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ON WEAK RESTRICTED ESTIMATES AND ENDPOINT
PROBLEMS FOR CONVOLUTIONS WITH

OSCILLATING KERNELS (I)

W. B. JURKAT AND G. SAMPSON

Throughout we consider K(t) = e*»'7lίlδ, a > 0, aΦl,
b < 1 and 16 R. Here we consider for fixed λ, μ > 0 the

function B(λ, μ; K) = £(Λ, μ) = sup 1 χ\{x)K* χμ(x)dx where the

sup is taken over all "characteristic" functions χ\, χμ with
complex signs (i.e., χμ is a measurable function for which
Iχ̂ l = 1 on E, \χμ\ = 0 off E and |JS7| ̂ μ(μ> 0)). We estimate
2?W, j«; JK") within constant factors from above and below.
This settles the endpoint problems for these kernels, at
least in the weak restricted sense.

0* Introduction* This paper is concerned with (Lp, Lg)-mapping
properties of the operator

g = K*f , g(x) = j K(x - »)/(i/)rfy (a?, y e Rn) ,

in particular with (weak restricted) estimates

where, e.g., Xμ denotes a "characteristic" function with complex
signs, i.e., a measurable function with \Xμ\ = 1 on i?, [Z ĵ = 0 off
#, |J5Ί ̂  i"(j« > 0). Let us denote by 5(λ, μ) = B{\ μ; K) the
quantity-

sup - s u p \\ K(x + y)Xλ(x)Xμ(y)dxdy

where the sup varies over all characteristic functions Xu Xμ with
fixed λ > 0, μ > 0. Our present problem will be to estimate B(X, μ)
as closely as possible from above and below.

In earlier papers [4], [9], [13], [14] we already discussed the
mapping properties for oscillating kernels. In [4] we gave, in part,
the mapping properties for the kernels

(2 ) K(t) -= j—(0 ΦtzR) with α>0, a Φ 1, 6 < 1
m

except for the endpoints. By means of the function J5(λ, μ) we
settle the endpoint problems in the weak restricted sense. Further-
more, we determine 2?(λ, μ) within constant factors from above and
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below. Thus for the kernels K in (2) we can determine the set
S(K) = S of all mapping points (1/p, 1/q) in the Riesz triangle 0 g
VQ ^ VP = l This will imply weak as well as strong mapping
properties at all boundary points except possibly at the vertices of
S (this is obtained through interpolation). Recently, in the paper
[10; Theorem 5 and Remark 2] we were able to prove that the
kernels in (2) satisfy strong mapping properties at the vertices B,
Bf and C of S.

In [5] and along with Stein in [7], C. Fefferman solved the
(Lp, Lq) mapping problem for these kernels in (2) with a < 0 (when
a < 0 we assume further that K has compact support). Just recently
Fefferman had pointed out to us that he also knew how to solve
the mapping problem when 0 < a < 1 (of course all of his results
apply as well to ^-dimensions). To be more precise the methods
used by Fefferman assume that the kernels K{t) = eiltι<ι/(l + |ί |) (here
t e R, 0 < α, a Φ 1) satisfy at least a regularity condition at infinity,
i.e., for some 0 < θ < 1,

\ \K(x-y) - K(x)\dx^B , for

B a positive constant independent of y. One can easily show that
the kernels K(t) = (1 + |t|)-V | t | β where a > 1, do not satisfy such
a regularity condition for any 0 < θ < 1.

Let me add that P. Sjδlin in [17] has solved some of these
mapping problems in ^-dimensions.

1* An interpolation theorem with respect to the kernel* The
usual interpolation theorems refer to two function spaces and a
corresponding decomposition / = fλ + f2. Here we consider a decom-
position of the kernel:

We make use of the decreasing rearrangement if* of K (if it exists),
so that

sup I (K{x)lμ{x)dx - [μK*(t)dt (x eRn,teR) .
xμ iJ Jo

We also make use of the (distributional) Fourier transform

K(x) =

With these notations we have the following

THEOREM 1. // K? exists and K2 is bounded then
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B(X, μ)^X \μK*{t)dt + (λμ)1/2 | |£2 |U .
Jo

Since J5(λ, μ) = B{μ, λ) there is a second inequality with λ and
μ interchanged.

Proof. Corresponding to the decomposition of K we have

B{\ μ; K) ^ B(\, μ; K,) + B(X, μ; Kt) .

Here the first term can be estimated using

\\K^Xμ\\^^ [μK*(t)dt
Jo

and the second term can be estimated using

REMARK. Observe that

K?*(μ) = — \μK?(t)dt ^ — Γ Kf(t)dt for λ ^ μ ,
μ Jo λ Jo

so that interchanging λ with μ produces a weaker inequality in the
case λ S μ. Example (2) can be used to show that the "right"
decomposition of K gives sharp estimates for all λ, μ which is rather
surprising in view of the two simple estimates used. Also note that

- sup
λ>o,χχ

q

defines a weak g-norm of g (which is equivalent to the usual weak
g-nor m). Therefore

Nq(μ) = sup IIK*Xμ ||* = sup λ '^ '^λ, μ)
x μ ^>o

can be calculated via J5(λ, μ). Note that Nq(μ) is a logarithmically
convex function in 1/q (μ fixed) since it is a sup of such functions.

2* Upper estimates for B. From now on we consider the
kernel

K(t) = ̂ —pίO ΦteR) with α > 0 , aΦl, 6 < 1 .
m

By c, cl9 c2, we generically denote suitable positive constants
which depend only on a and δ. We introduce Kw(w > 0), ίΓw(w ^ 0),
and JΓβ,,(O ̂  u < v ^ 00) by K™ = JΓ(ί) for | ί | < w, Kw = K for
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\t\ ^ w, Ku,v = K for u ^ \t\ < v and Kw = 0, Kw = 0, Ku>v = 0 else-

where.
By standard estimates (van der Corput, eg.,) we obtain for all

real x and all (admissible) w

I κw(x) ] ^ c(w + iy-w»-» if b ^ l - — ,

Furthermore

[ μ ( κ r ^ \ c m i n { μ l ' h f W l ' b ) i f δ ~ °

Jo w (c min (^w~&, 'w;1-6) if 6 < 0 ,

'KWY ^ c min (μ1~\ μw~b) if & ^ 0 .

Accordingly we distinguish between the four cases

(i) ^ i - f . ^o.

( I I ) δ ^ 1 - — , δ < 0 (implies a > 2) ,

(III) 5 < 1 - — , δ ^ O (implies α < 2) ,

(iv) b < l - - | , δ < o .

In case (IV) there will be no nontrivial estimates. In the other
cases we employ Theorem 1. Each of the cases (I), (II), (III) will
be subdivided according to λ ^ μι~a (subscript 1) or λ ^ μ1^ (sub-
script 2). Our estimates for B(X, μ) — B(X, μ; a, b) are as follows:

Case I. Using Kλ = K, K2 — 0, we obtain

( i ) B(X, μ) S eXμι-b , [B(X, μ) ^ cμxι~h] .

The first inequality is better than the second one if λ ^ μ; they
agree if δ = 0.

Using Kλ = Kw, K2 = Kw with w = (μlx)1/a ^ μ, we obtain

(λ, μ) ^ cλ^1-6 +

Since
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the last inequality above holds also in case (It) since we have the
better inequality (i) there. So we have without restrictions [by
symmetry]

( i i ) J5(λ, μ) ^ cχ'a+b-1)/aμ{1-b)/a , [B(X, μ) ^ cμ
{a+b-1)/aX{1-b)/a] .

Here the left inequality is better for λ ^ μ since a + b — I/a ^
1 — b/a; the inequalities agree if 6 = 1 — (a/2).

In total we have four inequalities in case (I). They come in
pairs, and we may always pick the first one, since λ ^ μ can be
assumed by symmetry. Then (i) is relevant (better) for (IJ and (ii)
for (I2).

Case (II). Letting Kλ = Kw, K2 = Kw with w = (μ/X)1/a ^ μ, we
obtain

1/2wι-{a/2)-bB(X, μ) £ cXw1-' + c(Xμ)1/2w

With w ^ μ we obtain

, μ) ^ cλj«w-& +

c(xμ)(a+h-2)/la-2) in case (II,) .

Observe t h a t

δ~2)/(α-2) ^ Vβ+ό-1)/βj«(1-δ)/β iff λ ^

so that the first inequality extends to (IIX) and the second inequality to
(II2). Thus we get [by symmetry] the three unrestricted inequalities

(ii) J5(λ, μ) ^ cλ(α+6-1)/α^(1-δ)/α , [B(X, μ) S Gμ
{a+b-1)/aX{1-b)/a] ,

(iii) B(X, μ) ^ c(XμYa+b-2)na-2) .

Of the first two the first one is better for λ ^ μ which can always
be assumed. Then (ii) is relevant for (II2) and (iii) for (ΠJ.

Case (III). Letting K, = K, K2 = 0, we obtain

( i ) B(X, μ) ^ cXμι~b , [B(X, μ) ^ cμx1''] .

The first inequality is better than the second one if X ^ μ.

Letting Kx = Kw, K2 = Kw with w = (λμ)1/(2~α) ^ μ we obtain

+ c(xμ)1/2w1-{a/2)~b ,
α~δ)/(2-α) in case (IΠ2) .
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Since

—»/»-> if λ ^ μι

the last inequality above extends to (IIIJ, i.e., we have without
restrictions

2~a-b)nz-a)(iii) B(X, μ) ^ c(XμY

Again, (i) is relevant for (IIIJ and (iii) for (IΠ2).
Thus we see that if X ^ μ then in each of the cases (I), (II),

(III) there is just one of the inequalities (i), (ii), (iii) relevant for
X ^ μx~a and one for X ^ μ1'". This suggests defining the following
explicit function B(X, μ; a,b) for X ^ μ:

B = χμ'~b for (Ix) , 5 = χ,( +»-i)/β/<(i-i)/. for QJ .

5 = (λ/*)(α+δ-2)/(α-2) for (IIX) , 5 - λ<
β+δ-1)/7i(ι-δ)/β for (II2)

B = Xμ1-' for (ΠIJ , B = (λ^)(2-°-δ)/(2-α) for (IΠ2)

along the dividing line λ = μι~a both definitions in (I), (II), (III) give
the same value. For λ ^ μ we define B(X, μ) by symmetry. Finally,
we set β = oo in case (IV). Then we can summarize the upper
estimates as

THEOREM 2. Always B(x, μ) <; cB(X, μ).

REMARK. We note that K can be replaced by KUtV in all upper
estimates, and that these hold true uniformly in u and v.

There is a more compact, but less explicit way to define B(X, μ):
In case (I) we had the four general upper estimates

X(Jί1~b UX1~~b \(a + b-l)/a^a-b)/a s^(a + b-l)/a^(l-b)/a

except for the constant c. Now B is simply the minimum of these
four functions and similarly in the cases (II), (III).

3* Lower estimates for B. Here we prove the opposite inequality
for jB(λ, μ;a,b).

THEOREM 3. Always B(x, μ) ^ cB(X, μ).

Thus the order of magnitude of B(X, μ) is determined for all
λ, μ. Note that the special case a = 2, b = 0 is essentially the case
of the Fourier transform. The proof of Theorem 3 is based on the
following result, where



ON WEAK RESTRICTED ESTIMATES AND ENDPOINT PROBLEMS 411

ψμ(x) = j°°̂  K(x + t)Xμ(t)dt (x, t e R)

and Xμ is our characteristic function.

PROPOSITION. There are constants clf c2 such that to each pair
of parameters δ, T with 0 < δ ^ μ, T ^ δ there exists a characteristic
function Xμ satisfying

\{x: \ψμ(x)\ > cJT~b}\ ^ e2min (T, δ~ιT2~a) .

In case that a + b > 1 this can be improved to

\{x: \ψμ(x)\ > cJT-b}\ ^ c.μδ-'miniT, δ-'T2^) .

Proof. Let

(e-ίta for t e ( Γ , T + δ)

(0 elsewhere

and observe that for 0 < x <; T

\Hx)\=\\ K{x + t)Ut)dt = \ / j

where the second difference

j(x, t) = [(x + ty - ta] - [(a? + T)a - Γα

can be estimated as

\Δ\ ^ c ^ T α - 2 ^ 1 if α;

Hence we obtain

\ψδ(x) I > c£T~h for 0 < x < X = c2 min (Γ, δ~ιT2-a) .

Taking 3^ = Zδ the first part of the proposition is clear.
Now assume a + b > 1 and observe that

as I x I —» + oo using partial integration. We set

Xμ(t) = Σ Z,(* + αjy) , ψp(αj) = Σ Ψ&
3=1 j=l

where the integer k is defined by
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the real numbers x3- are selected so that

\xt — xd\*z max (δ, X + d) for i Φ j ,

and d > 0 is selected so that

_ _π~& f o r I x I ^ d .
2k

Observe that the supports of Xδ(t + xό) are disjoint and that the
support of the characteristic function Xμ has measure kδ ^ μ;
furthermore

ψμ(x) = I K(x + t)Xμ{t)dt .

Finally, if x — xt is in the interval / = (0, X) then \x — xά\ ^ d for
j Φ i, hence

I ψμ(x) I > c£T~b - (fc - l)-^-δT~b ^ ^δT-h for x e χt + / .
Δk> Δ

Since the intervals xt + / are disjoint we have

which is the second claim with changed (smaller) constants.
Integrating the function |ψ>| over a suitable subset of size λ

gives the following

COROLLARY. Assume 0 < δ <, μ, Γ ^ δ . Then

(3) j?(λ, μ) ^

i/λ ^ c2 min (Γ, δ~1Γ2-α); m case ίΛ.aί a + 6 > 1 ί/ιe estimate (3)
m the larger range λ <; c 2^" 1min(T, δ^T2-").

REMARK. Note that in the first case of the corollary the
supports of Xμ and Xλ can be taken to be single intervals, namely
(Γ, T + δ) and (0, X) respectively. In the second case we take k
translates of each of these intervals which are spread apart by a
minimum amount (at least the size of these intervals).

In order to apply the corollary we fix λ, μ arbitrarily and select
optimal values of δ, T among those which are permitted. In terms
of log δ and log T this is a simple linear programming problem.
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In case (IV), cf. §2, we get

B(X, μ) — oo for all λ, μ ,

since (IV) can be broken down into the subcases

(IVx) a ^ 2 , 6 < 0[δ = min (μ, c2λ"x), T > + °°] ,

(IV2) a>2 , b<2-a[δ = c^T2"1, T > + <χ>] ,

α > 2 , & < 1 - - | ,

6 ^ 2 - α ( > l -a)\δ = (%£•) Γ1-(<ι/2), T > +<χ> .

In what follows we assume λ ^ j« since jβ(λ, j«) is symmetric.
Remember that (i) was relevant for (It) and (IΠi), i.e., if 6 ^ 0 and
λ ^ i«

1~α. We will now show that

(i ') B(\ μ) ^ cXμ1-1 if λ ^ μ1-* ,

so that (i) is optimal where it is relevant: simply choose in the
corollary

T - ϋ , δ = min (1, ci"1, cj-1)^ .
c2

Remember that (ii) was relevant for (I2) and (II2), i.e., if b ^
1 — (a/2) and λ ^ μ1**. We will now show that

(ii') B(\μ)^cX{a+b-1)/aμ{1-h)/a if δ ^ 1 - - J - , X^μ1-,

so that (ii) is optimal where it is relevant: since a + b > 1,
(μ/X)1/a ^ μ simply choose in the corollary

Finally, remember that (iii) was relevant in (IIJ and (IΠ2), i.e.,
in case (II) with λ ^ ^'"^ and in case (III) with λ ^ μ1-*. We will
now show that

la > 2, λ < ^ -
(iii') 1KX, μ) 6 ,>(Xrt»«— if j -ς

so that (iii) is optimal where it is relevant: since (xμ)1/i2~a) >̂ μ
simply choose in the corollary

T - i-(λAθVίϊ-β) , δ - min (1, cr1, ^α"1)i« .
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The lower estimates are summarized in Theorem 3.

4* Applications* In this section we will determine the weak
restricted mapping set S(K) as consequence of our estimates for
2?(λ, /̂  α, 6), and we will also determine the order of magnitude of

We begin with S(K). It is convenient to introduce the following
four linear functions in 1/q:

7X = 1 - 6 + — , τ2 = 1 - 6 + (1 — o)lQ ,
Q

ry - ! l - α - 6 + l/ί
/3 — 9 '4 —

g 1 — α

A point (1/p, 1/q) with 1 <; p <; oo, 1 < g < oo is of weak restricted
type if (1) holds, i.e., if both

hold (by symmetry). Using the simple cases λ = μ1'01 and λ = μ of
Theorem 3 we obtain the following necessary conditions

μi-aμi-b ^ Cpqμ
{1-a)/g'μ1/p for μ ^ 1 ,

μi-aμi-b ^ Cpqμ
1/qfμa~a)/p for ^ ^ 1 ,

AΦ1-* ^ cpqμ
1/q'μ1/p for /£ ̂  1(6 ^ 0) .

By letting μ—> + °° resp. j«—> + 0 we get the three inequalities

72 ^ — , 74 ^ —(if a < 1) or 74 ^ —(if α > 1) ,( ) 4

V V

7i ^ —(if 6 ^

We can add to this the well known necessary condition q ^ p, i.e.,
73 ^ 1/p We are going to show that these inequalities are not only
necessary but also sufficient (for 1 < # < O O ) ? i.e., they describe the
set S(K).

To get a clearer geometric picture of the situation we introduce
the following five points in the (1/p, l/g)-plane:

A = (1 - 6, 0) , A! = (1, b)

n - A - b l-b\ R, _ fa + b - 1 α + 6 - 1\

and

(SL+ln2 _ 1 _ ) if α ^ 2 .
α - 2 2 - o/
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Furthermore we consider the straight lines

k- 7i == — passing through A, A! ,
P

l2: 72 = — passing through A, B, C ,
P

ί3: 73 = — passing through B, Bf ,
P

l4: y, = λ. passing through A\ B', C = C .
P

Next we describe the set characterized by the linear inequalities
above:

In case (I) we have the closed quadrilateral [A, A\ Bf, B] except
the vertex A where q = °o (see Figure 1). Outside the quadrilateral
there are no mapping points as we have seen. The vertices A, A!
correspond directly to the inequalities (i); thus A is of strong
restricted type and A' is of weak type. Similarly the vertices B, B'
correspond directly to the inequalities (ii). Then all the points of
the quadrilateral are of weak restricted type by trivial convexity.

In case (II) we have the closed triangle [B, C, B'], see Figure 2.
Again the vertices correspond to our main upper estimates, in
particular C corresponds to (iii).

In case (III) we have the closed triangle [A, A', C] except A,
see Figure 3.

Figure 1
(α = 3, 6 = 1/2)

Figure 2

(a = 4, b = -1/2)

Figure 3
(α = 2/3, b = 1/2)

In case (IV) the set S(K) is empty. The set S(K) can degenerate
into a line segment or a single point. We summarize these results
as follows:

THEOREM 4. The weak restricted mapping set S(K) is in case
(I) the closed quadrilateral [A, A\ Bf, B] except A, in case (II) the
closed triangle [B, C, B'] in case (III) the closed triangle [A, A\ C]
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except A, and empty in case (IV).

REMARKS. Observe that the boundary of S{K) consists of line
segments which are neither horizontal nor vertical. Since the
endpoints are of weak restricted type or strong restricted type the
interior points of these line segments must be strong mapping points
by the convexity theorem of Stein-Weiss. The same is true for the
interior of S(K) anyway. So the only points which need further
clarification with regard to their mapping character are the vertices
A, A'\ B, B1\ C. It is easy to see that A is strong restricted but
not strong and that A! is weak but not strong (6 > 0). Hence only
B, B', C present a problem. We will show in a subsequent paper
that C is strong also, which leaves only the character of B, B'
partially undecided. This is settled in [10].

Finally we will determine the precise order of magnitude of
Nq(μ). This gives a more detailed picture of the mapping properties
and is based on the calculation of

Nq(μ) = sup X-^'BiX, μ) .
;>>o

Since B is explicit one can work out Nq explicitly also. The calcu-
lation is lengthy, but entirely elementary; so we will drop the
details. We find that whenever Nq < oo then it is of the form

Nq(μ) = μ**(μ ^ 1) , Nq{μ) = μh(μ ^ 1) .

To describe Nq we distinguish between a < 1 and a > 1 in our cases
(I), (II), (III).

In case (I) with a < 1:

If 1/q > 6 then Nq(μ) = co for all μ; if 1/q ^ 6 then Nq < oo and

aq = 7i, βq - max (τ2, γ3, τ4).
In case (I) with a > 1:

If 1/q > ( α + b - l)/α then Nq(μ) = co for all μ; if 1/q ^ (α + b - ΐ)/a
then Nq < oo and aq = min (yu τ4), βq = max (τ2, 78).

In case (II), where automatically a > 2:
If IIq < -6/(α - 2) or 1/q > (α + b - 1)1 a then Λζ(μ) = cχ3 for all μ\
if - 6 / ( α - 2 ) ^ l / g ^ ( α + δ - l ) / α then iVg < oo, α, - 74, βq =
max(72, 78).

In case (III) with α < 1:

If l/<7 > 6 then Aζ(μ) = oo for all μ\ if 1/q ^ b then iVg < oo and

α g = 7i, A = max(72, 74)
In case (III) with a > 1:

If 1/q > 6/(2 - α) then Nq(μ) = oo for all μ; if 1/g ^ 6/(2 - α) then
Nq < co and αff = min (7i, 74), βg = 72

In case (IV): i\ζ(μ) = co for all μ.
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Note that also Nq(μ) is logarithmically convex in 1/q. In view
of Theorems 2 and 3 we have

THEOREM 5. Always c3Nq(μ) ^ Nq(μ) ^ c4Nq(μ).

This determination of Nq will, of course, give the mapping set
S(K) again. But it is interesting to see that conversely the linear
forms 7i, 72, 73, 74 which correspond to the line segments of the
boundary of S(K) turn up in the exponents aq and βq of Nq.
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