A CHARACTERIZATION OF THE ADJOINT *L*-KERNEL OF SZEGÖ TYPE

SABUROU SAITOH

Let G be a bounded regular region in the complex plane and $\hat{L}(z, u)$ the adjoint L-kernel of Szegö kernel function $\hat{K}(z, \bar{u})$ on G. Then, for any analytic function h(z) on G with a finite Dirichlet integral, it is shown that the equation

holds. Furthermore, for any fixed nonconstant h(z), we show that the function $\hat{L}(z_1, z_2)$ on $G \times G$ is characterized by that equation in some class.

1. Introduction and statement of result. Let S denote an arbitrary compact bordered Riemann surface. Let W(z, t) be a meromorphic function whose real part is the Green's function g(z, t) with pole at $t \in S$. The differential id W(z, t) is positive along ∂S . For simplicity, we do not distinguish between points $z \in S \cup \partial S$ and local parameters z. For an arbitrary integer q and for any positive continuous function $\rho(z)$ on ∂S , let $H_{p,\rho}^q(S)[p \ge 1]$ be the Banach space of analytic differentials $f(z)(dz)^q$ on S of order q with finite norms

$$igg\{rac{1}{2\pi} \int_{ar{s}S} |\, f(z) (dz)^q \,|^{\,p}
ho(z) [\mathrm{id} \, W(z, \, t)]^{1-pq} \,igg\}^{1/p} \, < \, \infty \,$$
 ,

where f(z) means the Fatou boundary value of f at $z \in \partial S$. Let $K_{q,t,\rho}(z, \bar{u})(dz)^q$ be the reproducing kernel for $H^q_{2,\rho}(S)$ which is characterized by the reproducing property

$$f(u) = \frac{1}{2\pi} \int_{\partial S} f(z) (dz)^q \overline{K_{q,t,\rho}(z, \overline{u})(dz)^q} \rho(z) [\text{id } W(z, t)]^{1-2q}$$

for all $f(z) (dz)^q \in H^q_{2,\rho}(S)$.

See [9]. Let $L_{q,t,\rho}(z, u)(dz)^{1-q}$ denote the adjoint L-kernel of $K_{q,t,\rho}(z, \bar{u})(dz)^{q}$. The function $L_{q,t,\rho}(z, u)(dz)^{1-q}$ is a meromorphic differential on S of order 1-q with a simple pole at u having residue 1. Moreover,

(1.1)
$$K_{q,t,\rho}(z, \bar{u})(dz)^{q}\rho(z)[\text{id }W(z, t)]^{1-2q} = \frac{1}{i}L_{q,t,\rho}(z, u)(dz)^{1-q} \text{ along }\partial S.$$

We note that $|K_{q,t,\rho}(z, \bar{u})|$ and $|L_{q,t,\rho}(z, u)|$ can be extended continuously on ∂S . In addition, $K_{q,t,\rho}(z, \bar{u}) = \overline{K_{q,t,\rho}(u, \bar{z})}$ and $L_{q,t,\rho}(z, u) = -L_{1-q,t,\rho^{-1}}(u, z)$ on S.

If S is a bounded regular region in the plane, then we can define the kernels for arbitrary real values of q. In this case, for q = 1/2 and $\rho(z) \equiv 1$, we have the classical Szegö kernels $\hat{K}(z, \bar{u}) = K_{1/2,t,1}(z, \bar{u})/2\pi$ and $\hat{L}(z, u) = L_{1/2,t,1}(z, u)/2\pi$. Cf. [8] and [9].

A classical characterization of $L_{q,t,\rho}(z,\,u)(dz)^{1-q}$ can be now stated as follows:

PROPOSITION (P. R. Garabedian [3, 4], Z. Nehari [6, 7] and S. Saitoh [8, 9]). The adjoint L-kernel $L_{q,t,\rho}(z, u)(dz)^{1-q}$ is characterized by the following extremal property

$$egin{aligned} K_{q,t,
ho}(u,\,ar{u}) &= rac{1}{2\pi} \int_{ar{\partial} S} \, |\, L_{q,t,
ho}(z,\,u) (dz)^{1-q} \, |^2(
ho(z))^{-1} [ext{id} \, W(z,\,t)]^{2q-1} \ &= \min \, \left\{ rac{1}{2\pi} \int_{ar{\partial} S} \, |\, F(z,\,u) (dz)^{1-q} \, |^2(
ho(z))^{-1} [ext{id} \, W(z,\,t)]^{2q-1}
ight\} \, . \end{aligned}$$

The minimum is taken here over all meromorphic differentials $F(z, u)(dz)^{1-q}$ on S of order 1-q with a simple pole at u having residue 1 and with finite integral

$$\int_{\mathfrak{d}_S} |F(z, u)(dz)^{1-q}|^2 [\mathrm{id} \ W(z, t)]^{2q-1} < \infty \ .$$

In this paper, we establish the following theorem:

THEOREM 1.1. For any analytic function h(z) on S with a finite Dirichlet integral, we have the equation

(1.2)
$$\begin{aligned} \frac{1}{\pi} \iint_{S} |h'(z)|^{2} dx dy \\ &= \frac{1}{4\pi^{2}} \int_{\partial S} \int_{\partial S} |(h(v) - h(u))L_{q,t,\rho}(v, u)(dv)^{1-q}(du)^{q}|^{2} \\ &\times (\rho(v))^{-1} [\text{id } W(v, t)]^{2q-1} \rho(u) [\text{id } W(u, t)]^{1-2q}, \ z = x + iy . \end{aligned}$$

Furthermore, for any fixed nonconstant h(z), the adjoint Lkernel $L_{q,t,\rho}(v, u) (dv)^{1-q}(du)^q$ is characterized by the following extremal property:

(1.3)
$$\int_{\partial S} \int_{\partial S} |(h(v) - h(u)) L_{q,t,\rho}(v, u) (dv)^{1-q} (du)^{q}|^{2} \\ \times (\rho(v))^{-1} [\mathrm{id} \ W(v, t)]^{2q-1} \rho(u) [\mathrm{id} \ W(u, t)]^{1-2q}$$

$$egin{aligned} &= \min \left\{ \int_{\partial S} \int_{\partial S} |(h(v) - h(u)) F(v, \, u) (dv)^{1-q} (du)^q |^2
ight. \ & imes \ (
ho(v))^{-1} [\mathrm{id} \ W(v, \, t)]^{2q-1}
ho(u) [\mathrm{id} \ W(u, \, t)]^{1-2q}
ight\} \,. \end{aligned}$$

The minimum is taken here over all meromorphic differentials $F(v, u)(dv)^{1-q}(du)^q$ on $S \times S$ such that

(1.4)
$$F(v, u) = \frac{f(u, v)}{h(v) - h(u)}$$

for an analytic differential $f(u, v)(du)^{q}(dv)^{1-q}$ on $S \times S$ satisfying

(1.5)
$$f(z, z) = h'(z)$$
 on S

and

(1.6)
$$\int_{\partial S} \int_{\partial S} |f(u, v)(du^{q})(dv)^{1-q}|^{2} [\operatorname{id} W(u, t)]^{1-2q} [\operatorname{id} W(v, t)]^{2q-1} < \infty$$

In particular, we note that when q = 1/2 and $\rho(z) \equiv 1$, we can define the adjoint *L*-kernels of the Szegö kernels of *S* with characteristics. Cf. D. A. Hejhal [5] and J. D. Fay [2]. Then, the adjoint *L*-kernels are, in general, multiplicative functions, but our proof of Theorem 1.1 will show that Theorem 1.1 is still valid for these adjoint *L*-kernels in a modified form.

2. Preliminaries. Let $\{\Phi_j(z)(dz)^q\}_{j=1}^{\infty}$ and $\{\Psi_j(z)(dz)^{1-q}\}_{j=1}^{\infty}$ be complete orthonormal systems for $H^q_{2,\rho}(S)$ and $H^{1-q}_{2,\rho-1}(S)$, respectively. Let $H = H^q_{2,\rho}(S) \otimes H^{1-q}_{2,\rho-1}(S)$ denote the direct product of $H^q_{2,q}(S)$ and $H^{1-q}_{2,\rho-1}(S)$. The space H is composed of all differentials $f(z_1, z_2)(dz_1)^q(dz_2)^{1-q}$ on $S \times S$ such that

$$(2.1) \qquad f(\pmb{z}_1,\,\pmb{z}_2) = \sum_{j=1}^{\infty} \, \sum_{k=1}^{\infty} A_{j,k} \varPhi_j(\pmb{z}_1) \varPsi_k(\pmb{z}_2) \,, \quad \sum_{j=1}^{\infty} \, \sum_{k=1}^{\infty} \, |\, A_{j,k}|^2 < \infty \,.$$

The scalar product $(,)_H$ is given as follows:

(2.2)
$$(f(z_1, z_2), h(z_1, z_2))_H = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} A_{j,k} \overline{B_{j,k}}$$

where $h(z_1, z_2) = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} B_{j,k} \Phi_j(z_1) \Psi_k(z_2)$ and $\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |B_{j,k}|^2 < \infty$. Cf. [1, § 8].

We let $H_{D(0)}$ denote the subspace in H composed of all differentials which vanish along the diagonal set $D = \{(z, z) | z \in S\}$ and $(H_{D(0)})^{\perp}$ the orthocomplement of $H_{D(0)}$ in H.

3. Proof of theorem. For $h(z) \in H_{1,1}^0(S)$, we set

SABUROU SAITOH

(3.1)
$$f_{h}(u, v) = \int_{\partial S} h(z) \overline{K_{q,t,\rho}(z, \bar{u})} \overline{K_{1-q,t,\rho^{-1}}(z, \bar{v})} dz$$

From (1.1) and the residue theorem, we have

(3.2)
$$f_{h}(u, v) = -2\pi i L_{q,t,\rho}(v, u)(h(v) - h(u))$$

and so

(3.3)
$$f_h(z, z) = -2\pi i h'(z)$$
 on S.

When h(z) has a finite Dirichlet integral, from [12, Theorem 4.1] and [11, Corollary 3.2], we see that $f_k(u, v)(du)^q(dv)^{1-q}$ belongs to $(H_{D(0)})^{\perp}$. From [12, Corollary 2.1] and [10, Equation (3.2)], we thus obtain (1.2).

Next, suppose that $F^*(v, u)$ attains the minimum in (1.3). Then, in the case such that h(z) is not constant, we set

(3.4)
$$f_{h}^{*}(u, v) = F^{*}(v, u)(h(v) - h(u))$$

and so

(3.5)
$$f_h^*(z, z) = h'(z) \text{ on } S$$
.

We note that any $f(u, v)(du)^q (dv)^{1-q} \in H$ satisfying f(z, z) = h'(z) on S is expressible in the form

$$f(u, v) = F(v, u)(h(v) - h(u))$$

for an F(v, u) stated in the theorem. From the extremal property of $f_{\hbar}^{*}(u, v)(du)^{q}(dv)^{1-q}$ in the subspace in H satisfying f(z, z) = h'(z)on S, we see that $f_{\hbar}^{*}(u, v)(du)^{q}(dv)^{1-q} \in (H_{D(0)})^{\perp}$. Cf. [10, Equation (3.2)]. Therefore, by [12, Theorem 4.2], $f_{\hbar}^{*}(u, v)$ is expressible in the form

$$(3.6) \qquad f_h^*(z_1, z_2) = \frac{1}{2\pi} \int_{\partial S} \frac{h^*(\zeta) d\zeta \overline{K_{q,t,\rho}(\zeta, \overline{z}_1)} \overline{K_{1-q,t,\rho^{-1}}(\zeta, \overline{z}_2)} d\zeta}{\mathrm{id} \ W(\zeta, t)}$$

for a uniquely determined $h^*(z)dz$ in $H^1_{1,1}(S)$. Furthermore, from [12, Equations (4.11) and (4.12)], $h^*(z)$ can be determined as follows:

(3.7)
$$h^*(z) = -W'(z, t)(h(z) - h(t)) .$$

From (3.6) and (1.1), we have

(3.8)
$$f_{h}^{*}(u, v) = L_{q,t,\rho}(v, u)(h(v) - h(u)) .$$

We thus have the desired result $F^*(v, u) = L_{q,t,\rho}(v, u)$.

4. Corollary. In particular, from the proof of Theorem 1.1, we obtain

492

COROLLARY 4.1. For any fixed nonconstant analytic function h(z) on S with a finite Dirichlet integral, the unique extremal function which minimizes

$$\| f(z_1, z_2) \|_{H^{1-q}_{2, \rho-1}(S) \otimes H^q_{2, \rho}(S)}$$

in the subspace in $H^{1-q}_{2,\rho^{-1}}(S) \otimes H^{q}_{2,\rho}(S)$ satisfying f(z, z) = h'(z) on S is given by $(h(z_1) - h(z_2))L_{q,t,\rho}(z_1, z_2)(dz_1)^{1-q}(dz_2)^q$.

ACKNOWLEDGMENT. The author wishes to express his sincere thanks to Professors N. Suita and S. Yamashita for some valuable discussions on this paper.

References

1. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404.

2. J. D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Mathematics, 352 (1973).

3. P. R. Garabedian, Schwarz's lemma and the Szegö kernel function, Trans. Amer. Math. Soc., 67 (1949), 1-35.

4. _____, The classes L_p and conformal mapping, Trans. Amer. Math. Soc., 69 (1950), 392-415.

5. D. A. Hejhal, Theta functions, kernel functions and Abelian integrals, Mem. Amer. Math. Soc., **129** (1972).

6. Z. Nehari, A class of domain functions and some allied extremal problems, Trans. Amer. Math. Soc., 69 (1950), 161-178.

7. ____, Bounded analytic functions, Bull. Amer. Math. Soc., 57 (1951), 354-360.

8. S. Saitoh, The kernel functions of Szegö type on Riemann surfaces, Ködai Math. Sem. Rep., 24 (1972), 410-421.

9. _____, The exact Bergman kernel and the kernels of Szegö type, Pacific J. Math., **71** (1977), 545-557.

10. ____, The Bergman norm and the Szegö norm, Trans. Amer. Math. Soc., 249 (1979), 261-279.

11. _____, Integral transform by the product of two Szegö kernel functions, J. Analyse Math., **37** (1980), 296-306.

12. ____, The Dirichlet norm and the norm of Szegö type, Trans. Amer. Math. Soc., 254 (1979), 355-364.

Received November 3, 1980.

DEPARTMENT OF MATHEMATICS FACULTY OF ENGINEERING GUNMA UNIVERSITY 1-5-1, TENJIN-CHO, KIRYU 376 JAPAN