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A GRAPH THEORETIC PROOF OF SHARKOVSKY'S
THEOREM ON THE PERIODIC POINTS OF

CONTINUOUS FUNCTIONS

CHUNG-WU HO AND CHARLES MORRIS

Let / be a continuous real valued function defined on
the real line. If / has a periodic point of period k, does /
have to have a periodic point of some other period m? A
Russian mathematician, A. N Sharkovsky obtained a complete
answer to this question. Sharkovsky's result is elegant, how-
ever, his proof is difficult. Recently, P. D. Straffin attempted
to give a simple proof of the sufficient part of Sharkovsky's
theorem by means of directed graphs. However, his proof
contains a gap. In this paper, the authors fill in the gap in
Straffin's work. They also give a proof of the necessary
part of the theorem, which is also based on directed graphs,
and thus, obtain a complete simple proof of Sharkovsky's
theorem.

!• Introduction. Let f:R-+R be a continuous function. If
/ has a periodic point of a period k, must / also have points of other
periods m Φ kΊ In 1975, T.-Y. Li and J. Yorke published a surprising
result on this question: If f:R—>R has a point of period 3, then it
has points of all other periods [3]. However, unknown to Li and
Yorke, a Russian mathematician, A. N. Sharkovsky had already
published a more surprising result in 1964; namely, a complete answer
to the question ([4], see also [5]). Arrange the poitive integers into
the following sequence:

3,5,7,9, ...,3-2,5.2,7.2, ...,3.2 2,5 22, . . . , , 23, 22, 2, 1 .

Sharkovsky's theorem says that a function f:R—>R having a point
of period m, must also have points of period n precisely when m
precedes n in the above sequence.

Sharkovsky's proof, however, is long and complicated. In the
words of P. D. Straffin, "He constructs so many sequences of points
that eight complex figures and most of the letters of the Greek
alphabet are necessary to keep track of them." ([6, p. 104]). Straffin
attempted to give a simpler proof of the sufficient part of Sharkovsky's
theorem, i.e., period m implies period n if m precedes n in the above
sequence. Straffin's method is interesting. Corresponding to a periodic
point of /, he constructed a digraph (i.e., a directed graph). He
showed that the existence of certain cycles of length k in the digraph
implies the existence of periodic points of a period k for / [6].
However, Straffin did not quite succeed in proving the sufficient part
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of Sharkovsky's theorem. His proof contains a gap. In this paper,
we fill in the gap described by Straffin. Again using digraph, we
shall also prove that the Sharkovsky's sequence is strict, and thus,
obtain a complete simple proof of Sharkovsky's theorem. We are
informed recently that F. Fuglister has also found an independent
proof of the theorem, and that the digraphs of our Figure 4 have also
appeared in a summary of Straffin's work in [1, Chapt. 6]. Besides,
we would like to point out that Sharkovsky's theorem can also be
proved for a certain class of smooth functions by means of symbolic
dynamics (see [2]). In §11 below, we first summarize Straffin's main
results. Our proof of Sharkovsky's theorem will be presented in
§111. For completeness, part of the standard argument used by
previous authors will also be repeated here. Finally, a few observa-
tions and a question will be listed in §IV.

II. A summary of Straffin's results* Let / : R —> R be a continu-
ous function and x be a periodic point of / of period k. Let a be the
smallest number among x and its iterates under /. Mark these points
on the real number axis. They divide the real line into two infinite
rays and k — 1 finite intervals. These finite intervals are to be
labeled as Ilf I2, , Ik_x from left to right. Let s4 and tt be the end
points of the interval It. We say that there is a direction from the
interval I* to the interval Iό if I5 lies in between the two points
f(Si) and f(ti). A directed graph can then be formed by using vertices
corresponding to these intervals. The vertices are again labeled
Il9 I2, •••, /fc_!. A directed arc is drawn from the vertex It to the
vertex I3 if there is a direction from the interal /* to the interval //.
This directed graph is called a k-periodic digraph of /. As an example,
a function with a periodic point a — 0 of period 4, and the corre-
sponding 4-periodic digraph are given in Figures 1 and 2 respectively.

A cycle in the periodic digraph is said to be a nonrepetitive
cycle if it does not consist entirely of a cycle of smaller length traced
several times. For instance, the cycle IJJJ^ in Figure 2 is a
repetitive cycle of length 4, while I1IZI1 is a nonrepetitive cycle of
length 2. The usefulness of digraphs is demonstrated by the following
theorem of Straffin [6].

THEOREM 2.1. If a k-periodic digraph of f has a nonrepetitive
cycle of length m, then f has a periodic point of period m.

1 Our definition is slightly different from that of Straffin. He requires the graph
to have a directed arc UIj if f(Iτ) D IJ. This difference can be seen for the function
in our Figure 1. His definition would require an arc from I2 to 7Ί. However, it appears
that Straffin was actually using a definition equivalent to ours; for otherwise his
enumeration of all 5-periodic digraphs [6, p 13] would not be complete.
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FIGURE 1

FIGURE 2

It is easy to show that the converse of this theorem is not true
in general. However, a partial converse will be proved in §111 (see
Proposition 3.5). Using this theorem, Straffin gave a very simple
proof of Li and Yorke's result that period 3 => period m for all m.
He then established the following

THEOREM 2.2. If a continuous function f:R->R has a point
of odd period k > 1, then it must have periodic points of all periods
greater than or equal to k — 1.

In proving this theorem, Straffin used an idea which we shall
use later. For ease of reference, we state this idea in terms of the
following

LEMMA 2.3. A k-periodic digraph of a continuous function
always contains a cycle of length k in which some vertex is repeated
exactly twice.
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The cycle of length k constructed by Straffin in general may be
a repetitive cycle (e.g., Straffin's method, if applied to the function
in our Figure 2, yields a repetitive 4-cycle). However, since this
A-cycle contains a vertex / exactly twice, it can always be decom-
posed into two smaller cycles, each of which contains I exactly once,
and therefore, both of the smaller cycles are nonrepetitive.

ILL Proof of Sharkovsky theorem* The theorem will be
proved by a sequence of propositions.

PROPOSITION 3.1. // a continuous function f:R—>R has a point
of odd period 2n + l(n^l), then it must have periodic points of all
even periods.

Proof. When n = 1, the assertion follows from Li and Yorke's
result. We shall consider the case when n > 1. First construct a
2w + 1 periodic digraph of /. By Lemma 2.3 and following comments,
the digraph has a (2n + 1) cycle, which decomposes into two smaller
nonrepetitive cycles, one of which has an odd length. If this odd
length cycle has a length greater than 1, the proposition is immediately
proved by induction. Hence, we may assume that the (2n + 1) cycle
decomposes into a 1 cycle and a 2n cycle. Let J1 be the vertex
connecting the 1 cycle and the 2n cycle, and label the 2n cycle,
starting with Jlf by JJ2 J2nJ1.

We may assume that the 2n cycle does not contain any proper
subcycle of length greater than 1 which contains Jx as a vertex,
for otherwise, we may choose a nonrepetitive such subcycle, and
then either add or not add the 1 cycle to this subcycle to get a
nonrepetitive cycle of an odd length which is strictly between 1 and
2n + 1, and thus, complete the proof by induction. Consequently,
we may assume that in the 2n + 1 periodic digraph, each vertex
Jt(l < i < 2n) cannot be directed to any vertices Jk for k > i + 1,
or for k — 1, for otherwise, we may bypass a few vertices and
obtain a proper subcycle of length greater than 1 which contains Jλ

as a vertex. Similarly, because of the 1 cycle at J19 the vertex J±

is directed only to Jx and J2, but not to any other vertices.
Let JL = Im, the mth finite interval in the partition of the real

line by the images of the periodic point (see §11). Since Jλ is directed
only to J1 and J2, J2 must be an interval just next to Im9 and / must
carry one of the end points of Jγ into an end point of Jlf and the
other end point of Jγ into an end point of J2. Let b be the end
point of Ji such that f(b) is again an end point of Jx. Since the
point b is of the period 2n + 1, f(b) Φ b. Therefore, there are only
two possibilities:



ON SHARKOVSKY'S THEOREM] 365

( 1 ) Jι = U>, /(&)], and in this case, J 2 = 7 . ^ = [/*(&), b].
(2 ) J, = [/(6), b), and J 2 = /m + 1 = [b, /2(6)].

By symmetry, we shall treat only the first case.

fψ) b f(b)

Note that f\b) > /(δ), for otherwise, we would have f(b)<f\b), and
therefore, J2 would have to be directed to J1# Also since J2 is not
directed to any Jk for k > 3, we conclude that J3 lies to the right of
J19 and J3 - [f(b), fib)]. Similarly, f\b) < f\b) and J4 = [f(b\ /2(6)].
Continuing this argument, we conclude that the intervals Ju 1 <£ i ^
2w, must be located in the real line as follows:

ij2>ι i " i h i h l 7 l i h i — ' " i72-11
/2»(£) /2n-2(i) . . . fAψ) f2(b) b f(b) fψ) - f*n-ψ) f2n-ψ)

where f2n+1(b) = b and J2n is directed to Ju Jz, , J ^ ! . In particular,
the 2w + 1 periodic digraph must contain the subgraph

Jin -2

from which the existence of all even periods is clear.

PROPOSITION 3.2. // a continuous function f:R~~>R has a point
of any period k, it must have a point of period 1. Also, if f has
a point of any period k > 1, then it has a point of period 2.

Proof. We shall only prove the second assertion. The first one
can be proved in a similar manner (for an alternate simple proof of
the first assertion see [6, p. 99]). The statement is trivially true
for k = 2. Now suppose k >̂ 3. By Lemma 2.3, the corresponding
^-periodic digraph of / contains a k cycle, which decomposes into
two nonrepetitive subcycles, at least one of which has a length
greater than 1. Thus, the statement follows by induction.

PROPOSITION 3.3. Let f:R-*R be a continuous function. If h
precedes k in the Sharkovsky's sequence, and if f has a point of
period h, then f must have a point of period k.

Proof. The proposition can now be proved with standard argu-
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ments on the appropriate iterates of /. For completeness, we shall
give a brief outline. First consider the case when h = (2m + 1) 2S

and k = (2n + 1) 2* where m, n, s, t are nonnegative integers such
that either (1) s < t and m > 0 or (2) s = t but 0 < m < n. Applying
Proposition 3.1 and Theorem 2.2 respectively in these two cases to
the function g = f2S, we may get a periodic point x for g of the
period {2n + l)-2*~s. It is straightforward to show that x is periodic
point of period (2n + 1) 2* for /.

Then consider the case when h = (2m + 1) 2s and k = 2* for some
integer m ̂  0 and positive integers s and t such that either (a) m > 0,
or (b) m = 0 but s ^ £. Note that in Case (a) we may also assume
that s ;Ξ> t, for otherwise, it reduces to Case (1) of the preceding
paragraph. Now with this assumption, apply Proposition 3.2 to the
function g = /2*"~\ In either case we get a point x of period 2 for
g. It is straightforward to show that x is of period 2* for /.

The above two paragraphs together with the implication that
any period h implies period k = 1 cover all the possibilities for h and
k where h precedes k in the Sharkovsky's sequence.

To prove that the Sharkovsky's sequence is strict, we need a
kind of converse for Theorem 2.1 so that periodic points can completely
be determined by cycles in the digraphs. For this purpose, we
introduce the following.

DEFINITION 3.4. Let f:R—>R be a continuous function and xQ

be a point of period k for /. The A -periodic digraph of / for the
point xQ is said to be faithful if for each vertex Ii in the digraph,
Ju J*> '' , Jn are the vertices to which Iό is directed, then f(I5) =

PROPOSITION 3.5. Let f:R—>R be a continuous function, x0 be
a point of period k for /, and Ilt I2, , Ih_x be the finite intervals
in the partition of the real line by the images of x0. Suppose the
k-periodic digraph of f for the point x0 is faithful. Then whenever
f has a point of period p in the set U t ί -Ό the k-periodic digraph
contains a cycle of length p.

Proof. Let b e I3-, for some j , be a point of period p for /. Set
this interval I5 = Γ. Since f(Id) = (J?=i «Ό there exists an interval
I1 such that /(&) 6 Γ. Continuing this process, we obtain intervals
P, •••,!* such that /(P)=>P+ 1, and for each i,f(b)eF. Hence,
P = 1°. This yields a p-cycle in the digraph.

REMARK 3.6. The p-cycle obtained in the preceding proposition
may be a repetitive cycle in general. However, if we further require
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the function / to be monotone over each interval Iit i = 1, 2, ,
k — 1, then for each p > 1, the corresponding p-cycle cannot consist
entirely of a 1-cycle traced several times.

PROPOSITION 3.7. For each n ^ 2, £&ere e#ίste α continuous
function f:R-+R, which has a point of period 2n + 1, but has no
point of period 2m + 1 for any m with 1 g m < n.

Proof. Let / be a piecewise linear function whose graph is
given by Figure 3.
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The point ^ is a periodic point of period 2n + I for /. In fact,
/(w) = n - 1, /2(τt) = n + 1, /3(^) - n - 2, / 4 W = n+2, , Z 2 - 1 ^) =
0, f\n) = 2Λ, and /2w+1(^) = n. If we let Jx = [/(τι), ^ ] , J3 = [/3(n),
/W], , J*-i = ir-\n), f2n-3(n)] and /, = [%, /2(tι)], J4=lf*(n), f\n)],
-', J*n = [Pn~\ri), p\ri)], then in the corresponding 2n + 1 digraph,
Jx is directed to Jx and /2. For each i, l< i < 2n, the vertex Jt is
directed only to J ί + 1, and J2% is directed to J2k_t for every A; with
l^k^n. The digraphs for the cases n = 3 and n = 4 are given
in Figure 4.
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Digraph fo? n = 4

Observe that except for a repetition of the 1-cycle at Jlf the only
cycles with a length < 2n + 1 in the 2n + 1 periodic digraph are
those of an even order. Thus, the proof is completed by Proposition
3.5 and Remark 3.6.

PROPOSITION 3.8. Let h and k be two positive integers such that
h precedes k in Sharkovsky's sequence. There always exists a
continuous function from R into R which has a point of period
k but no point of period h.

Proof. The proof of this general result follows from the preceding
proposition by a more or less standard procedure of taking the
"square root" of a function. We shall outline the main idea below.
Suppose / : [α, 6] —> [a, b] is a continuous function which has a point
of period 2n + 1 in the interval [α, 6], but no point of period 2m + 1
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for m with 1 ^ m < n. Let [c, d] be an interval disjoint from [α, 6],
say b < c, and let g: [a, b] —> [c, <2] be an arbitrary homeomorphism.
Then, define a continuous function r: R -> R by letting r{x) = g°f(x)
for # e [α, 6], r(a?) = sr^x) for α? e [c, d], r = a linear function on the
interval [b, c], and r Ξ constant for (—oof a] and for [d, +°°).

Observe that r2(#) = f{x) for each α? e [α, 6] (hence, the name
"square root"), and r\x) — gfg~\x) for each x e [c, d]. But conjugate
functions have the same periodic points. The function r has points
of period (2n + 1) 2 but no point of period (2m + 1) 2 for 1 ^ m < w.
Furthermore, r does not have any point of an odd period > 1, for
under an odd iterate of r, the points of [α, 6] and [c, cZ] are carried
into the "wrong" interval. Repeated applications of this process
yield functions which has points of period (2n + 1) 2*, but no points
of period (2m + 1) 2S where either s < t, or s = t but 1 <; m < w.

It is easy to construct a function which has fixed points in a
closed interval but no points of a period > 1. Repeated applications
of the above process on this function will give rise to examples which
cover other cases of h and k in the Sharkovsky's sequence. This
completes the proof of Proposition 3.8, and thus, also the proof of
Sharkovsky's theorem.

IV* Some comments*

REMARK 4.1. Our argument can be modified for functions
/: [a, b] —> [α, b] for some interval [a, 6], and the examples constructed
in Propositions 3.7 and 3.8 can clearly be made into smooth functions.
Therefore, one can use Sharkovsky's theorem for different classes of
functions, continuous or smooth, defined on a finite interval or on
the entire real line.

REMARK 4.2. Each periodic point for a continuous function
f:R—>R gives rise to a periodic digraph. However, not every
directed graph can be the periodic digraph of some function.

Question, Under what condition can a directed graph be the
periodic digraph of some continuous function f:R-^RΊ

REMARK 4.3. If a directed graph is realizable as a periodic
digraph of some function, then there are infinitely many such func-
tions. For if a directed graph is a fc-periodic digraph of some function
/ for a point x of period k, then any other function g which agrees
with / on the k points x, f(x), , fk~\x) also has the directed graph
as its ^-periodic digraph. However, among these infinitely many
functions, the "simplest" ones will be those which are monotone
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over each of the intervals in the partition of the real line by the
images of x. For by our results in §111, these functions have only
those periodic points which correspond to a cycle in the given digraph.

Added in Proof. An independent proof of this theorem, also
based on diagraphs, was discovered jointly by Block, Guckenheimer,
Misiurewicz and Young. Their paper, "Periodic points and topological
entropy of one dimensional maps," will appear in the Proceedings of
the Northwestern University Dynamical System Conference (Springer
Lecture Notes No. 819).
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