{m}{2 k+1} \cdot \frac{1}{m} \cdot(2 k+1)=2
\end{aligned}
$$

Now we shall estimate the Fourier coefficients of the function $f_{m, k}$.

Lemma 11. The Fourier coefficients of the function $f_{m, k}$ are subjected to the relations

$$
\left|c_{n}\left(f_{m, k}\right)\right| \begin{cases}\leqq \frac{m}{\pi^{2} n^{2} \sqrt{2 k+1}} \quad \text { for } \quad n \geqq \frac{m}{2} \tag{19}\\ \leqq \frac{1}{\pi n \sqrt{2 k+1}}\left|\sin \pi n\left(\frac{1}{2 k+1}-\frac{1}{m}\right)\right| \quad \text { for } \quad 0<n<\frac{m}{2} \\ \geqq \frac{2}{\pi^{2} n \sqrt{2 k+1}}\left|\sin \pi n\left(\frac{1}{2 k+1}-\frac{1}{m}\right)\right| \quad \text { for } \quad 0<n<\frac{m}{2} .\end{cases}
$$

Proof. Since $f_{m, k}(0)=f_{m, k}(1)=0$,

$$
\begin{aligned}
&\left|c_{n}\left(f_{m, k}\right)\right|=\left|\int_{0}^{1} f_{m, k}(t) e^{2 \pi i n t} d t\right|=\frac{1}{2 \pi n}\left|\int_{0}^{1} F_{m, k}(t) e^{2 \pi i n t} d t\right| \\
&= \frac{1}{2 \pi n} \cdot \frac{m}{2 k+1}\left|\sum_{\tau=0}^{2 k} e^{2 \pi i \tau^{2} /(2 k+1)}\left[\int_{\tau /(2 k+1)}^{\tau /(2 k+1)+1 / m} e^{2 \pi i n t} d t-\int_{(\tau+1) /(2 k+1)-1 / m}^{(\tau+1) /(2 k+1)} e^{2 \pi i n t} d t\right]\right| \\
&= \left.\frac{1}{4 \pi^{2} n^{2}} \cdot \frac{m}{2 k+1}\left|\sum_{\tau=0}^{2 k} e^{2 \pi i /(2 k+1)\left(\tau^{2}+\tau n\right)}\right| \cdot \right\rvert\, e^{2 \pi i n / m}-1+e^{2 \pi i n(1 /(2 k+1)-1 / m)} \\
& \quad-e^{2 \pi i n /(2 k+1)} \mid .
\end{aligned}
$$

Using the Gauss identity we obtain

$$
\begin{align*}
\left|c_{n}\left(f_{m, k}\right)\right| & =\frac{1}{4 \pi^{2} n^{2}} \cdot \frac{m}{2 k+1} \sqrt{2 k+1}\left|e^{2 \pi i n / m}-1\right|\left|1-e^{2 \pi i n(1 / 2 k+1)-1 / m}\right| \\
& =\frac{1}{\pi^{2} n^{2}} \cdot \frac{m}{\sqrt{2 k+1}}\left|\sin \frac{\pi n}{m}\right| \cdot\left|\sin \pi n\left(\frac{1}{2 k+1}-\frac{1}{m}\right)\right| . \tag{20}
\end{align*}
$$

For $n \geqq m / 2$ this implies the estimation (19) trivially. The upper bounds for $n<m / 2$ may be obtained from (20) if use the relation

$$
\left|\sin \frac{\pi n}{m}\right| \leqq \frac{\pi n}{m}
$$

and the lower bound for $n<m / 2$ follows from the relation

$$
\left|\sin \frac{\pi n}{m}\right| \geqq \frac{2}{\pi} \cdot \frac{\pi n}{m} \quad \text { for } \quad 0<n<\frac{m}{2}
$$

This completes the proof.
Besides, for proving Theorem 2 we need to construct a special sequence of natural numbers.

Since $n^{\varepsilon-1 / 2} v(n)$ is almost decreasing for a certain $\varepsilon>0 n^{2 \varepsilon-1} v^{2}(n)$ is also almost decreasing. Then according to Lemma 4

$$
\sum_{k=n}^{\infty} \frac{v^{2}(k)}{k^{2}}=\sum_{k=n}^{\infty} \frac{1}{k} \frac{v^{2}(k)}{k}=O\left(\frac{v^{2}(n)}{n}\right) .
$$

Hence

$$
\sum_{k=\varphi(n)}^{\varphi(n)+n} \frac{v^{2}(k)}{k^{2}} \leqq c \frac{v^{2}(\varphi(n))}{\varphi(n)} .
$$

This with the divergence of the series (17) implies

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n} \frac{v(\varphi(n))}{\sqrt{\varphi(n)}}=\infty \tag{21}
\end{equation*}
$$

As $n^{-1 / 2+\varepsilon} v(n)$ is almost decreasing all the more $v(n) / \sqrt{n}$ is almost decreasing and since $\varphi(n)$ is increasing when $n \rightarrow \infty$ the sequence $v(\varphi(n)) / \sqrt{\varphi(n)}$ is almost decreasing. Now using Lemma 7 and the divergence of the series (21) we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n} \gamma_{n}=\infty \tag{22}
\end{equation*}
$$

where

$$
\gamma_{n}=\min \left\{\frac{v(\varphi(n))}{\sqrt{\varphi(n)}}, \frac{1}{\ln (n+1)}\right\}
$$

As far as $n^{-\varepsilon} v(n)$ is almost increasing and $n^{\varepsilon-1 / 2} v(n)$ is almost decreasing there exist a constant $c_{1} \leqq 1$ such that for any k and $n>k$

$$
\begin{equation*}
\frac{v(n)}{n^{\varepsilon}} \geqq c_{1} \frac{v(n)}{k^{\varepsilon}} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{v(n)}{n^{1 / 2-\varepsilon}} \leqq \frac{1}{c_{1}} \frac{v(k)}{k^{1 / 2-\varepsilon}} \tag{24}
\end{equation*}
$$

Now set

$$
c_{0}=\left[25\left(\frac{2}{c_{1}}\right)^{1 / 2 \varepsilon}\right]+1
$$

Twice appling Lemma 3 to the series (22) at first with $p=2$
and then with $p=c_{0}$ we get

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{0}^{n} \boldsymbol{\gamma}_{2 c_{0}^{n}}=\infty \tag{25}
\end{equation*}
$$

Since

$$
c_{0}^{n} \gamma_{2 c_{0}^{n}} \leqq c_{0}^{n} \frac{1}{\ln \left(2_{0}^{n}+1\right)}<c
$$

the terms of the series (25) are uniformly bounded so we may apply Lemma 5. Set $\alpha=4 / 5$ and $\beta=6 / 5$. For these numbers there exists a sequence of natural numbers $\left\{q_{n}\right\}$ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{0}^{q_{n}} \gamma_{2} c_{0}^{q_{n}}=\infty \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{4}{5}\right)^{q_{n+1}-q_{n}} \leqq \frac{c_{0}^{q_{n}} \gamma_{2} c_{0}^{q_{n}}}{c_{0}^{q_{n}+1} \gamma_{2} 0_{0}^{q_{n+1}}} \leqq\left(\frac{6}{5}\right)^{q_{n+1}-q_{n}} . \tag{27}
\end{equation*}
$$

(27) implies

$$
\begin{equation*}
\left(\frac{4}{5} c_{0}\right)^{q_{n+1}-q_{n}} \leqq \frac{\gamma_{2} q_{0}^{q_{n}}}{\gamma_{2} c_{0}^{q_{n+1}}} \leqq\left(\frac{6}{5} c_{0}\right)^{q_{n+1}-q_{n}} \tag{28}
\end{equation*}
$$

and as

$$
\frac{4}{5} c_{0} \geqq 20\left(\frac{2}{c_{1}}\right)^{1 / 2 \varepsilon}>1
$$

the sequence $\left\{\gamma_{2} c_{0}^{q_{n}}\right\}$ is decreasing.
Define the sequence

$$
\psi(n)=\max \left\{m ; \frac{v(m)}{\sqrt{m}} \geqq \gamma_{2} \sigma_{0}^{q_{n}}\right\} .
$$

By the definition of γ_{n} we have

$$
\frac{v\left(\varphi\left(2_{0}^{q_{n}}\right)\right)}{\sqrt{\bar{\rho}\left(22_{0}^{q_{n}}\right)}} \geqq \gamma_{2} c_{0}^{q_{n}},
$$

which with the definition of $\psi(n)$ imply

$$
\psi(n) \geqq \varphi\left(2_{0}^{q_{n}}\right) .
$$

Using $\gamma_{2} c_{0}{ }_{0} \downarrow 0$ and $v(n) / \sqrt{n} \downarrow 0$ (this is true because $n^{-1 / 2+\varepsilon} v(n)$ is almost decreasing) we get $\psi(n) \uparrow \infty$ for $n \rightarrow \infty$.

According to the definition of $\varphi(n)$ and using the relation $v(n) / n \downarrow$ we have

$$
\begin{equation*}
\omega\left(\frac{1}{2_{0}^{q_{n}}}\right)>\frac{v\left(\varphi\left(2_{0}^{q_{n}}\right)+1\right)}{\varphi\left(2_{0}^{q_{n}}\right)+1} \geqq \frac{1}{2} \frac{v\left(\varphi\left(2_{0}^{q_{n}}\right)\right)}{\varphi\left(2_{0}^{c_{0}^{q_{n}}}\right)} \geqq \frac{1}{2} \frac{v(\psi(n))}{\psi(n)} . \tag{29}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
\frac{v(\psi(n))}{\sqrt{\psi(n)}} \geqq \gamma_{2 c_{0}^{q_{n}}}>\frac{v(\psi(n)+1)}{\sqrt{\psi(n)+1}}>\frac{1}{2} \frac{v(\psi(n))}{\sqrt{\psi(n)}} \tag{30}
\end{equation*}
$$

The last relation with (28) implies

$$
\begin{equation*}
\frac{v(\psi(n))}{\sqrt{\psi(n)}}: 2 \frac{v(\psi(n+1))}{\sqrt{\psi(n+1)}} \geqq \frac{\gamma_{2 c_{0} q_{n}}}{\gamma_{2} c_{0} q_{n+1}} \geqq\left(\frac{4}{5} c_{0}\right)^{q_{n+1}-q_{n}} \tag{31}
\end{equation*}
$$

or

$$
\frac{\sqrt{\psi(n+1)}}{\sqrt{\psi(n)}} \geqq \frac{1}{2}\left(\frac{4}{5}\right)^{q_{n+1}-q_{n}} \cdot \frac{v(\psi(n+1))}{v(\psi(n))}>\left(\frac{2}{5} c_{0}\right)^{q_{n+1}-q_{n}}
$$

i.e.,

$$
\begin{equation*}
\frac{\psi(n+1)}{\psi(n)} \geqq\left[100 \cdot\left(\frac{2}{c_{1}}\right)^{1 / \varepsilon}\right]^{q_{n+1}-q_{n}}>100\left(\frac{2}{c_{1}}\right)^{1 / \varepsilon} \tag{32}
\end{equation*}
$$

(23) and (32) imply
(33) $\quad \frac{v(\psi(n+1))}{v(\psi(n))} \geqq c_{1}\left(\frac{\psi(n+1)}{\psi(n)}\right)^{\varepsilon} \geqq c_{1}\left(100\left(\frac{2}{c_{1}}\right)^{1 / \varepsilon}\right)^{\varepsilon} \geqq c_{1} \cdot 100^{\varepsilon} \cdot \frac{2}{c_{1}}>2$.

From (28) and (30) it follows that

$$
\begin{equation*}
\frac{v(\psi(n))}{2 \sqrt{\psi(n)}}: \frac{v(\psi(n+1))}{\sqrt{\psi(n+1)}} \leqq \frac{\gamma_{2} q_{0}}{\gamma_{2} c_{0} q_{n+1}} \leqq\left(\frac{6}{5} c_{0}\right)^{q_{n+1}-q_{n}} \tag{34}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\{\frac{v(\psi(n))}{\psi(n)^{1 / 2-\varepsilon}}: \frac{v(\psi(n+1))}{\psi(n+1)^{1 / 2-\varepsilon}}\right\} \cdot\left(\frac{\psi(n+1)}{\psi(n)}\right)^{\varepsilon} \leqq 2\left(\frac{6}{5} c_{0}\right)^{q_{n+1}-q_{n}} . \tag{35}
\end{equation*}
$$

From (35) using (23) we get

$$
\frac{\psi(n+1)}{\psi(n)} \leqq\left(\frac{2}{c_{1}}\right)^{1 / \varepsilon}\left(\frac{6}{5} c_{0}\right)^{1 / \varepsilon\left(q_{n+1}-q_{n}\right)}
$$

and thus

$$
\begin{align*}
& \frac{22_{0}^{q_{n}}}{\psi(n)}: \frac{2_{c}^{q_{n+1}}}{\psi(n+1)}=\frac{\mathbf{2}_{0}^{q_{0}^{q_{n}}}}{2^{q_{0}^{q_{n+1}}} \cdot \frac{\psi(n+1)}{\psi(n)}} \begin{array}{l}
\quad \leqq \frac{2 c_{c_{n}}^{q_{n}}}{2_{0}^{q_{n+1}}} \cdot\left(\frac{2}{c_{1}}\right)^{1 / \varepsilon}\left(\frac{6}{5} c_{0}\right)^{1 / \varepsilon\left(q_{n+1}-q_{n}\right)}
\end{array} . \tag{36}
\end{align*}
$$

Similarly (32) and (24) give

$$
\begin{align*}
& \frac{v(\psi(n+1))}{\psi(n+1)}: \frac{v(\psi(n))}{\psi(n)}=\left[\frac{v(\psi(n+1))}{\psi(n+1)^{1 / 2-\varepsilon}}: \frac{v(\psi(n))}{\psi(n)^{1 / 2-\varepsilon}}\right] \cdot\left(\frac{\psi(n)}{\psi(n+1)}\right)^{1 / 2+\varepsilon} \\
& \quad \leqq \frac{1}{c_{1}}\left(\frac{\psi(n)}{\psi(n+1)}\right)^{1 / 2} \leqq \frac{1}{c_{1}} \frac{1}{10}\left(\frac{c_{1}}{2}\right)^{1 / 2 \varepsilon} \leqq \frac{1}{10}\left(\frac{1}{2}\right)^{1 / 2 \varepsilon} . \tag{37}
\end{align*}
$$

We may as well assume that

$$
2_{0}^{q_{n}}>6 \psi(n)
$$

Really, let $\boldsymbol{N}_{1}=\left\{n ; 22_{0}^{q_{n}} \leqq 6 \psi(n)\right\}$. Then

$$
\begin{aligned}
& \sum_{n \in N_{1}} c_{0}^{q_{n}} \cdot \frac{v(\psi(n))}{\sqrt{\psi(n)}} \leqq \sqrt{6} \sum_{n \in N_{1}} c_{0}^{q_{n}} \frac{v(6 \psi(n))}{\sqrt{6 \psi(n)}} \\
& \quad \leqq \sqrt{6} \sum_{n \in N_{1}} c_{0}^{q_{n}} \cdot c_{1} \frac{v\left(2_{0}^{q_{n}}\right)}{\sqrt{2_{0}^{q_{0}^{q_{n}}}} \leqq c \sum c_{0}^{q_{n}} \frac{v\left(2_{0}^{q_{n}}\right)}{\left(2_{0}^{q_{n}}\right)^{1 / 2-\varepsilon}} \cdot \frac{1}{\left(2_{0}^{q_{n}}\right)^{\varepsilon}}} \\
& \quad \leqq c \sum_{n \in N_{1}} c_{0}^{q_{n}}\left(2_{0}^{q_{n}}\right)^{-\varepsilon}<\infty,
\end{aligned}
$$

all the more (see (30))

$$
\sum_{n \in N_{1}} c_{0}^{q_{n}} \gamma_{2} c_{0}^{q_{n}}<\infty .
$$

This with (26) imply that the set N_{1} may be neglected.
Hence we have constructed the sequences $\left\{q_{n}\right\}$ and $\{\psi(n)\}$ which satisfy the following conditions:
(1) The series (26) is divergent
(2) The sequence $\{\psi(n)\}$ satisfies the relations (32), (33), (34), (35).
(3) The inequality

$$
2_{0}^{q_{n}}>6 \psi(n), \quad n=1,2, \cdots
$$

holds.
Set $m_{n}=2 c_{0}^{q_{n}}, k_{n}=\psi(n)$ and $a_{n}=v\left(k_{n}\right)$. Since $m_{n}>6 k_{n}>$ $2\left(2 k_{n}+1\right)$ the function

$$
\begin{equation*}
f_{0}(x)=\sum_{n=1}^{\infty} a_{n} f_{m_{n}, k_{n}}(x) \equiv \sum_{n=1}^{\infty} a_{n} f_{n}(x) \tag{38}
\end{equation*}
$$

may be considered. We shall show that this function is just that one which satisfies the conditions of Theorem 2.

At first we shall prove that f_{0} is continuous. Recally, according to the choice of a_{n} and to the inequality (18) we have

$$
\left\|a_{n} f_{n}\right\|_{C} \leqq v\left(k_{n}\right) \cdot \frac{1}{2 k_{n}+1} \leqq \frac{v\left(k_{n}\right)}{\sqrt{k_{n}}} \cdot \frac{1}{\sqrt{k_{n}}} \leqq \frac{c}{\sqrt{k_{n}}}=\frac{c}{\sqrt{\psi(n)}}
$$

From this estimation by (32) it follows that the series (38) is convergent uniformly on $[0,1]$, thus $f_{0} \in C(0,1)$ and as f_{n} is periodic
f_{0} is also periodic.
According to Lemma 8 and Lemma 10 for $2 k_{n-1}+1<\nu \leqq 2 k_{n}+1$ we have

$$
\begin{aligned}
v\left(\nu, f_{0}\right) & =\sum_{j=1}^{n-1} a_{j} v\left(\nu, f_{j}\right)+\sum_{j=n}^{\infty} a_{j} v\left(\nu, f_{j}\right) \\
& \leqq c\left\{\sum_{j=1}^{n-1} a_{j}+\sum_{j=1}^{\infty} \frac{\nu}{k_{j}} a_{j}\right\} \leqq c\left\{\sum_{j=1}^{n-1} v(\psi(j))+\nu \sum_{j=n}^{\infty} \frac{v(\psi(j))}{\psi(j)}\right\} .
\end{aligned}
$$

Now if we use the estimations (33) in the first sum and the estimations (37) in the second one we shall get

$$
v\left(\nu, f_{0}\right) \leqq c\left\{v\left(k_{n-1}\right)+\nu \frac{v\left(k_{n}\right)}{k_{n}}\right\} \leqq c v(\nu)
$$

i.e., $f_{0} \in V[v]$.

Now we shall show that $f_{0} \in H^{\omega}$.
Let $m_{n-1}<\nu \leqq m_{n}$. Then using Lemma 9 we get

$$
\begin{aligned}
& \omega\left(\frac{1}{\nu}, f_{0}\right) \leqq \sum_{j=1}^{n-1} a_{j} \omega\left(\frac{1}{\nu}, f_{j}\right)+\sum_{j=n}^{\infty} a_{j} \omega\left(\frac{1}{\nu}, f_{j}\right) \\
& \quad \leqq c\left\{\sum_{j=1}^{n-1} a_{j} \frac{m_{j}}{k_{j}} \cdot \frac{1}{\nu}+\sum_{j=n}^{\infty} \frac{a_{j}}{k_{j}}\right\} \\
& \quad=c\left\{\frac{1}{\nu} \cdot \frac{a_{n-1} m_{n-1}}{k_{n-1}} \sum_{j=1}^{n-1} \frac{a_{j} m_{j}}{k_{j}} \cdot \frac{k_{n-1}}{a_{n-1} m_{n-1}}+\sum_{j=n}^{\infty} \frac{a_{j}}{k_{j}}\right\} .
\end{aligned}
$$

With a view to estimate the first sum we shall use the relation (36), to estimate the second one the relation (37) and then to estimate the both sums the relation (29), we obtain

$$
\begin{align*}
\omega\left(\frac{1}{\nu}\right. & \left., f_{0}\right) \leqq c\left\{\frac{m_{n-1}}{\nu} \frac{a_{n-1}}{k_{n-1}}+\frac{a_{n}}{k_{n}}\right\} \\
& \leqq c\left\{\frac{m_{n-1}}{\nu} \frac{v(\psi(n-1))}{\psi(n)}+\frac{v(\psi(n))}{\psi(n)}\right\} \tag{39}\\
& \leqq c\left\{\frac{m_{n-1}}{\nu} \omega\left(\frac{1}{m_{n-1}}\right)+\omega\left(\frac{1}{m_{n}}\right\}\right)
\end{align*}
$$

But as $\omega(\delta)$ is nondecreasing and for $\omega(\delta) / \delta$ Lemma 6 is valid (39) implies

$$
\omega\left(\frac{1}{\nu}, f_{0}\right) \leqq c \omega\left(\frac{1}{\nu}\right)
$$

i.e., $f_{0} \in H^{\omega}$.

It remains to prove that $f \bar{\in} A$.
Let $m_{n-1} / 2<\nu \leqq m_{n} / 2$, then using Lemma 11 we get

$$
\begin{align*}
& \left|c_{\nu}\left(f_{0}\right)\right|=\left|\int_{0}^{1} e^{2 \pi i \nu x} f(x) d x\right| \geqq\left|\int_{0}^{1} e^{2 \pi i \nu x} a_{n} f_{n}(x) d x\right|-\sum_{j=1}^{n-1} a_{j}\left|\int_{0}^{1} f_{j}(x) e^{2 \pi i \nu x} d x\right| \\
& \quad-\sum_{j=n+1}^{\infty} a_{j}\left|\int_{0}^{1} f_{j}(x) e^{2 \pi i \nu x} d x\right| \geqq \frac{2}{\pi^{2}} \cdot \frac{1}{\nu} \frac{a_{n}}{\sqrt{2 k_{n}+1}}\left|\sin \pi \nu\left(\frac{1}{2 k_{n}+1}-\frac{1}{m_{n}}\right)\right| \tag{40}\\
& \quad-\frac{1}{\pi^{2}} \sum_{j=1}^{n-1} \frac{a_{j} m_{j}}{\nu^{2} \sqrt{2 k_{j}+1}}-\frac{1}{\pi} \cdot \frac{1}{\nu} \sum_{j=n+1}^{\infty} \frac{a_{j}}{\sqrt{2 k_{j}+1}} .
\end{align*}
$$

By the choice of a_{j}, m_{j}, k_{j} and by the inequality (34)

$$
\begin{align*}
& \frac{1}{\pi^{2} \nu^{2}} \sum_{j=1}^{n-1} \frac{a_{j} m_{j}}{\sqrt{2 k_{j}+1}} \leqq \frac{c}{\nu^{2}} \frac{a_{n-1} m_{n-1}}{\sqrt{k_{n-1}}} \sum_{j=1}^{n-1} \frac{a_{j} m_{j}}{\sqrt{k_{j}}} \cdot \frac{\sqrt{k_{n-1}}}{a_{n-1} m_{n-1}} \\
& \quad=\frac{c}{\nu^{2}} \frac{a_{n-1} m_{n-1}}{\sqrt{k_{n-1}}} \sum_{j=1}^{n-1}\left[\frac{v(\psi(j))}{\sqrt{\psi(j)}}: \frac{v(\psi(n-1))}{\sqrt{\psi(n-1)}}\right] \cdot \frac{2 c_{0}^{q_{j}}}{2^{q_{n-1}}} \tag{41}\\
& \quad \leqq \frac{c}{\nu^{2}} \frac{a_{n-1} m_{n-1}^{n-1}}{\sqrt{k_{n-1}}} \sum_{j=1}^{n-1} 2^{n-1-j}\left(\frac{6}{5} c_{0}\right)^{q_{n-1}-q_{j}} 2^{-\left(c_{0}^{\left.q_{n-1}-c_{0}^{j}\right)}\right.} \leqq \frac{c}{\nu^{2}} \frac{a_{n-1} m_{n-1}}{k_{n-1}}
\end{align*}
$$

Using (31) we obtain

$$
\begin{aligned}
& \frac{1}{\pi} \cdot \frac{1}{\nu} \sum_{j=n+1}^{\infty} \frac{a_{j}}{\sqrt{2 k_{j}+1}} \leqq \frac{1}{\sqrt{2} \pi} \cdot \frac{1}{\nu} \frac{a_{n}}{\sqrt{\bar{k}_{n}}} \sum_{j=n+1}^{\infty} \frac{v(\psi(j))}{\sqrt{\psi(j)}}: \frac{v(\psi(n))}{\sqrt{\psi(n)}} \\
& \quad \leqq \frac{1}{\sqrt{2} \pi} \cdot \frac{1}{\nu} \frac{a_{n}}{\sqrt{k_{n}}} \sum_{j=n+1}^{\infty} 2^{j-n}\left(\frac{5}{4 c_{0}}\right)^{q_{j}-q_{n}}
\end{aligned}
$$

but as

$$
\begin{equation*}
2^{j-n}\left(\frac{5}{4 c_{0}}\right)^{q_{j}-q_{n}} \leqq\left(\frac{5}{2 c_{0}}\right)^{j-n} \leqq\left(\frac{1}{10}\left(\frac{c_{1}}{2}\right)^{1 / 2 \varepsilon}\right)^{j-n}<\left(\frac{1}{20}\right)^{j-n} \tag{42}
\end{equation*}
$$

we have

$$
\begin{align*}
& \frac{1}{\pi} \cdot \frac{1}{\nu} \sum_{j=n+1}^{\infty} \frac{a_{j}}{\sqrt{2 k_{j}+1}} \leqq \frac{1}{\sqrt{2} \pi} \cdot \frac{1}{\nu} \cdot \frac{a_{n}}{\sqrt{k_{n}}} \sum_{j=1}^{\infty}\left(\frac{1}{20}\right)^{j} \tag{43}\\
& \quad=\frac{1}{19 \sqrt{2} \pi} \cdot \frac{1}{\nu} \cdot \frac{a_{n}}{\sqrt{\overline{k_{n}}}} .
\end{align*}
$$

From (40), (41) and (43) it follows that

$$
\begin{align*}
&\left|c_{\nu}\left(f_{0}\right)\right| \geqq \frac{2}{\pi^{2}} \cdot \frac{1}{\nu} \frac{a_{n}}{\sqrt{2 k_{n}+1}}\left|\sin \pi \nu\left(\frac{1}{2 k_{n}+1}-\frac{1}{m_{n}}\right)\right| \\
&-c \cdot \frac{1}{\nu^{2}} \frac{a_{n-1} m_{n-1}}{\sqrt{k_{n-1}}}-\frac{1}{19 \sqrt{2} \pi} \cdot \frac{1}{\nu} \frac{a_{n}}{\sqrt{k_{n}}} \tag{44}
\end{align*}
$$

It is easy to show that according to (31) and (42)

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{\nu=\left(m_{n-1} / 2\right)+1}^{m_{n} / 2} \frac{1}{\nu^{2}} \frac{a_{n-1} m_{n-1}}{\sqrt{k_{n-1}}} \leqq c \sum_{n=1}^{\infty} \frac{a_{n-1} m_{n-1}}{\sqrt{k_{n-1}}} \cdot \frac{1}{m_{n-1}}<\infty \tag{45}
\end{equation*}
$$

Now we shall estimate the sum

$$
\begin{align*}
\sigma= & \frac{2}{\pi^{2}} \frac{a_{n}}{\sqrt{2 k_{n}+1}} \sum_{\nu=\left(m_{n-1} / 2\right)+1}^{m_{n} / 2} \frac{1}{\nu}\left|\sin \pi \nu\left(\frac{1}{2 k_{n}+1}-\frac{1}{m_{n}}\right)\right| \tag{46}\\
& -\frac{1}{19 \sqrt{2} \pi} \cdot \frac{a_{n}}{\sqrt{\bar{k}_{n}}} \sum_{\nu=\left(m_{n-1} / 2\right)+1}^{m_{n / 2}} \frac{1}{\nu} .
\end{align*}
$$

Let

$$
\left\{\begin{array}{l}
l_{0}=\left[\left(\frac{m_{n-1}}{2}+1\right)\left(\frac{1}{2 k_{n}+1}-\frac{1}{m_{n}}\right)-\frac{1}{6}\right]+1 \tag{47}\\
l_{1}=\left[\frac{m_{n}}{2}\left(\frac{1}{2 k_{n}+1}-\frac{1}{m_{n}}\right)-\frac{5}{6}\right]
\end{array}\right.
$$

and for $l=l_{0}, l_{0}+1, \cdots, l_{1}$

$$
\left\{\begin{array}{l}
\mu_{e}^{\prime}=\left[\frac{l+\frac{1}{6}}{\frac{1}{2 k_{n}+1}-\frac{1}{m_{n}}}\right]+1 \tag{48}\\
\mu_{e}^{\prime \prime}=\left[\frac{l+\frac{5}{6}}{\frac{1}{2 k_{n}+1}-\frac{1}{m_{n}}}\right]
\end{array}\right.
$$

Then for $\mu_{e}^{\prime} \leqq \nu \leqq \mu_{e}^{\prime \prime}, l=l_{0}, \cdots, l_{1}$

$$
\left|\sin \pi \nu\left(\frac{1}{2 k_{n}+1}-\frac{1}{m_{n}}\right)\right| \geqq \frac{1}{2}
$$

therefore from (46) using the inequalities

$$
\begin{equation*}
\frac{1}{x} \leqq \ln \left(1+\frac{1}{x-1}\right) \leqq \frac{1}{x-1}, \quad x \in(1, \infty) \tag{49}
\end{equation*}
$$

we get

$$
\begin{align*}
& \sigma \geqq \frac{2}{\pi^{2}} \frac{a_{n}}{\sqrt{2 k_{n}+1}} \sum_{l=l_{0}}^{l_{1}} \sum_{\nu=\mu_{e}^{\prime}}^{\mu_{e}^{\prime}} \frac{1}{\nu}\left|\sin \pi \nu\left(\frac{1}{2 k_{n}+1}-\frac{1}{m_{n}}\right)\right| \\
&-\frac{1}{19 \sqrt{2} \pi} \frac{a_{n}}{\sqrt{k_{n}}} \sum_{\nu=\left(m_{n-1} / 2\right)+1}^{m_{n} / 2} \ln \left(1+\frac{1}{\nu-1}\right) \\
& \geqq \tag{50}\\
& \frac{2}{\pi^{2}} \frac{a_{n}}{\sqrt{2 k_{n}+1}} \cdot \frac{1}{2} \sum_{l=l_{0}}^{l_{1}} \sum_{\nu=\mu_{e}^{\prime}}^{\mu_{e}^{\prime \prime}} \ln \left(1+\frac{1}{\nu}\right) \\
&-\frac{1}{19 \sqrt{2} \pi} \cdot \frac{a_{n}}{\sqrt{\overline{k_{n}}}} \ln \left(\prod_{\nu=\left(m_{n-1} / 2\right)+1}^{m_{n} / 2}\left(1+\frac{1}{\nu-1}\right)\right) \\
& \geqq \frac{1}{\pi^{2}} \frac{a_{n}}{\sqrt{2 k_{n}+1}} \sum_{l=l_{0}}^{l_{1}} \ln \frac{\mu_{e}^{\prime \prime}+1}{\mu_{e}^{\prime}}-\frac{1}{19 \sqrt{2} \pi} \frac{a_{n}}{\sqrt{\overline{k_{n}}}} \ln \frac{m_{n}}{m_{n-1}} .
\end{align*}
$$

We have

$$
\frac{\mu_{e}^{\prime \prime}+1}{\mu_{e}^{\prime \prime}} \geqq \frac{l+\frac{5}{6}}{l+\frac{1}{6}}=1+\frac{\frac{2}{3}}{l+\frac{1}{6}}
$$

this with (49) implies

$$
\ln \frac{\mu_{e}^{\prime \prime}+1}{\mu_{e}^{\prime}} \geqq \ln \left(1+\frac{1}{\frac{3}{2} l+\frac{1}{4}}\right) \geqq \frac{1}{\frac{3}{2} l+\frac{5}{4}} \geqq \frac{\frac{2}{3}}{l+1} \geqq \frac{2}{3} \ln \frac{l+2}{l+1}
$$

Using this estimation we obtain

$$
\begin{aligned}
& \sum_{l=l_{0}}^{l_{1}} \ln \frac{\mu_{e}^{\prime \prime}+1}{\mu_{e}^{\prime}} \geqq \frac{2}{3} \sum_{l=l_{0}}^{l_{1}} \ln \left(1+\frac{1}{l+1}\right)=\frac{2}{3} \ln \frac{l_{1}+2}{l_{0}+1} \\
& \\
& \quad \geqq \frac{2}{3} \ln \frac{\frac{m_{n}}{2}\left(\frac{1}{2 k_{n}+1}-\frac{1}{m_{n}}\right)-\frac{5}{6}+1}{\left(\frac{m_{n-1}}{2}+1\right)\left(\frac{1}{2 k_{n}+1}-\frac{1}{m_{n}}\right)-\frac{1}{6}+2} \\
& \quad \geqq \frac{2}{3}\left\{\ln \frac{m_{n}}{m_{n-1}}+\ln \frac{1+\frac{1}{3} \cdot \frac{1}{m_{n}}\left(\frac{1}{1+\frac{11}{3} \frac{1}{m_{n-1}}\left(\frac{1}{2 k_{n}+1}-\frac{1}{m_{n}}\right)^{-1}}\right)^{-1}+\frac{2}{m_{n-1}}}{} \begin{array}{l}
\quad \geqq \frac{2}{3} \ln \frac{m_{n}}{m_{n-1}}-c .
\end{array}\right\} . \\
& \\
& \quad
\end{aligned}
$$

Applying the last relation by (50) we get

$$
\begin{align*}
\sigma & \geqq \frac{1}{\pi^{2}} \frac{a_{n}}{\sqrt{2 k_{n}+1}} \cdot \frac{2}{3} \ln \frac{m_{n}}{m_{n-1}}-c \frac{a_{n}}{\sqrt{2 k_{n}+1}} \tag{51}\\
& -\frac{1}{19 \sqrt{2} \pi} \frac{a_{n}}{\sqrt{k_{n}}} \ln \frac{m_{n}}{m_{n-1}}=\frac{a_{n}}{\sqrt{2 k_{n}+1}} \ln \frac{m_{n}}{m_{n-1}}\left(\frac{2}{3 \pi^{2}}-\frac{\sqrt{6}}{38 \pi}\right)-c \frac{a_{n}}{\sqrt{k_{n}}} .
\end{align*}
$$

But as

$$
\frac{2}{3 \pi^{2}}-\frac{\sqrt{6}}{38 \pi}>0
$$

(44), (51), (45) and (26) give

$$
\begin{gathered}
\sum_{\nu=1}^{\infty}\left|c_{\nu}\left(f_{0}\right)\right|=\sum_{n=1}^{\infty} \sum_{\nu=\left(m_{n-1}\right) / 2+1}^{m_{n} / 2}\left|c_{\nu}\left(f_{0}\right)\right| \geqq c \sum_{n=1}^{\infty} \frac{a_{n}}{\sqrt{2 k_{n}+1}} \ln \frac{m_{n}}{m_{n-1}}-c \\
\geqq c \sum_{n=1}^{\infty} \frac{v(\psi(n))}{\sqrt{\psi(n)}}\left(c_{0}^{q_{n}}-c_{0}^{q_{n-1}}\right) \geqq c \sum_{n=1}^{\infty} c_{0}^{q_{n}} \gamma_{2} c_{0}^{q_{n}}=\infty
\end{gathered}
$$

i.e., $f_{0} \bar{\in} A$.

This completes the proof of Theorem 2.

Theorems 1 and 2 imply

Theorem 3. For all Fourier series of class $H^{\omega} \cap V\left[n^{\alpha}\right], 0<$ $\alpha<1 / 2$, to be absolutely convergent it is necessary and sufficient that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left\{\omega\left(\frac{1}{n}\right)\right\}^{1-2 \alpha / 2(1-\alpha)}<\infty . \tag{52}
\end{equation*}
$$

Proof. The sufficieny is contained in Corollary 2. We shall prove the necessity of the condition (52). Assume the contrary. We shall verify that for $\alpha \in(0,1 / 2)$ the modulus of variation $v(n)=n^{\alpha}$ satisfies the conditions of Theorem 2.

In fact, if

$$
0<\varepsilon<\min \left\{\alpha, \frac{1}{2}-\alpha\right\}
$$

then $n^{-\varepsilon} v(n)$ is increasing and $n^{\varepsilon-1 / 2} v(n)$ is decreasing.
Furthermore

$$
\varphi(n)=\max \left\{m ; \frac{m^{\alpha}}{m} \geqq \omega\left(\frac{1}{n}\right)\right\}=\left[\left(\omega\left(\frac{1}{n}\right)\right)^{-1 / 1-\alpha}\right]
$$

and so

$$
\begin{align*}
\left(\sum_{k=\varphi(n)}^{\varphi(n)+n} \frac{v^{2}(k)}{k^{2}}\right)^{1 / 2} & =\left(\sum_{k=\varphi(n)}^{\varphi(n)+n} \frac{1}{k^{2-2 \alpha}}\right)^{1 / 2} \geqq c \frac{1}{\varphi(n)^{1 / 2-\alpha}} \tag{53}\\
& \geqq c\left\{\omega\left(\frac{1}{n}\right)\right\}^{(1-2 \alpha) / 2(1-\alpha)}
\end{align*}
$$

Since we have assumed that

$$
\sum_{n=1}^{\infty} \frac{1}{n}\left\{\omega\left(\frac{1}{n}\right)\right\}^{1-2 \alpha / 2(1-\alpha)}=\infty
$$

from (53) it follow that the series (17) is also divergent and therefore all the conditions of Theorem 2 are satisfied. Then according to this theorem there exists a function in the class $H^{\omega} \cap V\left[n^{\alpha}\right]$ such that its Fourier series is not absolutely convergent. Hence we have got the contradiction.

This completes the proof.

Remark. In the case $\alpha \geqq 1 / 2$, i.e., if we have the class $H^{\omega} \cap$ $V\left[n^{\alpha}\right], \alpha \geqq 1 / 2$, it is easy to verify that Theorem 1 is the same as the theorem of S. N. Bernstein.

References

1. N. K. Bari, Trigonometric series, Fizmatgiz, Moscow, 1961. (Russian).
2. N. K. Bari and S. B. Stechkin, Best approximation and differential properties two conjugate function, Tr. Moskov. Matem. Obshestva, 5 (1956), 483-522. (Russian).
3. S. W. Bochkarev, On a problem of Zygmund, Izv. Akad. Nauk SSSR, Ser. Math. 37 (1973), 630-638. (Russian)
4. Z. A. Chanturia, The modulus of variation of functions and its application in the theory of Fourier series, Dokl. Akad. Nauk SSSR, 214 (1974), 63-66. (Russian)
5. - On the absolute convergence of Fourier series of classes $V\left[n^{\alpha}\right]$, Colloquia mathematica Sociestates János Bolyai, 19 (1978), 219-240.
6. - On absolute convergence of Fourier series, Bulletin of the Acad. of Scien of the Georgian SSSR, 90, N 1 (1978), 37-40. (Russian).
7. G. M. Fikhtengoltc, Differential and integral calculus, II, Fizmatgiz, Moscow, 1959. (Russian)
8. J.-P. Kahane, Series de Fourier absolutement convergentes, Springer, 1970.
9. R. Salem, On a theorem of Zygmund, Duke Math. J., 10 (1943), 23-31.
10. A. F. Timan, Theory of approximation of functions of a real variable, Fizmatgiz, Moscow, 1960. (Russian)
11. I. M. Vinogradov, Fundations of the theory of numbers, Nauka, Moscow, 1972. (Russian)
12. I. Wik, Criteria for absolute convergence of Fourier series of functions of bounded variation, Trans. Amer. Math. Soc., 163 (1972), 1-24.
13. ——, Extrapolation of absolutely convergent Fourier series by identically zero, Arkiv för Math., 6, N 4 (1965), 65-76.
14. A. Zygmund, Trigonometric Series, I, Cambridge, University Press, 1959.
15. -, Remarque sur la convergence absolute des series de Fourier, J. London Math. Soc., 3 (1928), 194-196.

Received November 2, 1979.
Tbilisi State University
Tbilisi, USSR

[^0]: ${ }^{1}$ Several results of this paper were published in [6] without proofs.
 ${ }^{2}$ This condition is natural since for continuous $f u(n, f)=o(n)$ (see [4]).

[^1]: ${ }^{3}$ Here and in what follows by c we denote absolute positive constants which are, in general, distinct in different formulas.

[^2]: ${ }^{4}$ We write $v_{1}(n) \sim v_{2}(n)$ if there exist positive constants A and B such that

 $$
 A v_{1}(n) \leqq v_{2}(n) \leqq B v_{1}(n)
 $$

 for all n.

[^3]: ${ }^{5}$ i.e., there exists a constant $c>1$ such that for all n and $m>n a_{n} \geqq(1 / c) a_{m}$.
 ${ }^{6}$ a sequence $\left\{a_{n}\right\}$ is almost increasing, if there exists a constant $c>1$ such that for any n and $m>n a_{n} \leqq c a_{m}$.

