## AN INVESTIGATION OF REAL DIVISION ALGEBRAS USING DERIVATIONS

## GEORGIA M. BENKART AND J. MARSHALL OSBORN

In a recent paper, "The derivation algebra of a real division algebra", we showed that if  $\operatorname{Der} A$  is the derivation algebra of a finite dimensional division algebra A over the reals, then

- (i) dim A = 1 or 2 implies Der A = 0,
- (ii) dim A = 4 implies Der A is su(2) or dim Der A = 0 or 1,
- (iii)  $\dim A = 8$  implies  $\operatorname{Der} A$  is one of the following Lie algebras:
  - (1) compact  $G_2$
  - (2) su(3)
  - (3)  $su(2) \bigoplus su(2)$
  - (4)  $su(2) \oplus N$  where N is an abelian ideal and dim N=0 or 1
  - (5) N where N is abelian and dim N = 0, 1 or 2.

Moreover, any subalgebra of Der A is isomorphic to one of the Lie algebras listed above.

For each Lie algebra L appearing in (i), (ii), and (iii) we also exhibited a real division algebra having L as its derivation algebra without proving that the derivation algebra was as asserted. One of the goals of this present paper is to verify that these examples have the derivation algebra claimed, but our main purpose is broader than this. Using the representation theory of Lie algebras we investigate those real division algebras A having L as its derivation algebra for each of the nonzero Lie algebras L mentioned above. The larger that L is, the more detailed is the information concerning the structure of A. As one might expect, most of the classes of division algebras are natural generalizations of the quaternions and octonions. The principal exception is a family of division algebras which includes the pseudo-octonions introduced by Okubo in "Pseudo-quaternion and pseudo-octonion algebras."

1. A review of some basic results on representations. Throughout this paper we will assume that all algebras and modules are finite dimensional. Let A be an algebra over a field F of characteristic 0, and assume L is a semisimple subalgebra of the derivation algebra Der A. Since A is an L-module, it decomposes into irreducible summands:  $A = V_1 \oplus \cdots \oplus V_n$ . Moreover, the product of  $V_r \times V_s$  into A followed by the projection onto  $V_t$  induces an L-module homomorphism of  $V_r \otimes V_s$  into  $V_t$ . Conversely, by taking a sum of irreducible L-modules  $A = V_1 \oplus \cdots \oplus V_n$  and prescribing

L-module homomorphisms from  $V_r \otimes V_s$  into  $V_t$  for all r, s, t, one achieves an algebra structure on A such that  $L \subseteq \text{Der } A$ . In case F is algebraically closed the dimension of  $\text{Hom}_L(V_r \otimes V_s, V_t)$  can be determined using

PROPOSITION 1.1. Let L be a semisimple Lie algebra over an algebraically closed field of characteristic 0. Assume U is an L-module and W is an irreducible L-module. If  $U = U_1 \oplus \cdots \oplus U_m$  where the  $U_i$  are irreducible L-submodules, then  $\dim \operatorname{Hom}_L(U, W)$  equals the number of  $U_i$  isomorphic to W.

Since this is a standard result we give only a brief outline of the proof. Using the uniqueness of the decomposition of U and Schur's lemma, one can show that the homomorphisms  $\pi_i$  (projection of U onto  $U_i$  followed by an isomorphism onto W) form a basis for  $\operatorname{Hom}_L(U, W)$ .

In case U is an L-module over an arbitrary field F of characteristic 0, we can take the algebraic closure K of F and form the module  $U_K = U \bigotimes_F K$  for  $L_K = L \bigotimes_F K$ , and then apply Proposition 1.1 to  $U_K$ . We examine the effect of this field extension on certain submodules of U.

Suppose  $U=U_1\oplus\cdots\oplus U_m$  is a decomposition of U into irreducible L-submodules. Let  $U_0$  be the sum of all the trivial 1-dimensional summands and  $U_*$  be the sum of the others. Then  $U=U_0\oplus U_*$  and one readily verifies that:

$$U_{\scriptscriptstyle 0} = \{u \in U | \, lu = 0 \, ext{ for all } \, l \in L \}$$
  $U_* = LU$  .

The submodules  $U_0$  and  $U_*$  behave nicely relative to field extensions as the next lemma indicates.

**LEMMA 1.2.** (i) 
$$(U_0)_K = (U_K)_0$$
  
(ii)  $(U_*)_K = (U_K)_*$ .

*Proof.* From our alternate characterizations above, it follows that  $(U_0)_K \subseteq (U_K)_0 = \{x \in U_K \mid lx = 0 \text{ for all } l \in L_K\}$ , and  $(U_*)_K = (LU)_K \subseteq L_KU_K = (U_K)_*$ . But since  $U_K = (U_0)_K \oplus (U_*)_K \subseteq (U_K)_0 \oplus (U_K)_* = U_K$ , equality must hold in each case.

In view of the above remarks, an equivalent formulation of Lemma 1.2 (ii) is that the extension  $(LU)_{\kappa}$  equals the image of  $U_{\kappa}$  under  $L_{\kappa}$ , which is  $L_{\kappa}U_{\kappa}$ .

We now turn our attention to the case that A is a real division

algebra. According to the result stated in the introduction, the only possible semisimple subalgebras of Der A are compact  $G_2$ , su(3),  $su(2) \oplus su(2)$ , and su(2). Each of these Lie algebras contains a copy of su(2) so that if Der A contains a semisimple algebra, A decomposes into irreducible su(2)-modules. Irreducible su(2)-modules are most easily described by complexifying and regarding the resulting module as an sl(2)-module. Again the results we mention are quite well-known ([4] or [6]), but our aim is to develop the background needed for later sections.

Let  $h=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ ,  $e=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ , and  $f=\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$  be the standard basis for sl(2) over the complex numbers C. Given any integer  $m\geq 0$ , there is a unique irreducible sl(2)-module V(m) having dimension m+1. We can choose a basis  $Z_m, Z_{m-2}, \cdots, Z_{m-2m}=Z_{-m}$  for V(m) so that:

$$hZ_r = rZ_r \ eZ_r = rac{m-r}{2}Z_{r+2} ext{ where } Z_{m+2} = 0 \ fZ_r = rac{m+r}{2}Z_{r-2} ext{ where } Z_{-m-2} = 0 \ .$$

Now  $su(2) = \{x \in sl(2) | \bar{x}^t = -x\}$ , and a basis for su(2) can be obtained by taking  $\partial_1 = ih$ ,  $\partial_2 = e - f$ , and  $\partial_3 = ie + if$ . The effect of these elements on the basis of Z's is given by:

$$egin{align} \partial_1 Z_r &= i r Z_r \ \partial_2 Z_r &= \Big(rac{m-r}{2}\Big) Z_{r+2} - \Big(rac{m+r}{2}\Big) Z_{r-2} \ \partial_3 Z_r &= i \Big(rac{m-r}{2}\Big) Z_{r+2} + i \Big(rac{m+r}{2}\Big) Z_{r-2} \;. \end{align}$$

Let us consider the case that m=2n, and hence that dim V(m)=2n+1 is odd. In this situation we define:

$$egin{aligned} U_q &= Z_{2q} + (-1)^q Z_{-2q} & ext{ for } q = 0, \; \cdots, \; n \ V_q &= i Z_{2q} - (-1)^q i Z_{-2q} & ext{ for } q = 1, \; \cdots, \; n \ V_0 &= V_{n+1} = U_{n+1} = 0 \; . \end{aligned}$$

The action of su(2) on the U's and V's can be readily computed using (1.4) to show that for  $q = 1, \dots, n$ :

$$egin{aligned} \partial_1 U_q &= 2 q \, V_q \ \partial_1 V_q &= -2 q \, U_q \end{aligned} \qquad \qquad \partial_1 U_0 = 0$$

$$\begin{aligned} \partial_2 U_q &= (n-q) U_{q+1} - (n+q) U_{q-1} & \partial_2 U_0 = 2n U_1 \\ \partial_2 V_q &= (n-q) V_{q+1} - (n+q) V_{q-1} \\ \partial_3 U_q &= (n-q) V_{q+1} - (n+q) V_{q-1} & \partial_3 U_0 = 2n V_1 \\ \partial_3 V_q &= -(n-q) U_{q+1} - (n+q) U_{q-1} \end{aligned} .$$

Thus, if we regard V(m) where m=2n, as a real su(2)-module, the U's and V's generate a su(2)-submodule of dimension m+1 over R, call it W(m). It is not difficult to verify that W(m) is irreducible and that  $V(m)=W(m) \oplus iW(m)$  as a real su(2)-module.

The situation when m is odd is completely different. Here V(m) is an irreducible su(2)-module over R.

Let us assume W is any irreducible su(2)-module. Then  $W_c = W \bigotimes_R C$  is an sl(2)-module and as such, it decomposes into irreducible submodules of the type V(m). Now  $W_c$  as an su(2)-module is isomorphic to exactly two copies of W. Thus when we regard the V(m) summands as real su(2)-modules we must have a total of two irreducible su(2)-summands each isomorphic to W. When W has dimension 2n+1 this implies W is isomorphic to W(2n) and  $W_c \approx V(2n)$ . If W has dimension 4n, then  $W_c \approx V(2n-1) \oplus V(2n-1)$  and  $W \approx V(2n-1)$  when V(2n-1) is regarded an su(2)-module. There can be no irreducible su(2)-module of dimension 2(2n+1), so in fact, the smallest nontrivial su(2)-module is su(2) itself.

The Clebsch-Gordan formula provides the answer as to how the tensor product of two irreducible sl(2)-modules decomposes:

$$(1.6) V(m) \otimes V(n) = V(m+n) \oplus \cdots \oplus V(|m-n|).$$

Thus

$$\dim \operatorname{Hom}_{sl(2)}(V(m) \otimes V(n), \ V(s)) = egin{cases} 1 & ext{if } s = m+n, \, m+n-2, \, \cdots, \, |\, m-n\,| \ 0 & ext{otherwise}. \end{cases}$$

Since for any real Lie algebra L and for any three L-modules U, V, W,  $\dim_R \operatorname{Hom}_L(U \otimes V, W) \leq \dim_c \operatorname{Hom}_{L_C}(U_c \otimes V_c, W_c)$ , the Clebsch-Gordan formula determines a bound for  $\dim_R \operatorname{Hom}_{su(2)}(U \otimes V, W)$ .

In addition to results on su(2) and sl(2)-modules we require some facts concerning irreducible modules for  $sl(2) \oplus sl(2)$ , sl(3), and  $G_2$ . These facts can be established using arguments in ([4], Chapter 6) or ([6], Chapters 7 and 8).

Given a semisimple Lie algebra L over an algebraically closed field of characteristic 0 with Cartan decomposition  $L = H \oplus \sum_{\alpha \in \emptyset} L_{\alpha}$ , there are certain linear functionals  $\lambda_1, \dots, \lambda_l$  on H, (the so called fundamental weights) which span the dual  $H^*$  of H. The irreducible L-modules are in one-to-one correspondence with the elements

in  $H^*$  of the form  $\lambda = m_1 \lambda_1 + \cdots + m_l \lambda_l$  where the  $m_i$  are nonnegative integers. Following Humphreys we denote the irreducible module corresponding to  $\lambda$  as  $V(\lambda)$ . (In this notation the sl(2)module V(m) would be  $V(m\lambda_1)$ . The dimension of the module  $V(\lambda)$ is given by Weyl's formula ([4], p. 140), and the tensor product of  $V(\lambda)$  and  $V(\lambda')$  can be resolved into irreducibles using either Steinberg's formula ([4], p. 141) or calculations involving weights and their multiplicities.

Real division algebras exist only in dimensions 1, 2, 4 and 8, and as the result in the introduction indicates, the only time that  $su(2) \oplus$ su(2), su(3), and compact  $G_2$  occur in Der A is when dim A=8. Therefore when we decompose  $A_c$  into irreducible summands for  $sl(2) \oplus sl(2)$ , sl(3), or  $G_2$ , the  $V(\lambda)$  are constrained by dim  $V(\lambda) \leq 8$ , and the sum of the dimensions must total 8.

Since every  $sl(2) \oplus sl(2)$  irreducible module is just the tensor product of two irreducible sl(2)-modules, one can handle these modules using the above considerations.

For the Lie algebra  $sl(3) = A_2$ , Weyl's dimension formula reads: dim  $V(m_1\lambda_1 + m_2\lambda_2) = 1/2(m_1 + 1)(m_2 + 1)(m_1 + m_2 + 2)$ . Using this expression one easily computes that the only modules of dimension less than 8 are given by

|               |                                                                                                                                      | dimension | notation       |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
|               | V(0)                                                                                                                                 | 1         | 1              |
| (4 <b>=</b> ) | $V(\lambda_{\scriptscriptstyle 1})$                                                                                                  | 3         | 3              |
| (1.7)         | $V(\lambda_2)$                                                                                                                       | 3         | $\bar{3}$      |
|               | $V(2\lambda_{\scriptscriptstyle 1})$                                                                                                 | 6         | 6              |
|               | $egin{array}{c} V(2\lambda_{\scriptscriptstyle 2}) \ V(\lambda_{\scriptscriptstyle 1} + \lambda_{\scriptscriptstyle 2}) \end{array}$ | 6         | $\overline{6}$ |
|               | $V(\lambda_{\scriptscriptstyle 1} + \lambda_{\scriptscriptstyle 2})$                                                                 | 8         | 8.             |

We adopt the convention of denoting a module by its dimension, and in the event of two or more of equal dimensions distinguish them by a bar or star or both.

Consider now the tensor products of these modules. For any irreducible  $V(\lambda)$ ,  $V(0) \otimes V(\lambda) = V(\lambda)$ . Of the remaining products we list only those needed in the study of real division algebras.

$$3 \otimes 3 = 6 + \overline{3}$$

$$3 \otimes \overline{3} = 8 + 1$$

$$\overline{3} \otimes \overline{3} = \overline{6} + 3$$

$$6 \otimes 6 = 15 + 15^* + \overline{6}$$

$$\overline{6} \otimes \overline{6} = \overline{15} + \overline{15}^* + 6$$
  
 $8 \otimes 8 = 27 + 10 + \overline{10} + 8 + 8 + 1$ .

Here  $15 = V(4\lambda_1)$ ,  $15^* = V(2\lambda_1 + \lambda_2)$ ,  $\overline{15} = V(4\lambda_2)$ ,  $\overline{15}^* = V(\lambda_1 + 2\lambda_2)$ ,  $27 = V(2\lambda_1 + 2\lambda_2)$ ,  $10 = V(3\lambda_1)$  and  $\overline{10} = V(3\lambda_2)$ .

The case  $8\otimes 8$  is noteworthy because the two 8-dimensional summands imply there are two linearly independent sl(3)-homomorphisms of  $8\otimes 8\to 8$ . The 8-dimensional module is sl(3) itself under the adjoint representation, and a basis of homomorphisms may be concretely given by:  $x\otimes y\to [xy]$  and  $x\otimes y\to xy+yx-2/3\,tr(xy)I$  where tr(xy) denotes the trace of xy.

The dimension formula for  $G_2$  modules is

dim  $V(\lambda)$ 

$$= \frac{1}{5!}(m_1+1)(m_2+1)(m_1+m_2+2)(m_1+2m_2+3)(m_1+3m_2+4)(2m_1+3m_2+5) \ .$$

Thus, there are only two modules of dimension less than or equal to 8: the 1-dimensional module V(0), and the 7-dimensional module  $V(\lambda_1)$ . The resolution of  $7 \otimes 7$  into irreducibles is given by

$$(1.9) 7 \otimes 7 = V(2\lambda_1) \oplus V(\lambda_2) \oplus V(\lambda_1) \oplus V(0)$$

where these modules have dimensions 27, 14, 7, and 1 respectively.

2. The case Der A =compact  $G_2$ . We are now ready to consider individually the different possibilities for Der A, and to investivate for each one the division algebras A with that derivation algebra. We take the possible derivation algebras in the order in which they are listed at the beginning of this paper, starting with the case when Der A is a compact form of  $G_2$ . As we noted in § 1, there are only two irreducible  $G_2$ -modules of dimension 8 or less over the complex numbers—one of dimension 1 and one of dimen-Thus, if A is a real division algebra with Der A = compact $G_2$ , the scalar extension  $A_c = A \bigotimes_{R} C$  must be a sum of one 1-dimensional module and one 7-dimensional module. (Note  $A_c$  could not be a sum of eight 1-dimensional modules because Der A must act faithfully on A.) Since the decomposition of  $A_c$  into irreducible modules is necessarily a refinement of the decomposition of A, we see that either A is a direct sum of a 1-dimensional module and an irreducible 7-dimensional module, or else A is an irreducible 8-dimensional module. But the last possibility can be ruled out by Lemma 1.2. Hence A = U + V where U is a 1-dimensional  $G_2$ -module and V is an irreducible 7-dimensional  $G_2$ -module.

As was observed at the beginning of §1, the homomorphisms

from  $U \otimes U$ ,  $U \otimes V$ ,  $V \otimes U$ , and  $V \otimes V$  into U and V determine the possible products between the summands. Since for  $G_2$ -modules over C,  $1 \otimes 1 \cong 1$ ,  $1 \otimes 7 \cong 7 \cong 7 \otimes 1$ , and  $7 \otimes 7 \cong 27 + 1$ 14+7+1, it follows from Proposition 1.1 that there is at most one homomorphism up to scalar multiple in each of the cases:  $U \otimes$  $U \rightarrow U$ ,  $U \otimes V \rightarrow V$ ,  $V \otimes U \rightarrow V$ ,  $V \otimes V \rightarrow V$ , and  $V \otimes V \rightarrow U$ , and only the zero homomorphism in the other cases. From this we deduce first that  $U^2 \subseteq U$ . But since A is a division algebra,  $U^2 \neq 0$ , so it must be  $U^2 = U$ . Thus, there exists an idempotent  $u \in U$ . Now  $u \otimes v \rightarrow v$  and  $v \otimes u \rightarrow v$  define module homomorphisms from  $U \otimes V$  and  $V \otimes U$  onto V. Therefore, left (right) multiplication by u is just the identity transformation on V multiplied by the scalar  $\eta$  ( $\zeta$ ). To determine homomorphisms for  $V \otimes V \to V$ ,  $V \otimes V \to V$  $V \rightarrow U$ , we examine the best known example in the class we are describing—the octonion algebra O. In O there is a basis  $u, e_1, \dots, e_7$ with multiplication given by table (2.1) below with  $\beta = \eta = \zeta = 1$ . Here u spans a 1-dimensional module and  $e_1, \dots, e_7$  a 7-dimensional module for Der  $O = \text{compact } G_2$ . Since the modules being discussed are unique up to isomorphism, and since  $\dim_R \operatorname{Hom}_{G_2}(V \otimes V, V) \leq 1$ and  $\dim_R \operatorname{Hom}_{G_2}(V \otimes V, U) \leq 1$ , the products in the general case are the same as in the octonions up to multiplication by a constant. After replacing the basis elements of V by a fixed scalar multiple of themselves, we may assume that the multiplication from  $V \times V$ to V is identical to that of the octonions, but that the products from  $V \times V$  to U involve the scalar  $\beta$ . To be specific, there is a basis  $u, e_1, \dots, e_7$  with multiplication given by

|       |                            | u                                | $e_{\scriptscriptstyle 1}$      | $e_{\scriptscriptstyle 2}$      | $e_3$                           | $e_{\scriptscriptstyle 4}$            | $e_{\scriptscriptstyle 5}$      | $e_{\scriptscriptstyle 6}$      | $e_7$                           |
|-------|----------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------------|---------------------------------|---------------------------------|---------------------------------|
|       | u                          | $\boldsymbol{u}$                 | $\eta e_{\scriptscriptstyle 1}$ | $\eta e_{\scriptscriptstyle 2}$ | $\eta e_{\scriptscriptstyle 3}$ | $\eta e_{\scriptscriptstyle 4}$       | $\eta e_{\scriptscriptstyle 5}$ | $\eta e_{\scriptscriptstyle 6}$ | $\eta e_{\scriptscriptstyle 7}$ |
|       | $e_{\scriptscriptstyle 1}$ | $\zeta e_{\scriptscriptstyle 1}$ | $-\beta u$                      | $e_{\scriptscriptstyle 4}$      | $e_7$                           | $-e_2$                                | $e_{\mathfrak{e}}$              | $-e_{\scriptscriptstyle 5}$     | $-e_3$                          |
|       | $e_{\scriptscriptstyle 2}$ | $\zeta e_{\scriptscriptstyle 2}$ | $-e_{\scriptscriptstyle 4}$     | $-\beta u$                      | $e_{\scriptscriptstyle 5}$      | $e_{\scriptscriptstyle 1}$            | $-e_3$                          | $e_7$                           | $-e_{\mathfrak{e}}$             |
| (2.1) | $e_{\scriptscriptstyle 3}$ | $\zeta e_{\scriptscriptstyle 3}$ | $-e_7$                          | $-e_{\scriptscriptstyle 5}$     | $-\beta u$                      | $oldsymbol{e}_{\scriptscriptstyle 6}$ | $e_{\scriptscriptstyle 2}$      | $-e_{\scriptscriptstyle 4}$     | $e_{\scriptscriptstyle 1}$      |
| ,     | $e_{\scriptscriptstyle 4}$ | $\zeta e_{\scriptscriptstyle 4}$ | $e_{\scriptscriptstyle 2}$      | $-e_{\scriptscriptstyle 1}$     | $-e_{\scriptscriptstyle 6}$     | $-\beta u$                            | $e_7$                           | $e_{\scriptscriptstyle 3}$      | $-e_{\scriptscriptstyle 5}$     |
|       | $e_{\scriptscriptstyle 5}$ | $\zeta e_{\scriptscriptstyle 5}$ | $-e_{\scriptscriptstyle 6}$     | $e_{\scriptscriptstyle 3}$      | $-e_2$                          | $-e_7$                                | $-\beta u$                      | $e_{\scriptscriptstyle 1}$      | $e_{\scriptscriptstyle 4}$      |
|       | $e_{\scriptscriptstyle 6}$ | $\zeta e_{\scriptscriptstyle 6}$ | $e_{\scriptscriptstyle 5}$      | $-e_7$                          | $e_{\scriptscriptstyle 4}$      | $-e_3$                                | $-e_{\scriptscriptstyle 1}$     | $-\beta u$                      | $e_{\scriptscriptstyle 2}$      |
|       | $e_7$                      | $\zeta e_{7}$                    | $e_3$                           | $e_{\scriptscriptstyle 6}$      | $-e_1$                          | $e_{\scriptscriptstyle 5}$            | $-e_4$                          | $-e_2$                          | $-\beta u$                      |

The final thing that we wish to determine in this case is for which values of  $\beta$ ,  $\eta$ ,  $\zeta$  the algebra with the above table is a division algebra. In particular, we shall establish

THEOREM 2.2. A real algebra A is a division algebra with the

compact form of  $G_2$  as its derivation algebra if and only if A has a basis  $u, e_1, \dots, e_7$  with multiplication given by (2.1) for some real numbers  $\beta, \eta, \zeta$  such that  $\beta \eta \zeta > 0$ .

*Proof.* In view of our preceding discussion, it remains only to show that the algebra A whose multiplication table is given by (2.1) is a division algebra exactly when  $\beta\eta\zeta>0$ . The condition for A to be a division algebra is that the relation

(2.3) 
$$0 = \left(a_0 u + \sum_{i=1}^{7} a_i e_i\right) \left(b_0 u + \sum_{i=1}^{7} b_i e_i\right)$$

can hold for real a's and b's only if either all a's are zero or all b's are zero. As in the proof of ([1], Theorem 20), we multiply out the right side of (2.3) and set the coefficients equal to zero. If the b's are regarded as variables in the resulting equations, the coefficient matrix is

The statement that A is a division algebra is equivalent to the condition that the determinant of  $M_1$  is nonzero unless all the a's are zero. Since  $\eta$  and  $\zeta$  must be nonzero for A to be a division algebra, we can replace each  $a_0$  with  $\eta^{-1}a_0$  and then multiply each entry in the first column by  $\zeta^{-1}$ . If the resulting matrix is called  $M_2$ , then det  $M_1 = 0$  if and only if det  $M_2 = 0$ . Now let us suppose that the matrix M is the same matrix as  $M_2$  only with  $\eta^{-1}=\zeta^{-1}=$  $\beta=1$ . Since M corresponds to the octonion algebra,  $\det M\neq 0$ unless all  $a_i$  are 0. Thus det  $M_2 = 0$  if and only if det  $M_2M^i = 0$ . But  $M_2M^t$  has no entries below the diagonal since the last 7 rows of  $M_2$  and M are the same and are pairwise orthogonal. Hence, the determinant of  $M_2M^t$  is the product of the diagonal elements. The first diagonal entry is  $\eta^{-1}\zeta^{-1}a_0^2 + \sum \beta a_i^2$  and the remaining entries are  $a_0^2 + \sum_{i=1}^7 a_i^2$ . It is clear that if  $\eta^{-1}\zeta^{-1}$  and  $\beta$  are both positive or both negative, then the determinant of  $M_2M^t$  is not 0 unless all the a's are, hence A is a division algebra. Conversely, if A is a

division algebra,  $\eta^{-1}\zeta^{-1}a_0^2 + \sum_{i=1}^7 \beta a_i^2$  is not zero unless all the a's vanish, which implies that  $\eta^{-1}\zeta^{-1}$  and  $\beta$  have the same sign. A is a division algebra if and only if  $\beta \eta \zeta > 0$ . 

The case Der A = su(3) begun. In this section we investigate the case when A is an 8-dimensional irreducible su(3)-module. Then A is isomorphic to su(3) when it is regarded as an su(3)module under the adjoint representation. As we saw in §1 there are two independent homomorphisms from  $sl(3) \otimes sl(3)$  to sl(3), and this is indeed true for su(3) as well. One of the homomorphisms is obviously the Lie product, and to obtain the other we consider su(3) as  $3 \times 3$  complex skew-Hermitian matrices  $(\bar{x}^t = -x)$  of trace zero. For x and y in su(3), xy + yx - (2/3)tr(xy)I is a Hermitian matrix, so multiplying it by i gives a skew-Hermitian matrix which also has trace zero. Now for z also in su(3),

$$\begin{split} \left[z, \ i \left\{ xy + yx - \frac{2}{3} tr(xy)I \right\} \right] &= i \{ [zx]y + y[zx] + x[zy] + [zy]x \} \\ &= i \left\{ [zx]y + y[zx] - \frac{2}{3} tr([zx]y)I \right\} \\ &+ i \left\{ x[zy] + [zy]x - \frac{2}{3} tr(x[zy])I \right\} \end{split}$$

since tr([zx]y) = -tr([xz]y) = -tr(x[zy]). This calculation demonstrates that the map  $x \otimes y \rightarrow i\{xy + yx - (2/3)tr(xy)I\}$  is indeed an Our argument shows that for any real su(3)-homomorphism. 8-dimensional algebra A on which su(3) acts irreducibly as derivations, the product in A is given by

$$(3.1) x*y = \alpha[xy] + \beta i \left\{ xy + yx - \frac{2}{3} tr(xy)I \right\}.$$

In fact, su(3) is the entire derivation algebra whenever  $\alpha \neq 0$ . For if A denotes the algebra A under the product  $x*y - y*x = 2\alpha[xy]$ , then every derivation of A is also a derivation of  $A^-$ . But  $A^-$  is isomorphic to su(3), which has only inner derivations (see [4] p. 23), so Der A = su(3) in this instance. Our investigations of this case will be complete, once we establish a criterion for such an algebra to be a division algebra. To this purpose we prove

THEOREM 3.2. Let A be an 8-dimensional real algebra defined on the vector space su(3) with multiplication given by (3.1). A is a division algebra if and only if  $\alpha\beta \neq 0$ . For such a division algebra, Der A = su(3) and A is an irreducible su(3)-module. Conversely any real division algebra on which su(3) acts irreducibly as derivations is given by this construction.

It is easy to see the necessity of the condition  $\alpha\beta \neq 0$  to have a division algebra since any element squares to zero if  $\beta = 0$ , and since the product of  $ie_{11} - ie_{22}$  with  $e_{12} - e_{21}$  is zero if  $\alpha = 0$ . To establish the sufficiency of the condition we need the following results.

Let x be a skew-Hermitian complex matrix. Then there is a unitary matrix u such that  $u^{-1}xu=v$  where v is diagonal (see for instance, Herstein [3] p. 302, Theorem  $6.Z_2$ ). Since v is skew-Hermitian also, it follows that all the characteristic roots of v, hence of x, are purely imaginary.

LEMMA 3.3. Let x and y belong to su(3), and assume  $\gamma$ ,  $\delta \in C$  are such that  $\delta \neq \pm \gamma$ . If  $\gamma xy + \delta yx = \lambda I$  for some  $\lambda \in C$ , then x or y is 0.

*Proof.* Let u be a unitary matrix which diagonalizes x as above. Then  $\gamma(u^{-1}xu)(u^{-1}yu) + \delta(u^{-1}xu)(u^{-1}yu) = \lambda I$ . Hence we may assume without loss of generality that x is diagonal, say  $x = \text{diag } \{a_1, a_2, a_3\}$ . If  $y = (b_{ij})$ , then the equation  $\gamma xy + \delta yx = \lambda I$  gives for  $i \neq j$ :

$$(\gamma a_i + \delta a_i)b_{ij} = 0$$
.

Since y is skew-Hermitian,  $b_{ji}=-\bar{b}_{ij}$ . Thus, for each pair i,j with  $i\neq j$ , we obtain the system of equations:

$$(3.4)$$
  $(\gamma a_i + \delta a_j)b_{ij} = 0$  ,  $(\gamma a_i + \delta a_i)ar{b}_{ij} = 0$  .

If some  $b_{ij} \neq 0$  for  $i \neq j$ , then since  $\gamma^2 - \delta^2 \neq 0$ , we have  $a_i = a_j = 0$ . However, x has trace 0, so it follows that  $a_1 = a_2 = a_3 = 0$  in this case, and x = 0. We may assume then that y is diagonal, say  $y = \text{diag } \{b_1, b_2, b_3\}$ . Equating entries in  $\gamma xy + \delta yx = \lambda I$  gives

$$(3.5) a_1b_1 = a_2b_2 = a_3b_3 = (\gamma + \delta)^{-1}\lambda.$$

Using the fact that x and y have trace 0, we obtain

$$(3.6) a_1b_1 = a_2b_2 = (-a_1 - a_2)(-b_1 - b_2)$$

which simplifies to show:

$$(3.7) a_1b_1-a_2b_2=0, a_1(b_1+b_2)+a_2b_1=0.$$

If not both  $a_1$  and  $a_2$  are zero then

$$(3.8) \hspace{1cm} 0 = \begin{vmatrix} b_{\scriptscriptstyle 1} & -b_{\scriptscriptstyle 2} \\ b_{\scriptscriptstyle 1} + b_{\scriptscriptstyle 2} & b_{\scriptscriptstyle 1} \end{vmatrix} = b_{\scriptscriptstyle 1}^{\scriptscriptstyle 2} + b_{\scriptscriptstyle 1}b_{\scriptscriptstyle 2} + b_{\scriptscriptstyle 2}^{\scriptscriptstyle 2} \; .$$

If  $b_2 = 0$ , then  $b_1 = 0$  and y = 0 as well. So we may assume  $b_2 \neq 0$ . Then it is apparent from (3.8) that  $b_1b_2^{-1}$  satisfies the equation  $z^2$  + z+1. Hence  $b_1b_2^{-1}=\omega$ , a complex cube root of 1. But then (3.5) implies  $a_2 = a_1 \omega$  and  $a_3 = -a_1 - a_2 = -a_1 (1 + \omega) = a_1 \omega^2$ . If  $a_1 = \alpha i$ for  $\alpha \in \mathbf{R}$ , then  $a_2 = (\alpha/2)i \pm \sqrt{(3/2)}\alpha$  which contradicts the fact that all roots of x are purely imaginary unless  $\alpha = 0$ . But then x = 0as desired. П

*Proof of Theorem* 3.2. It remains to show that if  $\alpha\beta \neq 0$  then A is a division algebra. Suppose x and y are complex skew-Hermitian  $3 \times 3$  matrices of trace zero with the property that

$$egin{aligned} 0 &= x*y = lpha[xy] + eta i \Big\{ xy + yx - rac{2}{3} tr(xy) I \Big\} \ &= (lpha + eta i) xy + (-lpha + eta i) yx - rac{2}{3} eta i tr(xy) I \;. \end{aligned}$$

Letting  $\gamma = \alpha + \beta i$  and  $\delta = -\alpha + \beta i$ , we have  $\gamma + \delta = 2\beta i \neq 0$  and  $\gamma - \delta = 2\alpha \neq 0$ . Since the hypotheses of Lemma 3.3 are satisfied, we are forced to conclude that x = 0 or y = 0, and hence that A is a division algebra.

Those special cases in which  $\beta = \pm \sqrt{3\alpha}$  have been studied recently by Okubo [8], and have been shown to have many interesting properties. For example these algebras have a quadratic form permitting composition. They are not composition algebras in the usual sense since they do not have an identity element.

It turns out that the two algebras studied by Okubo are the only ones in the class defined by Theorem 3.2 which have a quadratic form permitting composition. However, we can show that every algebra A described by Theorem 3.2 is flexible. For this we take x, y skew-Hermitian matrices of trace 0, we let  $\lambda_{x,y} = (2/3)tr(xy)$ and use (3.1) to calculate that

$$\begin{aligned} &(x*y)*x - x*(y*x) \\ &= (\alpha[xy] + \beta i\{xy + yx - \lambda_{x,y}I\})*x - x*(\alpha[yx] + \beta i\{xy + yx - \lambda_{x,y}I\}) \\ &= \alpha^2([[xy]x] - [x[yx]]) + \alpha\beta i([xy]x + x[xy] - \lambda_{[xy],x}I - x[yx] \\ &- [yx]x + \lambda_{x,[xy]}I + [xy + yx, x] - [x, xy + yx]) \end{aligned}$$

$$egin{aligned} &-eta^2(xyx+yx^2+x^2y+xyx-2\lambda_{x,y}x-\lambda_{xy+yx,x}I-x^2y-2xyx\ &-yx^2+2\lambda_{x,y}x+\lambda_{x,xy+yx}I)\ &=lphaeta i(2[xy]x+2x[xy]+2[xy+yx,x])=0 \ . \end{aligned}$$

It is also clear from (3.1) that A is Lie admissible, since  $A^- \cong su(3)$ .

4. The case Der A=su(3) concluded. Having dealt with the situation when A is a single irreducible su(3)-module, we turn to the case when A is a sum of at least two irreducible su(3)-modules. The only irreducible sl(3)-modules of dimension less than 8 are the ones which in the notation of (1.7) are given by  $1, 3, \overline{3}, 6$  and  $\overline{6}$ . Thus  $A_c$  must be a sum of modules of these types which add up to give dim  $A_c=8$ . We consider the various possibilities.

First, if  $A_c$  consists of a sum of 1's and 3's, then the relation  $3\otimes 3=6+\bar{3}$  in (1.8) shows that the product of any two elements in the 3-summand(s) must be zero. However, by Lemma 1.2 the complexification of the image  $(su(3)A)_c$  equals  $sl(3)A_c$  which is the sum of copies of 3. Thus, the product of any two elements in su(3)A would be zero and would contradict the fact that A is a division algebra. This demonstrates that  $A_c$  cannot consist solely of 1's and 3's. Similarly we can rule out each case where in addition to 1's there is exactly one of the types  $\bar{3}$ , 6, or  $\bar{6}$  occurring in  $A_c$  by using the relations  $\bar{3}\otimes \bar{3}=\bar{6}+3$ ,  $\bar{6}\otimes \bar{6}=1\bar{5}+1\bar{5}^*+\bar{6}$ , and  $\bar{6}\otimes \bar{6}=1\bar{5}+1\bar{5}^*+\bar{6}$  from (1.8).

Thus, there must be at least two of the types 3,  $\overline{3}$ , 6,  $\overline{6}$  present in  $A_c$ , and this implies  $A_c = 1 + 1 + 3 + \overline{3}$ . Looking again at su(3)A and  $sl(3)A_c$ , we see that A is the sum of two 1-dimensional modules and either two nonisomorphic 3-dimensional irreducible su(3)-modules or one irreducible 6-dimensional module. In the former case let us suppose W,  $\overline{W}$  are the two 3-dimensional modules such that  $W_c = 3$  and  $\overline{W}_c = \overline{3}$ , and U and V are the 1-dimensional modules. Then the relations  $3 \otimes 1 = 3$ ,  $3 \otimes 3 = 6 + \overline{3}$ , and  $\overline{3} \otimes 3 = 8 + 1$  show that for each  $w \in W$ ,  $wA \subseteq Rw + U + V + \overline{W}$ . Hence, left multiplication by w is not onto, and this case cannot happen if A is a division algebra. Thus A is the direct sum of two 1-dimensional modules and an irreducible 6-dimensional module Z. Moreover we have the following

THEOREM 4.1. If A is a real division algebra such that Der  $A = \mathfrak{su}(3)$  and A is not an irreducible  $\mathfrak{su}(3)$ -module, then A has a basis  $u, v, z_1, \dots, z_n$  with multiplication table given by (4.2). Conversely an algebra A defined by (4.2) admits  $\mathfrak{su}(3)$  as derivations.

| t          | n                                                                | v                                             | <b>%</b> 1                    | <b>8</b> 8                    | 83                                                                                                                                                                             | <b>%</b>                                                                | 82                                                                                                                 | <b>%</b>                                                                                                         |
|------------|------------------------------------------------------------------|-----------------------------------------------|-------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| $\pi$      | $\eta_{_1}u+\theta_{_1}v$                                        | $\eta_z u + \theta_z v$                       | $\sigma_1 z_1 + \sigma_2 z_3$ | $\sigma_1 z_2 + \sigma_2 z_6$ | $-\boldsymbol{\sigma}_{\!\scriptscriptstyle 2}\boldsymbol{z}_{\!\scriptscriptstyle 1}\!+\!\boldsymbol{\sigma}_{\!\scriptscriptstyle 1}\boldsymbol{z}_{\!\scriptscriptstyle 3}$ | $\sigma_1 z_{\scriptscriptstyle 4} + \sigma_2 z_{\scriptscriptstyle 5}$ | $-\sigma_{\scriptscriptstyle 2}z_{\scriptscriptstyle 4}\!+\!\sigma_{\scriptscriptstyle 1}z_{\scriptscriptstyle 5}$ | $-\sigma_{\scriptscriptstyle 2}z_{\scriptscriptstyle 2} + \sigma_{\scriptscriptstyle 1}z_{\scriptscriptstyle 6}$ |
| 8          | $\eta_{\scriptscriptstyle 3} u + 	heta_{\scriptscriptstyle 3} v$ | $\eta_{_4}u + 	heta_{_4}v$                    | $\sigma_3 z_1 + \sigma_4 z_3$ | $\sigma_3 z_2 + \sigma_4 z_6$ | $-\sigma_4 z_1 + \sigma_3 z_3$                                                                                                                                                 | $\sigma_3 z_4 + \sigma_4 z_5$                                           | $-\sigma_4 z_4 + \sigma_3 z_5$                                                                                     | $-\sigma_4 z_2 + \sigma_3 z_6$                                                                                   |
| ₹ 7        | $	au_1 oldsymbol{z}_1 + 	au_2 oldsymbol{z}_3$                    | $	au_3 lpha_1 + 	au_4 lpha_3$                 | n-                            | ,                             | a                                                                                                                                                                              | %<br>                                                                   | 88                                                                                                                 | %<br>  %                                                                                                         |
| <i>8</i> 2 | $\tau_1 z_2 + \tau_2 z_6$                                        | $	au_3 oldsymbol{z}_2 + 	au_4 oldsymbol{z}_6$ | <b>%</b>                      | n-                            | 82                                                                                                                                                                             | $\mathcal{S}_1$                                                         | <b>88</b>                                                                                                          | $\boldsymbol{v}$                                                                                                 |
| 48,        | $-\tau_2z_1\!+\!\tau_1z_3$                                       | $-\tau_4 z_1 + \tau_3 z_3$                    | v                             | 88<br>  52                    | n-                                                                                                                                                                             | <b>%</b>                                                                | <b>%</b>                                                                                                           | - 2 <sub>4</sub>                                                                                                 |
| 53         | $\tau_1 z_4 + \tau_2 z_5$                                        | $	au_3 oldsymbol{z}_4 + 	au_4 oldsymbol{z}_5$ | 88                            | $-\boldsymbol{\aleph}_1$      | $-\boldsymbol{z}_{_{\boldsymbol{0}}}$                                                                                                                                          | n-                                                                      | a                                                                                                                  | 88                                                                                                               |
| 1,5        | $-	au_2 oldsymbol{z}_4 + 	au_1 oldsymbol{z}_5$                   | $-	au_4 z_4 + 	au_3 z_5$                      | $-\mathbf{z}_{_{0}}$          | ss.                           | <b>8</b>                                                                                                                                                                       | r                                                                       | n-                                                                                                                 | $\mathcal{C}_1$                                                                                                  |
| ่งจึ       | $-\tau_2z_2\!+\!\tau_1z_6$                                       | $-	au_{4}^{}z_{2}^{}+	au_{3}^{}z_{6}^{}$      | 8,2                           | a —                           | <b>%</b>                                                                                                                                                                       | %                                                                       | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\                        | n-                                                                                                               |
| _1         |                                                                  |                                               |                               |                               |                                                                                                                                                                                |                                                                         |                                                                                                                    |                                                                                                                  |

*Proof.* We have already determined that such an algebra is the sum of two 1-dimensional su(3)-modules and an irreducible 6-dimensional module. In order to deduce the various products between the summands let us first consider a well-known example in which this type of decomposition occurs—namely the octonions. Let O be an octonion algebra with basis  $u, e_1, \dots, e_7$  and multiplication given by (2.1) with  $\beta = \zeta = \eta = 1$ . Let  $L = \{\partial \in \text{Der } O \mid \partial(e_7) = 0\}$ . Then L is isomorphic to su(3). (See for example, [2], [5], or [7].) One can actually verify this assertion directly in the following manner. Let us complexify O and obtain a basis for  $O_C$  by taking:

$$egin{align} u_0 &= rac{1}{2}(u \,+\, ie_7) & u_0^* &= rac{1}{2}(u \,-\, ie_7) \ & u_1 &= rac{1}{2}(e_1 \,+\, ie_3) & u_1^* &= rac{1}{2}(e_1 \,-\, ie_3) \ & u_2 &= rac{1}{2}(e_2 \,+\, ie_6) & u_2^* &= rac{1}{2}(e_2 \,-\, ie_6) \ & u_3 &= rac{1}{2}(e_4 \,+\, ie_5) & u_3^* &= rac{1}{2}(e_4 \,-\, ie_5) \;. \end{align}$$

Products between these elements can be calculated using (2.1). We list the results below where we adopt the convention that  $\varepsilon_{jkl}=1$  if (jkl) is an even permutation of  $\{1,2,3\}$ ,  $\varepsilon_{jkl}=-1$  if the permutation is odd, and  $\varepsilon_{jkl}=0$  if (jkl) is not a permutation of  $\{1,2,3\}$ , and  $\delta_{jk}$  is the Kronecker delta.

$$egin{array}{lll} u_0u_j &= u_j & u_0^*u_j &= 0 & u_ju_0 &= 0 & u_ju_0^* &= u_j \ u_0u_j^* &= 0 & u_0^*u_j^* &= u_j^* & u_j^*u_0 &= u_j^* & u_j^*u_0^* &= 0 \ u_0^*u_k &= arepsilon_{jkl}u_l^* & u_ju_k^* &= -\delta_{jk}u_0 \ u_j^*u_k^* &= arepsilon_{jkl}u_l & u_j^*u_k^* &= -\delta_{jk}u_0^* \end{array}$$

Now  $\partial \in L$  implies  $\partial(u_0) = 0 = \partial(u_0^*)$ . Moreover if X denotes the span of the u's and Y the span of the u\*'s, then  $X = \{x \in O_c \mid u_0 x = x = xu_0^*\}$  and  $Y = \{y \in O_c \mid u_0^* y = y = yu_0\}$ . It is easy to see from these characterizations that X and Y are  $L_c$  invariant. From applying  $\partial$  to the relation  $u_j u_k^* = -\partial_{jk} u_0$ , it follows that for each  $\partial \in L_c$  the matrix of  $\partial$  on Y relative to the  $u_j^*$  is minus the transpose of the matrix of  $\partial$  on X relative to the  $u_j$ . In addition the trace of  $\partial$  on X and on Y must be 0. These are the only restrictions on the elements of  $L_c$ . Thus  $L_c \cong sl(3)$ , and X is the module which we have been denoting by X (it is X in the module X on acts by matrix multiplication), and X is X matrices on which X is the matrices on

which the action of sl(3) is right multiplication by minus the matrix). From these observations it follows that if Z denotes the span of  $e_1, \dots, e_6$  in O, then L leaves Z invariant, while our previous remarks show that Z must be an irreducible module for su(3).

Let us consider the *L*-module homomorphisms of  $Z \otimes Z$  into Z. Since  $Z_c = X + Y$ , and since  $3 \otimes 3 = 6 + \overline{3}$ ,  $\overline{3} \otimes \overline{3} = \overline{6} + 3$  and  $3 \otimes \overline{3} = 8 + 1$  we see  $\dim_c \operatorname{Hom}_{L_c}((X + Y) \otimes (X + Y), X + Y) = 2$ . It is spanned by the homomorphisms  $\varphi_1, \varphi_2$  where  $\varphi_1(u_j \otimes u_k) = \varepsilon_{jkl}u_l^*$ ,  $\varphi_2(u_j^* \otimes u_k^*) = \varepsilon_{jkl}u_l$ , and  $\varphi_1$  and  $\varphi_2$  are 0 on all products of basis elements not of the specified type.

Given  $\varphi \in \operatorname{Hom}_L(Z \otimes Z, Z)$ , then  $\varphi$  lifts to an  $L_c$ -homomorphism of  $(X+Y) \otimes (X+Y)$  into X+Y, and so  $\varphi = a\varphi_1 + b\varphi_2$  where  $a,b \in C$ . Therefore  $\varphi((u_j+u_j^*) \otimes (u_k+u_k^*)) = \varepsilon_{jkl}(au_l^*+bu_l)$ . But since  $u_j+u_j^*$  and  $u_k+u_k^*$  lie in Z, so does  $au_l^*+bu_l$ , and  $au_l^*+bu_l=\alpha(u_l+u_l^*)+\beta i(u_l^*-u_l)$  where  $\alpha,\beta \in \mathbf{R}$ . Thus  $\alpha=\alpha+\beta i$ ,  $b=\alpha-\beta i$  and  $b=\bar{a}$ . It follows that

$$\begin{split} & \varphi((u_{j} + u_{j}^{*}) \otimes (u_{k} + u_{k}^{*})) = \varepsilon_{jkl} \{\alpha(u_{l} + u_{l}^{*}) + \beta i(u_{l}^{*} - u_{l})\} \\ & \varphi((u_{j} + u_{j}^{*}) \otimes i(u_{k}^{*} - u_{k})) = \varepsilon_{jkl} \{\beta(u_{l} + u_{l}^{*}) - \alpha i(u_{l}^{*} - u_{l})\} \\ & \varphi(i(u_{j}^{*} - u_{j}) \otimes (u_{k} + u_{k}^{*})) = \varepsilon_{jkl} \{\beta(u_{l} + u_{l}^{*}) - \alpha i(u_{l}^{*} - u_{l})\} \\ & \varphi(i(u_{j}^{*} - u_{j}) \otimes i(u_{k}^{*} - u_{k})) = \varepsilon_{jkl} \{-\alpha(u_{l} + u_{l}^{*}) - \beta i(u_{l}^{*} - u_{l})\} \;. \end{split}$$

These equations determine the effect of  $\varphi$  on the  $e_r \otimes e_s$  basis of  $Z \otimes Z$ .

Since the modules involved are unique up to isomorphism, the general case of an irreducible 6-dimensional su(3)-module Z which becomes  $3+\bar{3}$  upon complexification is no different from the behavior just observed. There is a basis  $e_1, \dots, e_6$  of Z such that any su(3)-module homomorphism  $\varphi$  is given as above for some  $\alpha, \beta \in R$ . If Z is a summand in an algebra A which admits su(3) as derivations, then these homomorphisms determine the possible products from  $Z \times Z$  to Z, and since the homomorphisms are all skew-symmetric, the products will be anticommutative.

Thus we may assume that the products from  $Z \times Z$  to Z are given by (4.3) for some  $\alpha$ ,  $\beta \in R$ .

If  $u_j$ ,  $u_j^*$  are as defined above using the e's, then  $u_ju_k=\varepsilon_{jkl}$  a  $u_l^*$  and  $u_j^*u_k^*=\varepsilon_{jkl}\bar{a}u_l$  where  $a=\alpha+\beta i$ . Let us suppose  $v_j=a^{-2/3}\bar{a}^{1/3}u_j$  and  $v_j^*=a^{-1/3}\bar{a}^{2/3}u_j^*$  so that  $v_jv_k=\varepsilon_{jkl}v_l^*$  and  $v_j^*v_k^*=\varepsilon_{jkl}v_l$ . Now let  $z_1=v_1+v_1^*$ ,  $z_2=v_2+v_2^*$ ,  $z_4=v_3+v_3^*$ ,  $z_3=i(v_1^*-v_1)$ ,  $z_6=i(v_2^*-v_2)$ ,  $z_5=i(v_3^*-v_3)$ . Then the multiplication table for the z's is the same as (4.3) when  $\alpha=1$  and  $\beta=0$ . Note  $z_1=\gamma e_1+\zeta e_3$ ,  $z_2=\gamma e_2+\zeta e_3$ ,  $z_4=\gamma e_4+\zeta e_5$ ,  $z_3=-\zeta e_1+\gamma e_3$ ,  $z_6=-\zeta e_2+\gamma e_3$ ,  $z_5=-\zeta e_4+\gamma e_5$  where  $\gamma=1/2(a^{-2/3}\bar{a}^{-1/3}+\bar{a}^{-2/3}a^{-1/3})$  and  $\zeta=(1/2)i(a^{-2/3}\bar{a}^{-1/3}-\bar{a}^{-2/3}a^{-1/3})$ . Since  $\bar{\gamma}=\gamma$  and  $\bar{\zeta}=\zeta$ , the z's lie in Z, and they are the desired basis.

To calculate further entries in the (4.2) table let us recall that  $3 \otimes \bar{3} = 8 + 1$ . (This resolution can be concretely realized by the matrix multiplication of a  $3 \times 1$  matrix with a  $1 \times 3$  matrix followed by projection onto sl(3) and  $C \cdot I$ ). Thus,  $v_j \otimes v_k^* \to \delta_{jk} w$  is an sl(3)-module homomorphism of  $3 \otimes \bar{3}$  onto the 1-dimensional module spanned by w, and any other one is just a complex multiple of this homomorphism. From this it follows that any su(3)-module homomorphism  $\psi_1 \colon Z \times Z \to Rw$  when lifted to  $(3 + \bar{3}) \otimes (3 + \bar{3}) \to Cw$  is given by  $\psi_1(v_j \otimes v_k^*) = c\delta_{jk} w$ ,  $\psi_1(v_k^* \otimes v_j) = d\delta_{jk} w$  for  $c, d \in C$  and the condition  $\psi_1(Z \otimes Z) \subseteq Rw$  forces  $d = \bar{c}$ . Thus if  $c = \alpha_1 + \beta_1 i$ 

$$egin{aligned} \psi_1(&(v_j+v_j^*)\otimes(v_k+v_k^*)) &= 2\delta_{jk}lpha_1w \ \psi_1(&(v_j+v_j^*)\otimes i(v_k^*-v_k)) &= 2\delta_{jk}eta_1w \ \psi_1(&i(v_j^*-v_j)\otimes(v_k^*+v_k)) &= -2\delta_{jk}eta_1w \ \psi_1(&i(v_j^*-v_j)\otimes i(v_k^*-v_k)) &= 2\delta_{jk}lpha_1w \ . \end{aligned}$$

Similarly if Rx is the other 1-dimensional summand any homomorphism  $\psi_2$  is prescribed by scalars  $\alpha_2$ ,  $\beta_2$ . Thus any product of  $Z \times Z$  into the two 1-dimensional summands is determined by four scalars  $\alpha_1$ ,  $\beta_1$ ,  $\alpha_2$ ,  $\beta_2 \in R$ . This number can be reduced by making the change of basis  $u = -2\alpha_1 w - 2\alpha_2 x$ ,  $v = 2\beta_1 w + 2\beta_2 x$ . For then  $z_j^2 = -u$  for all j and  $z_1 z_3 = z_2 z_6 = z_4 z_5 = v = -z_3 z_1 = -z_6 z_2 = -z_5 z_4$  as in the table. The elements u, v will seem less mysterious if one keeps the octonion example in mind, for there v corresponds to  $e_7$  and v to the identity element.

The relations  $1 \otimes 3 = 3$ ,  $1 \otimes \overline{3} = \overline{3}$  similarly imply the existence of scalars  $\sigma_1, \sigma_2 \in R$  such that

$$u(v_j + v_j^*) = \sigma_i(v_j + v_j^*) + \sigma_2 i(v_j^* - v_j)$$
  
 $ui(v_i^* - v_j) = -\sigma_2(v_j + v_j^*) + \sigma_1 i(v_j^* - v_j)$ .

In this fashion one obtains the entries in the table involving the  $\sigma$ 's and  $\tau$ 's. Since Ru + Rv is a subalgebra, the products  $u^2$ , uv, vu,  $v^2$  are of the form indicated by (4.2), and the determination of

the table is complete. This table has been constructed by using su(3)-modules and su(3)-module homomorphisms at each stage, so that any algebra having (4.2) as its table for  $\sigma$ 's,  $\tau$ 's,  $\eta$ 's,  $\theta$ 's in R will admit su(3) as derivations.

If A is a division algebra with multiplication given by (4.2) and if  $\operatorname{Der} A$  is larger than su(3), then  $\operatorname{Der} A$  is a compact  $G_2$ , since this is the only Lie algebra in our classification of derivation algebras of real division algebras which can properly contain su(3). The criterion for when  $\operatorname{Der} A$  is a compact  $G_2$  is given in

THEOREM 4.4. If A is a real division algebra with multiplication given by (4.2), then Der A is a compact form of  $G_2$  if and only if the following relations hold:

Otherwise Der A = su(3).

*Proof.* If the relations (4.5) hold, then it is immediate that A is isomorphic to the algebra defined by (2.1) with  $\zeta = \eta_1^{-1}\tau_1$ ,  $\eta = \eta_1^{-1}\sigma_1$ , and  $\beta = \eta_1$  under the correspondence  $u \leftrightarrow \eta_1^{-1}u$ ,  $e_7 \leftrightarrow v$ , and  $e_j \leftrightarrow z_j$  for  $j = 1, \dots, 6$ . Hence Der A is a compact  $G_2$  in this case.

Conversely suppose Der A is a compact form of  $G_2$ . Then A decomposes relative to Der A into a 1-dimensional module U and a 7-dimensional irreducible module V as in § 2. Since Z is the image of A under  $su(3) \subseteq \operatorname{Der} A$ , Z must be contained in V, the image of A under Der A. Every element of V is known to square to an element in U (see Table 2.1), but every element of Z squares to an multiple of u. Thus U is the span of u, and V is the span of the z's and  $v + \lambda u$  for some  $\lambda \in \mathbb{R}$ . It follows that right or left multiplication by u on V, and also on U, must be a scalar multiple of the identity transformation, and this implies that  $\sigma_2 = 0_1 = \tau_2$ ,  $\theta_1 = 0$ ,  $\theta_2 = \sigma_1$ , and  $\theta_3 = \tau_1$ . Since A is a division algebra, left or right multiplication by a nonzero linear combination of u and v on  $z_1$  must be nonzero, and this forces  $\sigma_4 \neq 0$  and  $\tau_4 \neq 0$ .

We deduce further relations by recalling that products from  $V \times V \to V$  are the same as in the octonions. Thus, they share the property that if x, y and yx are in V, then  $(yx)x \in Ry$  and  $y(yx) \in Rx$ , since these properties follow from the alternativity of the octonions. (See for example, Schafer [9].) Such elements are  $v + \lambda u$ ,  $z_1$  and  $(v + \lambda u)z_1 = (\sigma_3 + \lambda \sigma_1)z_1 + \sigma_4 z_3$ , so that

$$(4.6) \qquad ((v + \lambda u)z_1)z_1 = -(\sigma_3 + \lambda \sigma_1)u - \sigma_4 v \in \mathbf{R}(v + \lambda u).$$

(4.7) 
$$(v + \lambda u)((v + \lambda u)z_1) = ((\sigma_3 + \lambda \sigma_1)(\sigma_3 + \lambda \sigma_1) - \sigma_4^2)z_1 + 2\sigma_4(\sigma_3 + \lambda \sigma_1)z_4 \in Rz_1 .$$

Since  $\sigma_4 \neq 0$ , equation (4.7) implies that  $\sigma_3 + \lambda \sigma_1 = 0$ , and this together with (4.6) says  $-\sigma_4 v \in R(v + \lambda u)$ . Hence  $\lambda = 0$ ,  $\sigma_3 = 0$ , and an analogous argument with  $z_1(z_1v)$  determines that  $\tau_3 = 0$ . Further consequences of the result that  $v \in V$  are  $\eta_2 = 0 = \eta_3$  and  $\theta_4 = 0$ , because  $x^2 \in U$  for each  $x \in V$ .

An additional property of V inherited from the octonions is that if  $y \in V$  and if for some  $x \in V$ ,  $xy \in V$  and  $(xy)y = -\rho x$ , for  $\rho \in \mathbf{R}$ , then for any  $w \in V$  with  $wy \in V$ ,  $(wy)y = -\rho w$ . Therefore,  $(z_2z_1)z_1 = -z_2$  and  $(vz_1)z_1 = -\sigma_4 v$  imply  $\sigma_4 = 1$ , while by symmetry  $z_1(z_1z_2) = -z_2$  and  $z_1(z_1v) = \tau_4 v$  give  $\tau_4 = -1$ .

All that is left to be shown is that  $\eta_4 = -1$ . However if x, y, and xy are in V, and (xy)y = -x and x(xy) = -y then  $x^2 = y^2$ , since the corresponding result holds for the octonions. But then  $(vz_1)z_1 = -v$  and  $v(vz_1) = -z_1$  imply  $-u = z_1^2 = v^2 = \eta_4 u$ . From this we deduce that  $\eta_4 = -1$ , so that all the conditions in (4.5) do indeed hold when Der  $A = \text{compact } G_2$ .

The question of when a real algebra with multiplication given by (4.2) is a division algebra is formidable because of the large number of scalars in the multiplication table. However, we can exhibit division algebras of this type which have su(3) as their full derivation algebra. The easiest example is obtained by taking the values of the constants prescribed in (4.5) with the sole exception that  $\eta_4$  is some negative number besides -1. This algebra was shown to be a division algebra in ([1], Theorem 20), and it has su(3) as its derivation algebra according to Theorem 4.4.

5. The case Der  $A=su(2)\oplus su(2)$ . An irreducible  $sl(2)\oplus sl(2)$ -module over C is just the tensor product of two irreducible sl(2)-modules (one for each summand of  $sl(2)\oplus sl(2)$ ). If  $V_1$  is an irreducible module for the first copy of sl(2), and  $V_2$  for the second copy, and if  $\dim V_1=m$  and  $\dim V_2=n$ , then  $V_1\otimes V_2$  is an irreducible module for  $sl(2)\oplus sl(2)$  of dimension mn, and we denote this module by  $m \otimes n$ .

Suppose now  $su(2) \oplus su(2) \subseteq \operatorname{Der} A$  where A is a real division algebra, and for convenience write  $S_1$  and  $S_2$  for the two copies of su(2). As we explained in § 1, we have the  $S_1$ -module decomposition  $A = A_0 \oplus A_*$  where  $A_0$  is the space of elements annihilated by  $S_1$  and  $A_*$  is the image of A under  $S_1$ . Since  $S_1$  and  $S_2$  commute, it is easy to see that  $A_0$  and  $A_*$  are invariant under  $S_2$ . The  $S_2$ -action on  $A_0$  and  $A_*$  affords the decompositions,  $A_0 = A_{00} \oplus A_{0*}$  and  $A_* = A_{*0} \oplus A_{**}$ . Thus, relative to  $S_1 \oplus S_2$ 

$$A = A_{00} \bigoplus A_{0*} \bigoplus A_{*0} \bigoplus A_{**}.$$

Since the smallest nontrivial su(2)-module has dimension 3, we see  $A_{0*}=0$  or dim  $A_{0*}\geq 3$ , and the same is true of  $A_{*0}$ . Because  $(A_{**})_c$  is just the sum of all irreducible  $sl(2)\oplus sl(2)$ -modules not annihilated by either summand, it follows that either  $A_{**}=0$  or else dim  $A_{**}\geq 4$ . We consider the various possibilities.

Of course, not all  $A_{*0}$ ,  $A_{0*}$ ,  $A_{**}$  can be zero, since  $S_1 \oplus S_2$  acts nontrivially on A. If  $A_{0*} \neq 0 \neq A_{*0}$ , then a simple dimension count shows  $A_{**} = 0$ . Since  $(m \otimes 1) \otimes (1 \otimes n) = m \otimes n$  for  $sl(2) \oplus sl(2)$ -modules,  $A_{*0}A_{0*} \subseteq (A_{*0})_c(A_{0*})_c \subseteq (A_{**})_c = 0$ . This contradiction enables us to conclude either  $A_{*0} = 0$  or  $A_{0*} = 0$ . Without loss of generality we suppose that  $A_{0*} = 0$ , and hence  $A = A_{00} \oplus A_{*0} \oplus A_{**}$ . In this decomposition  $A_{**} \neq 0$ , since otherwise  $S_2$  would act trivially on A. Now  $(A_{**})_c$  is comprised of a sum of modules of the following types:  $2 \otimes 2$ ,  $2 \otimes 3$ ,  $3 \otimes 2$ ,  $2 \otimes 4$ ,  $4 \otimes 2$ . In any event,  $(A_{**})_c$  is the direct sum of copies of modules of dimension 2 when it is decomposed relative to one of the copies of sl(2). Since  $2 \otimes 2 = 3 + 1$  for sl(2)-modules it must be that  $(A_{**})_c^2 \subseteq (A_{00})_c + (A_{*0})_c$ , and hence  $A_{**}^2 \subseteq A_{00} + A_{*0}$ . For any  $x \neq 0$  in  $A_{**}$ ,  $xA_{**} \subseteq A_{00} + A_{*0}$ , and because left multiplication by x is nonsingular,  $\dim A_{**} \leq \dim(A_{00} + A_{*0})$ . Thus, there is only one possibility for  $(A_{**})_c$ , namely  $(A_{**})_c = 2 \otimes 2$ .

If dim  $A_{00}=0$ , then dim  $A_{*0}=\dim A_{**}=4$  and  $(A_c)_{*0}=2+2$  relative to  $(S_1)_c=sl(2)$ . But then  $A_c$  is just the sum of 2-dimensional modules for  $(S_1)_c$ , and as above  $2\otimes 2=3+1$  shows that all products are zero. Thus, it is impossible for  $A_{00}$  to be zero.

Consider now the possibility  $A_{*0}=0$ . In this instance  $\dim A_{00}=\dim A_{**}=4$ , and every derivation of A in  $S_1 \oplus S_2$  has rank  $\leq 4$ . If this is the case, then any space of commuting derivations has dimension not more than one according to ([1], Corollary 16). However,  $S_1 \oplus S_2$  has a 2-dimensional space of commuting derivations, so we arrive at a contradiction. Therefore  $A_{*0} \neq 0$ , and since  $A_{00} \neq 0$  and  $\dim A_{**}=4$ , it must be that  $\dim A_{*0}=3$ . This is the first part of the principal result of this section which we are now ready to state and prove.

| $G_{\scriptscriptstyle 2}$ ; | the | latter                 | occurring                | exactly           | when         | the   | following                   | relations | hold: |
|------------------------------|-----|------------------------|--------------------------|-------------------|--------------|-------|-----------------------------|-----------|-------|
| $\varepsilon =$              | 1 = | $\eta$ , $\beta\gamma$ | $=\delta$ , $\zeta=\rho$ | $\theta = \sigma$ | $\gamma > 0$ | , and | d $\beta \rho \sigma < 0$ . |           |       |

|       |                            | u                                | $x_{_1}$                         | $x_{2}$                          | $x_{\scriptscriptstyle 3}$       | $y_{\scriptscriptstyle 1}$         | $y_{2}$                                 | $y_{\scriptscriptstyle 3}$                      | $y_4$                                   |
|-------|----------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------|-----------------------------------------|-------------------------------------------------|-----------------------------------------|
|       | u                          | u                                | $\zeta x_1$                      | $\zeta x_{\scriptscriptstyle 2}$ | $\zeta x_{\scriptscriptstyle 3}$ | $ ho y_{\scriptscriptstyle 1}$     | $ ho y_{\scriptscriptstyle 2}$          | $ ho y_{\scriptscriptstyle 3}$                  | $ ho y_{\scriptscriptstyle 4}$          |
|       | $x_{_1}$                   | $	heta x_{\scriptscriptstyle 1}$ | $\beta u$                        | $x_3$                            | $-x_2$                           | $arepsilon y_{_4}$                 | $arepsilon y_{\scriptscriptstyle 3}$    | $-\varepsilon y_{_2}$                           | $-arepsilon y_{_1}$                     |
|       | $x_{2}$                    | $	heta x_2$                      | $-x_3$                           | eta u                            | $x_{\scriptscriptstyle 1}$       | $arepsilon y_2$                    | $-\varepsilon y_{\scriptscriptstyle 1}$ | $arepsilon y_{\scriptscriptstyle 4}$            | $-\varepsilon y_{\scriptscriptstyle 3}$ |
| (5.2) | $x_{\scriptscriptstyle 3}$ | $\theta x_3$                     | $x_{2}$                          | $-x_{\scriptscriptstyle 1}$      | $\beta u$                        | $-\varepsilon y_{_3}$              | $arepsilon oldsymbol{y_4}$              | $arepsilon oldsymbol{y}_{\scriptscriptstyle 1}$ | $- arepsilon oldsymbol{y}_2$            |
| ` ,   | $y_{\scriptscriptstyle 1}$ | $\sigma y_{_1}$                  | $-\eta y_{_4}$                   | $-\eta y_{_2}$                   | $\eta y_{\scriptscriptstyle 3}$  | $\delta u$                         | $\gamma x_2$                            | $-\gamma x_3$                                   | $\gamma x_{_1}$                         |
|       | $y_{2}$                    | $\sigma y_{_2}$                  | $-\eta y_{\scriptscriptstyle 3}$ | $\eta y_{\scriptscriptstyle 1}$  | $-\eta y_{\scriptscriptstyle 4}$ | $-\gamma x_{\scriptscriptstyle 2}$ | $\delta u$                              | $\gamma x_{\scriptscriptstyle 1}$               | $\gamma x_{\scriptscriptstyle 3}$       |
|       | $y_{\scriptscriptstyle 3}$ | $\sigma y_{_3}$                  | $\eta y_{_2}$                    | $-\eta y_{\scriptscriptstyle 4}$ | $\eta y_{\scriptscriptstyle 1}$  | $\gamma x_{\scriptscriptstyle 3}$  | $-\gamma x_1$                           | $\delta u$                                      | $\gamma x_2$                            |
|       | $y_{\scriptscriptstyle 4}$ | $\sigma y_{_4}$                  | $\eta y_{\scriptscriptstyle 1}$  | $\eta y_{\scriptscriptstyle 3}$  | $\eta y_{_2}$                    | $-\gamma x_1$                      | $-\gamma x_3$                           | $-\gamma x_2$                                   | δи                                      |

*Proof.* Recall from §1 that  $\partial_1 = ih$ ,  $\partial_2 = e - f$   $\partial_3 = i(e + f)$  give a basis of su(2) such that  $[\partial_j, \partial_{j+1}] = 2\partial_{j+2}$  where the indices are interpreted modulo 3. Let  $\partial_1$ ,  $\partial_2$ ,  $\partial_3$  denote such a basis for the copy of su(2) which acts irreducibly on X, and let  $\partial'_1$ ,  $\partial'_2$ ,  $\partial'_3$  be the corresponding basis for the other copy. Since the module X is just the adjoint representation of su(2), there is a basis  $x_1$ ,  $x_2$ ,  $x_3$  of X such that the action of  $su(2) \oplus su(2)$  on X is given by

$$(5.3) \quad \begin{array}{l} \partial_j(x_{j+1}) = 2x_{j+2} \ \text{where the subscripts are read modulo 3} \\ \partial_j'(x_k) = 0 \qquad \quad \text{for all } j \ \text{and} \ k \ . \end{array}$$

Now  $Y_c=2\ \widetilde{\otimes}\ 2$ , or in the notation of §1,  $Y_c=V(1)\otimes V(1)$ . Recall  $V(1)\otimes V(1)$  has as basis  $\{v_j\otimes v_k\}$  where  $j,\,k=\pm 1$ . Let

$$egin{aligned} y_{_1} &= v_{_1} igotimes iv_{_1} + iv_{_1} igotimes v_{_1} + v_{_{-1}} igotimes iv_{_{-1}} + iv_{_{-1}} igotimes v_{_{-1}} \ y_{_2} &= v_{_{-1}} igotimes iv_{_1} + iv_{_{-1}} igotimes v_{_1} - v_{_1} igotimes iv_{_{-1}} - iv_{_1} igotimes v_{_{-1}} \ y_{_3} &= iv_{_{-1}} igotimes iv_{_1} - v_{_{-1}} igotimes v_{_1} + iv_{_1} igotimes iv_{_{-1}} - v_{_1} igotimes v_{_{-1}} \ y_{_4} &= v_{_1} igotimes v_{_1} - iv_{_1} igotimes iv_{_1} - v_{_{-1}} igotimes iv_{_{-1}} + iv_{_{-1}} igotimes iv_{_{-1}} \ . \end{aligned}$$

Then  $y_1, y_1, y_3, y_4$  span an  $su(2) \oplus su(2)$ -module as the table below indicates.

Thus, Y must be isomorphic to the span of the y's.

In order to deduce the products  $X^2$ , UX, and XU, we recall that for sl(2)-modules  $3\otimes 3=5+3+1$ , and  $3\otimes 1=3$  (see (1.6)). Thus,  $X^2\subseteq X+U$ , and  $XU+UX\subseteq X$ , and up to scalar multiple there is just one possible product in each case. The product from  $X\times X$  to X is just the Lie product on su(2), from  $X\times X$  to U the product is simply the inner product (as seen from the quaternions on which su(2) acts as derivations), and from  $X\times U$  to X or  $U\times X$  to X the product is just multiplication by a scalar. After replacing each  $x_i$  by an appropriate scalar multiple of itself, we obtain the portion of the multiplication table (5.2) pertaining to products on X+U.

Now for products involving Y, we have  $(3 \otimes 1) \otimes (2 \otimes 2) = (3 \otimes 2) \otimes (1 \otimes 2) = (4+2) \otimes 2 = 4 \otimes 2 + 2 \otimes 2$ . Thus,  $XY + YX \subseteq Y$ ,  $\dim_c \operatorname{Hom}_{sl(2) \oplus sl(2)}(X_c \otimes Y_c, Y_c) = 1$ , and consequently

$$\dim_R \operatorname{Hom}_{\mathfrak{su}(2) \oplus \mathfrak{su}(2)}(X \otimes Y, Y) \leq 1$$
.

Moreover,  $(2 \otimes 2) \otimes (2 \otimes 2) = (3+1) \otimes (3+1)$  demonstrates that  $Y^2 \subseteq X + U$ ,  $\dim_R \operatorname{Hom}_{\mathfrak{su}(2) \oplus \mathfrak{su}(2)} (Y \otimes Y, X) \leq 1$ , and  $\dim_R \operatorname{Hom}_{\mathfrak{su}(2) \oplus \mathfrak{su}(2)} (Y \otimes Y, U) \leq 1$ . Finally  $(1 \otimes 1) \otimes (2 \otimes 2) = 2 \otimes 2$  shows that constants  $\sigma, \rho \in R$  exist so that  $uy_j = \rho y_j$  and  $y_j u = \sigma y_j$  for all j.

In order to find the products XY, YX, and  $Y^2$  we again turn to the octonions for guidance. It is known that the transformations

$$D_{v,w} = -ad_{[v,w]} + 3[L_v, R_w]$$

are derivations of the octonions for any two elements v, w in the octonion algebra, where  $L_v(t)=vt$ ,  $R_w(t)=tw$ , and  $ad_{[v,w]}(t)=[[vw]t]$ . (See [7, page 2].) Using the fact that  $[\partial, D_{v,w}]=D_{\partial(v),w}+D_{v,\partial(w)}$ , one can verify readily that

$$\begin{split} &\partial_1 = \, -\frac{1}{2} D_{e_2,e_4}\!, \; \partial_2 = \, -\frac{1}{2} D_{e_1,e_1}\!, \; \partial_3 = \, -\frac{1}{2} D_{e_1,e_2} \\ &\partial_1' = \frac{1}{2} (D_{e_3,e_7} - \, D_{e_5,e_0}\!), \; \partial_2' = \frac{1}{2} (D_{e_6,e_7} - \, D_{e_3,e_5}\!), \; \partial_3' = \frac{1}{2} (D_{e_6,e_3} - \, D_{e_5,e_7}\!) \end{split}$$

span a  $su(2) \oplus su(2)$  subalgebra of the derivation algebra of the octonions with multiplication as above. Moreover, if one makes the following identifications  $u \leftrightarrow 1$ ,  $x_1 \leftrightarrow e_1$ ,  $x_2 \leftrightarrow e_2$ ,  $x_3 \leftrightarrow e_4$ ,  $y_1 \leftrightarrow e_3$ ,  $y_2 \leftrightarrow e_5$ ,  $y_3 \leftrightarrow e_6$ , and  $y_4 \leftrightarrow e_7$ , the action of  $su(2) \oplus su(2)$  on the x's and y's is exactly that given by (5.3) and (5.4). Therefore, since there is at most one  $su(2) \oplus su(2)$ -homomorphism up to scalar multiple in each of the cases:  $X \otimes Y \to Y$ ,  $Y \otimes X \to Y$ ,  $Y \otimes Y \to X$ , and  $Y \otimes Y \to U$ , the homomorphism can be computed easily from the corresponding products in the octonions. This calculation gives the remaining entries in (5.2).

If Der A properly contains  $su(2) \oplus su(2)$  for a division algebra A with multiplication given by (5.2), then Der A must be a compact  $G_2$ , since this is the only Lie algebra in our classification of derivation algebras of real division algebras which can properly contain  $su(2) \oplus su(2)$ . The proof of Theorem 5.1 will be complete if we can show that Der A is a compact  $G_2$  if and only if

(5.5) 
$$\varepsilon = 1 = \eta$$
,  $\beta \gamma = \delta$ ,  $\zeta = \rho$ ,  $\theta = \sigma$ ,  $\gamma > 0$ , and  $\beta \rho \sigma < 0$ .

If A satisfies the relations (5.5), then (5.2) reduces to the multiplication given in (2.1) under the correspondence given by  $x_1 \leftrightarrow e_1$ ,  $x_2 \leftrightarrow e_2$ ,  $x_3 \leftrightarrow e_4$ ,  $y_1 \leftrightarrow \sqrt{\gamma}e_3$ ,  $y_2 \leftrightarrow \sqrt{\gamma}e_5$ ,  $y_3 \leftrightarrow \sqrt{\gamma}e_6$ ,  $y_4 \leftrightarrow \sqrt{\gamma}e_7$ , and so Der  $A = \text{compact } G_2$  when the relations (5.5) hold.

Conversely, suppose that Der A is a compact  $G_2$  for a certain choice of the constants in (5.2). Then A is isomorphic to one of the algebras of the form (2.1), and this isomorphism  $\varphi$  must take X+Y onto  $V=\langle e_1,e_2,\cdots,e_7\rangle$ . Now V inherits from the alternativity of the octonions the property that if  $v_1,v_2\in V$  and if  $v_1v_2\in V$  then  $v_1(v_1v_2)\in \langle v_2\rangle$ . The same property must also hold for  $\varphi^{-1}(V)=X+Y$ , so that using (5.2) we obtain

$$(x_2 + y_1)((x_2 + y_1)x_1) = (x_2 + y_1)(-x_3 - \eta y_4) = -(1 + \gamma \eta)x_1 + (\varepsilon \eta - \eta)y_3 \in \langle x_1 \rangle.$$

Thus,  $\varepsilon \eta - \eta = 0$ , and  $\varepsilon = 1$  because  $\eta \neq 0$  in a division algebra. Since V is anticommutative, we also have  $\eta = \varepsilon$ , and so  $\eta = 1$ . Then,

$$(x_{\scriptscriptstyle 2}+y_{\scriptscriptstyle 1})((x_{\scriptscriptstyle 2}+y_{\scriptscriptstyle 1})y_{\scriptscriptstyle 2})=(x_{\scriptscriptstyle 2}+y_{\scriptscriptstyle 1})(-y_{\scriptscriptstyle 1}+\gamma x_{\scriptscriptstyle 2})=-(1+\gamma)y_{\scriptscriptstyle 2}\ +(eta\gamma-\delta)u\in\langle y_{\scriptscriptstyle 2}
angle$$
 ,

giving  $\beta\gamma=\delta$ . Since left multiplication by u is just a multiple of the identity on V, it follows the  $\zeta=\rho$ , and similarly  $\theta=\sigma$ . If  $\gamma<0$ , then  $\sqrt{-\gamma}$  is a real number and

$$(\sqrt{-\gamma}u + \rho y_1))\sqrt{-\gamma}x_3 - y_3) = -\gamma \rho x_3 - \sqrt{-\gamma}\rho y_3 + \sqrt{-\gamma}\rho y_3 + \gamma \rho x_3 = 0$$

using (5.2). Hence,  $\gamma > 0$  when A is a division algebra. Finally, for any  $c \in \mathbb{R}$ ,

$$(\sigma u + cx_1)(\sigma u - cx_1) = 
ho\sigma u - 
ho\sigma cx_1 + 
ho\sigma cx_1 - eta c^2u$$
  
=  $(
ho\sigma - eta c^2)u$ ,

using  $\zeta = \rho$  and  $\theta = \sigma$ . If  $\beta \rho \sigma > 0$ , we can set  $c = \sqrt{\beta^{-1} \rho \sigma}$  in the last calculation and obtain zero divisors. Thus,  $\beta \rho \sigma < 0$  in a division algebra, and we have verified all the relations of (5.5).

Although we shall not attempt to derive necessary and sufficient conditions on the constants for the algebra A given by (5.2) to be a division algebra, we note that there do exist division algebras of this form with Der  $A = su(2) \oplus su(2)$ . For example, if we choose  $\varepsilon=1=\eta=\gamma,\ \beta<0,\, eta\neq\delta<0,\, \zeta=
ho=1= heta=\sigma,\ hen A$  is isomorphic to the division algebra of ([1], Theorem 20) using the map  $u \leftrightarrow u$ ,  $x_1 \leftrightarrow e_1$ ,  $x_2 \leftrightarrow e_2$ ,  $x_3 \leftrightarrow e_4$ ,  $y_1 \leftrightarrow e_3$ ,  $y_2 \leftrightarrow e_5$ ,  $y_3 \leftrightarrow e_6$ ,  $y_4 \leftrightarrow e_7$ .

6. The case  $\operatorname{Der} A = su(2)$  and  $\operatorname{Cer} A = su(2) + N$ . now A is a real division algebra and that  $su(2) \subseteq \text{Der } A$ . the convention explained in §1 of denoting an irreducible su(2)module by its dimension, we can state

Proposition 6.1. If A is a real division algebra such that  $su(2) \subseteq \text{Der } A$ , then the decomposition of A into irreducible su(2)modules has one of the following forms: 1+3, 1+7, 3+5, 1+1+3+3, 1+3+4, 1+1+1+1+4.

*Proof.* We suppose first that A is a direct sum of odd-dimensional irreducible modules. At least one irreducible module of dimension  $\geq 3$  must be present, since su(2) cannot act trivially on all of A. Then the only possibility when dim A = 4 is 1 + 3. For  $\dim A = 8$ , we note that the elements of A annihilated by all of su(2) form a subalgebra which has dimension 0, 1, 2, or 4. With this restriction on the number of 1's in the decomposition, it is immediate that the only possible decompositions are 1+7, 3+5, and 1 + 1 + 3 + 3.

Suppose then that A has an even-dimensional irreducible module. Since by (1.6) the product of even-dimensional irreducible modules in  $A_c$  must lie in the sum of the odd-dimensional irreducible modules, the same is true in A. Thus A must also have odd-dimensional irreducible modules. In fact, the dimension of the sum of the odddimensional irreducible modules must be the same as the dimension of the sum of the even-dimensional modules, since right multiplication by any nonzero element of an even-dimensional irreducible module will map each of these two spaces into the other. As the smallest even-dimensional irreducible su(2)-module has dimension 4. it follows that  $\dim A = 8$  and that A is the sum of a single 4dimensional irreducible module and some odd-dimensional irreducible modules. The only possibilities are 1+3+4 and 1+1+1+1 + 4.

We discuss in turn each of the cases that arise in Proposition 6.1 beginning with the case 1+3. This case is very similar to the case when Der A= compact  $G_2$ , since we see that there is exactly one product from  $3\times 3$  to 3 and one from  $3\times 3$  to 1. Then A is just like the quaternions except that there are several constants in the table. Specifically the multiplication table for A is given by

where we have normalized  $e_1$ ,  $e_2$ ,  $e_4$  to make the scalar involved in the product from  $3 \times 3$  to 3 become 1, and we have normalized u so that  $u^2 = u$ . Since this algebra is a subalgebra of the algebra given by (2.1), it is a division algebra if  $\beta \eta \zeta > 0$  by Theorem 2.2. Conversely, if the algebra given by (6.2) is a division algebra, then the equation

$$0 = (a_0u + a_1e_1 + a_2e_2 + a_4e_4)(b_0u + b_1e_1 + b_2e_2 + b_4e_4)$$

can hold only if either all the a's or all the b's are zero. An argument identical to the proof of Theorem 2.2 shows that this condition implies  $\beta\eta\zeta>0$ . We have proved

THEOREM 6.3. A 4-dimensional real algebra is a division algebra with su(2) as its derivation algebra if and only if A has a basis  $u, e_1, e_2, e_4$  with multiplication given by (6.2) for some real numbers  $\beta, \eta, \zeta$  such that  $\beta\eta\zeta > 0$ .

The best known algebra belonging to the class defined by (6.2) is of course the algebra of quaternions, which arises by taking  $\beta = \eta = \zeta = 1$ . If we take  $\beta = 1$  and  $\eta = -1 = \zeta$ , we obtain the pseudo-quaternions of Okubo [8].

We consider next the case when A has the decomposition 1+7. Here we can establish

THEOREM 6.4. If A is a real division algebra with  $su(2) \subseteq Der A$ , and if A breaks up as an su(2)-module into a sum of a 1-dimensional module and an irreducible 7-dimensional module, then Der A is a compact  $G_2$ . Hence the structure of A is described by Theorem 2.2.

*Proof.* Let A be an algebra satisfying the hypotheses of Theorem 6.4, let U be the 1-dimensional module, and let E be the

irreducible 7-dimensional module. Then  $U \otimes U \cong U$ , and so U is a subalgebra spanned by an idempotent u. Also,  $U \otimes E \cong E$ , and right multiplication by u acts on E as a scalar multiple of the identity transformation. Similarly, left multiplication by u acts on E as a scalar multiple of the identity. By the Clebsch-Gordan formula, there is up to a scalar multiple exactly one homomorphism from  $E \otimes E$  to E, and exactly one from  $E \otimes E$  to U. If we can show that these are the same two homomorphisms which come out of the algebras defined by (2.1), we will have shown that the present algebra A belongs to the class of algebras defined by (2.1). In order to demonstrate that these homomorphisms are the same, it is sufficient to exhibit an algebra which satisfies the hypotheses of Theorem 6.4 and which also has the form (2.1), since the modules involved are unique up to isomorphism. Thus, it suffices to establish that the octonions O satisfy the hypotheses of Theorem 6.4.

Letting O be spanned by  $u, e_1, \dots, e_7$  where multiplication is given by (2.1) with  $\beta = \eta = \zeta = 1$ , we show that there exists a subalgebra of Der O isomorphic to su(2) which acts irreducibly on  $E = \langle e_1, \dots, e_7 \rangle$ . As we noted in § 5, the maps

$$D_{ij} = -ad_{[e_i,e_j]} + 3[L_{e,i},R_{e_j}]$$

are known to be derivations of O. Then the linear transformations

$$egin{align} \partial_1 &= rac{1}{3} D_{2,6} - rac{4}{3} D_{4,5} \ \ \partial_2 &= -rac{1}{2} \sqrt[4]{6} \, D_{8,7} + rac{1}{6} \sqrt[4]{10} (D_{1,2} - D_{6,8}) \ \ \partial_3 &= rac{1}{2} \sqrt[4]{6} \, D_{7,1} + rac{1}{6} \sqrt[4]{10} (D_{6,1} - D_{2,8}) \ \ \ \end{array}$$

are also derivations of O, and one can verify that the action of the  $\partial_i$ 's on E is given by

It is straightforward to check using this table that  $[\partial_j, \partial_{j+1}] = 2\partial_{j+2}$ where the subscripts are interpreted modulo 3. Thus,  $\partial_1$ ,  $\partial_2$ ,  $\partial_3$  span a subalgebra of Der O which is isomorphic to su(2).

It remains to show that E is irreducible under this copy S of su(2). We show first that each basis element  $e_i$  generates all of E under the action of S. Let  $M(e_i)$  denote the S-submodule of E generated by  $e_j$ . From the action of  $\partial_1$ , we see that  $M(e_1) = M(e_3)$ ,  $M(e_2) = M(e_6)$ , and  $M(e_4) = M(e_5)$ . Since  $\partial_2(e_4) = \sqrt{6}e_2$  and  $\partial_2(e_2) = \sqrt{10}e_1 - \sqrt{6}e_4$ , we have  $e_1, \dots, e_6 \in M(e_4)$ . Also,  $\partial_2(e_2) = \sqrt{10}e_1 - \sqrt{6}e_4$  and  $\partial_3(e_6) = -\sqrt{6}e_4 - \sqrt{10}e_1$  imply that  $e_1, \dots, e_6 \in M(e_2) = M(e_6)$ . Similarly, we obtain  $e_1, \dots, e_6 \in M(e_1) = M(e_3)$ . Since any submodule containing  $e_1, \dots, e_6$  contains  $e_7$  using  $\partial_3(e_1) = \sqrt{10}e_6 + 2\sqrt{6}e_7$ , we see that  $M(e_1) = M(e_2) = \dots = M(e_6) = E$ . Then  $M(e_7) = E$  also, because  $e_1 \in M(e_7)$  follows from  $\partial_3(e_7) = 2\sqrt{6}e_1$ .

If E is not an irreducible S-module, there exists an element which generates a nonzero proper submodule, and among all such elements we pick one,  $w = \lambda_1 e_1 + \cdots + \lambda_7 e_7$ , of shortest length (i.e., with as many  $\lambda$ 's zero as possible). It is easy to see that the element

$$w_1 = lpha^2 w + \partial_1^2 w = (lpha^2 - 4)\lambda_1 e_1 + (lpha^2 - 16)\lambda_2 e_2 + (lpha^2 - 4)\lambda_3 e_3 + (lpha^2 - 36)\lambda_4 e_4 + (lpha^2 - 36)\lambda_5 e_5 + (lpha^2 - 16)\lambda_6 e_6 + lpha^2 \lambda_7 e_7$$

will have shorter length than w for some  $\alpha \in \{0, 2, 4, 6\}$  and that  $M(w_1) \subseteq M(w) \neq E$ . Since w has the shortest length among all nonzero elements, we obtain  $w_1 = 0$  for some  $\alpha$ , which implies that w has one of the forms

$$\lambda_1 e_1 + \lambda_3 e_3$$
,  $\lambda_2 e_2 + \lambda_6 e_6$ ,  $\lambda_4 e_4 + \lambda_5 e_5$ ,  $\lambda_7 e_7$ .

The case when  $w=\lambda_7 e_7$  has already been eliminated. If  $w=\lambda_1 e_1+\lambda_3 e_3$ , then  $2\lambda_1 w+\lambda_3 \partial_1 w=(2\lambda_1^2+2\lambda_3^2)e_1$ , showing that  $e_1$  is in the submodule generated by w. But we have shown that  $e_1$  generates all of E, so w could not be of the form  $\lambda_1 e_1+\lambda_3 e_3$ . An identical argument rules out the cases when  $w=\lambda_2 e_2+\lambda_5 e_6$  and  $w=\lambda_4 e_4+\lambda_5 e_5$ . Thus E is an irreducible S-module.

We turn now to the case when A is a direct sum of an irreducible 3-dimensional su(2)-module and an irreducible 5-dimensional su(2)-module. Since each of  $3\times 3$ ,  $3\times 5$ ,  $5\times 3$ ,  $5\times 5$  has one multiplication into each of 3 and 5, there will be eight constants in the multiplication table of A. One can construct A by thinking of A as the  $3\times 3$  skew-Hermitian complex matrices of trace zero, where both su(2) and the 3-dimensional submodule of A are identified with the subspace of matrices which are skew (as well as skew-Hermitian), and where the 5-dimensional module is those matrices which are symmetric (and skew-Hermitian). The action of su(2) on the two modules is the Lie product, and the different multiplications between the two modules in A are obtained by resolving into the 3 and 5-components the two products on this set of matrices given in (3.1).

As is obvious from the construction of A, the algebras occurring here include the class of algebras studied in § 3. On the other hand, when A has no 1-dimensional submodule for su(2), it cannot have a 1-dimensional submodule for all of Der A, which rules out the cases that Der A is either a compact  $G_2$  or  $su(2) \oplus su(2)$ , and the case when  $\operatorname{Der} A = su(3)$  and A is not an irreducible su(3)module. We have established most of

THEOREM 6.5. If A is a real division algebra with  $\mathfrak{su}(2) \subseteq \operatorname{Der} A$ , and if A is the sum of an irreducible 3-dimensional su(2)-module and an irreducible 5-dimensional su(2)-module, then either Der A = su(2), or else Der A = su(3) and A is an irreducible su(3)module.

*Proof.* In view of our classification of the derivation algebras of division algebras and of the remarks in the paragraph before the statement of the theorem, it is only necessary to rule out the case that  $\operatorname{Der} A = \mathfrak{su}(2) \oplus N$  where N is a 1-dimensional Lie algebra. Employing the representation of A explained above, we let  $\partial_1$ ,  $\partial_2$ ,  $\partial_3$ be the basis of su(2) and  $x_1, x_2, x_3$  the basis for the 3-dimensional module X defined by

$$(6.6) \partial_1 = e_{12} - e_{21} = x_1, \ \partial_2 = e_{23} - e_{32} = x_2, \ \partial_3 = e_{13} - e_{31} = x_3,$$

where the  $e_{ij}$ 's are  $3 \times 3$  matrix units. We let

$$(6.7) y_1 = i(e_{12} + e_{21}), y_2 = i(e_{23} + e_{32}), y_3 = i(e_{13} + e_{31}), y_4 = i(e_{11} - e_{22}), y_5 = i(e_{22} - e_{33})$$

be the basis of the 5-dimensional module Y.

If Der  $A = su(2) \oplus N$ , then there exists a nonzero derivation  $\partial$ commuting with  $\partial_1$ ,  $\partial_2$ ,  $\partial_3$ . By ([1], Lemma 15), the rank of any derivation on an 8-dimensional real division algebra is 0, 4, or 6. But  $\partial(A)$  is an  $\mathfrak{su}(2)$ -submodule and so must have dimension 0, 3, 5, or 8. Hence,  $\partial(A) = 0$ , and  $\partial = 0$ . This rules out the case Der A =su(2) + N here. 

The question of whether real division algebras satisfying the hypotheses of Theorem 6.5 and having Der A = su(2) actually exist has not been settled, to the best of our knowledge.

Consider next the case when the decomposition of A as su(2)modules is 1+1+3+3. By determining all possible homomorphisms from the tensor product of two summands into a third summand, one can obtain a general multiplication table with 40 different scalars, but the number of constants can be decreased by making a judicious choice of basis. This class of algebras clearly

contains those division algebras with  $\operatorname{Der} A = su(3)$  where A is not an irreducible su(3)-module, and hence also the division algebras where  $\operatorname{Der} A = \operatorname{compact} G_2$ . It also contains the algebras with  $\operatorname{Der} A = su(2) \bigoplus su(2)$ , since in the notation of (5.3) and (5.4), the elements  $\partial_1 + \partial_1'$ ,  $\partial_2 + \partial_2'$ ,  $\partial_3 + \partial_3'$  form a subalgebra of  $\operatorname{Der} A$  isomorphic to su(2) under which A has the decomposition 1+1+3+3. We don't know whether the case when  $\operatorname{Der} A = su(3)$  and A is an irreducible su(3)-module is included in the present case, or whether there exist real division algebras with the decomposition 1+1+3+3 where  $\operatorname{Der} A$  is either just su(2) or su(2)+N.

We turn briefly to the case where A has the su(2)-module decomposition 1+3+4. The general multiplication table here can be written out using 21 constants. It is clear that those division algebras where  $\operatorname{Der} A = su(2) \oplus su(2)$  or  $\operatorname{Der} A = \operatorname{compact} G_2$  are included in this class. The division algebras with  $\operatorname{Der} A = su(3)$  and A not an irreducible su(3)-module are clearly not included in the 1+3+4 case, but it is less clear whether the case when  $\operatorname{Der} A = su(3)$  and A is an irreducible su(3)-module is included. We have not attempted to settle whether there are division algebras of this type with  $\operatorname{Der} A = su(2)$  or  $\operatorname{Der} A = su(2) \oplus N$  for the case 1+3+4.

Our final case is when the su(2)-module decomposition is 1+1+1+1+4. Again those division algebras where  $\operatorname{Der} A = su(2) \bigoplus su(2)$  or  $\operatorname{Der} A = \operatorname{compact} G_2$  are included in this class. We don't know whether either type of division algebra with  $\operatorname{Der} A = su(3)$  occurs here. For this case we will prove that there are division algebras with  $\operatorname{Der} A = su(2)$  and also with  $\operatorname{Der} A = su(2) \bigoplus N$ .

Let A be an algebra with basis u,  $e_1$ ,  $e_2$ ,  $\cdots$ ,  $e_7$  and multiplication as in the octonions except that the squares of the  $e_i$ 's are not all equal. Specifically, products in A are given by

$$u^2 = u, ue_i = e_i = e_i u, e_i^2 = -\beta_i u, \quad \text{for } i = 1, \dots, 7$$

$$(6.8) \quad e_i e_{i+1} = e_{i+3} = -e_{i+1} e_i, e_{i+1} e_{i+3} = e_i = -e_{i+1} e_{i+3},$$

 $e_{i+3}e_i=e_{i+1}=-e_ie_{i+3}$ , where the subscripts are taken modulo 7,

and where  $\beta_1, \beta_2, \dots, \beta_7$  are positive real numbers. We have shown [1, Theorem 20] that this algebra is a real division algebra, and we want to calculate its derivations for appropriate conditions on the  $\beta$ 's. In particular, we shall establish

THEOREM 6.9. Let A be the real division algebra defined by (6.8) and let  $\beta_3 = \beta_5 = \beta_6 = \beta_7$ . If  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$ ,  $\beta_4$  are distinct, then Der A = su(2). If  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$  are distinct and  $\beta_2 = \beta_4$ , then Der  $A = su(2) \oplus N$  where N is a 1-dimensional Lie algebra.

*Proof.* Suppose that  $\beta_3 = \beta_5 = \beta_6 = \beta_7$ , and define the linear transformations  $\partial'_1$ ,  $\partial'_2$ ,  $\partial'_3$ , on A by

Comparing with (5.4), we see that (6.10) defines an irreducible module action of su(2) spanned by  $\partial_1'$ ,  $\partial_2'$ ,  $\partial_3'$  on the subspace  $E_1 = \langle e_3, e_5, e_6, e_7 \rangle$ . By definition su(2) acts trivially on the subalgebra  $E_0 = \langle u, e_1, e_2, e_4 \rangle$ , and we need to verify that  $\partial_1'$ ,  $\partial_2'$ ,  $\partial_3'$  act like derivations on products of the form  $E_0E_1$ ,  $E_1E_0$ , and  $E_1E_1$ .

Since we showed in §5 that  $\partial_1'$ ,  $\partial_2'$ ,  $\partial_3'$  are derivations of the octonions and since the present algebra is the same as the octonions except for the squares of the  $e_i'$ s, the maps  $\partial_1'$ ,  $\partial_2'$ ,  $\partial_3'$  will act as derivations on any product of basis vectors where the verification does not depend on calculating the square of an  $e_i$ . In particular, the  $\partial_i'$ s act as derivations on all products of the form  $E_0E_1$  or  $E_1E_0$ . For the remaining products—those of the type  $E_1E_1$ , one can verify directly using (6.10) and the fact that  $\beta_3 = \beta_5 = \beta_6 = \beta_7$  that each  $\partial_i'$  behaves as a derivation. Thus,  $\partial_1'$ ,  $\partial_2'$ ,  $\partial_3'$  are derivations and span a copy of su(2) in Der A.

In order to find out which other derivations of A exist, we need

LEMMA 6.11. If  $\partial$  is a derivation of the algebra A defined by equations (6.8), then  $\partial(u) = 0$  and there exist real numbers  $a_{ij}$  for  $1 \leq i, j \leq 7$  such that  $a_{ij} = -a_{ji}$  and  $\partial(e_i) = \sum_{j=1}^{7} a_{ij}e_j$  for  $1 \leq i \leq 7$ . Futhermore, if  $\beta_i \neq \beta_j$ , then  $a_{ij} = 0$ .

*Proof.* Since u is the identity element of A,  $\partial(u)=0$ . If  $\partial(e_i)=a_{i0}u+\sum_{j=1}^7 a_{ij}e_j$  for  $a_{i0}$ ,  $a_{ij}\in R$ , we see from

$$0 = \partial(e_i^2) = \partial(e_i)e_i + e_i\partial(e_i) = 2a_{i0}e_i - 2\beta_ia_{ii}u$$

that  $a_{i0}=0=a_{ii}$  for  $1\leq i\leq 7$ . For fixed  $i\neq j$ , there exists k such that either  $e_i=e_je_k$  or  $e_i=e_ke_j$ . In the former case, the  $e_j$ -component of

$$\partial(e_i) = \partial(e_j e_k) = \partial(e_j) e_k + e_j \partial(e_k) = \sum_l a_{jl} e_l e_k + \sum_l a_{kl} e_j e_l$$

$$(6.12) a_{ij} = -a_{ji} ,$$

since  $e_j e_l$  is never a multiple of  $e_j$  and since  $e_l e_k$  is a multiple of  $e_j$  exactly when l=i, in which case  $e_i e_k = -e_j$ . If  $e_i = e_k e_j$ , then (6.12) also holds by the identical argument with left and right interchanged. If  $\beta_i \neq \beta_j$ , then

$$(6.13) 0 = \partial(e_i e_j + e_j e_i) = \partial(e_i) e_j + e_i \partial(e_j) + \partial(e_j) e_i + e_j \partial(e_i),$$

and the u-component of this is

$$0=2a_{ij}e_{j}^{2}+2a_{ji}e_{i}^{2}=2a_{ij}(e_{j}^{2}-e_{i}^{2})=2a_{ij}(eta_{i}-eta_{j})u$$
 ,

which implies that  $a_{ij} = 0$ .

Returning to the proof of Theorem 6.9, we suppose first that  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$ ,  $\beta_4$  are distinct. Then, for any  $\partial \in \operatorname{Der} A$ , we see from Lemma 6.11 that  $a_{ij} = 0$  unless i and j are both in the set  $\{3, 5, 6, 7\}$ , giving  $\partial(E_0) = 0$  and  $\partial(E_1) \subseteq E_1$ . Hence  $\partial(e_3) = b_5e_5 + b_6e_6 + b_7e_7$  for some  $b_5$ ,  $b_6$ ,  $b_7 \in \mathbb{R}$ , and  $\partial' = \partial - b_5\partial'_2 - b_6\partial'_3 + b_7\partial'_1$  has the property that  $\partial'(e_3) = 0$ . It follows that

$$\partial'(e_5) = \partial'(e_2e_3) = \partial'(e_2)e_3 + e_2\partial'(e_3) = 0$$
,  $\partial'(e_6) = \partial'(e_3e_4) = \partial'(e_3)e_4 + e_3\partial'(e_4) = 0$ ,  $\partial'(e_7) = \partial'(e_1e_3) = \partial'(e_1)e_3 + e_7\partial'(e_3) = 0$ ,

giving  $\partial'=0$ . Thus,  $\partial=b_5\partial'_2+b_6\partial'_3-b_7\partial'_1\in su(2)$ , and Der A=su(2). Finally, suppose that  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$  are distinct and that  $\beta_2=\beta_4$ . If  $\partial\in \operatorname{Der} A$ , then Lemma 6.11 implies that

$$\partial(e_1) = 0$$
,  $\partial(e_2) = a_{24}e_4$ ,  $\partial(e_4) = -a_{24}e_2$ ,  $\partial(E_1) \subseteq E_1$ .

If  $a_{24}=0$ , the argument of the last paragraph shows that  $\partial \in su(2)$ , implying that dim Der  $A \leq \dim su(2)+1=4$ . Thus, in order to prove that Der A=su(2)+N, it is sufficient to show that Der A contains a nonzero derivation  $\partial_1$  which commutes with  $\partial_1'$ ,  $\partial_2'$ ,  $\partial_3'$ . We claim that if  $\partial_1$  is defined by

$$\partial_1(u)=0$$
,  $\partial_1(e_1)=0$ ,  $\partial_1(e_2)=2e_4$ ,  $\partial_1(e_4)=-2e_2$ ,  $\partial_1(e_3)=-e_7$ ,  $\partial_1(e_5)=-e_6$ ,  $\partial_1(e_6)=e_5$ ,  $\partial_1(e_7)=e_3$ ,

then  $\partial_1$  is a derivation of A commuting with  $\partial'_1$ ,  $\partial'_2$ ,  $\partial'_3$ . We saw in § 5 that  $\partial_1$  is a derivation of the octonions commuting with  $\partial'_1$ ,  $\partial'_2$ ,  $\partial'_3$  (see (5.4)). Thus  $\partial_1$  must also commute here with  $\partial'_1$ ,  $\partial'_2$ ,  $\partial'_3$ , and  $\partial_1$  must act as a derivation on any product of basis vectors, since in those cases where the calculation involves squaring on  $e_i$ , the two

 $\beta$ 's involved will be equal. Therefore,  $\partial_1$  is a derivation here also.

7. The case when Der A is abelian. We consider next the case when Der A is abelian of dimension 2. By [1, Corollary 16], dim A=8 and there is a basis  $\partial_1'$ ,  $\partial_2'$  of Der A such that  $\partial_1'$  and  $\partial_2'$  are diagonal relative to a suitable choice of basis of  $A_c$  and are of the form

$$\partial'_1 \longleftrightarrow \operatorname{diag} \{0, 0, \alpha i, -\alpha i, \beta i, -\beta i, (\alpha + \beta)i, -(\alpha + \beta)i\}$$
  
 $\partial'_2 \longleftrightarrow \operatorname{diag} \{0, 0, 0, 0, \gamma i, -\gamma i, \gamma i, -\gamma i\}$ 

for nonzero real numbers  $\alpha$ ,  $\beta$ ,  $\gamma$ . Then  $\partial_1 = (1/\alpha)\partial_1' - (\beta/\alpha\gamma)\partial_2'$  and  $\partial_2 = (1/\gamma)\partial_2'$  are also a basis for Der A and

Hence there must exist a basis  $u_1$ ,  $u_2$ ,  $x_1$ ,  $x_2$ ,  $y_1$ ,  $y_2$ ,  $z_1$ ,  $z_2$  of A such that  $\partial_1$  and  $\partial_2$  are given by

$$\begin{array}{lll} \partial_1(u_1)=0=\partial_1(u_2),\;\partial_1(x_1)=x_2,\,\partial_1(x_2)=-x_1,\,\partial_1(y_1)=0=\partial_1(y_2)\;,\\ \partial_1(z_1)=z_2,\,\partial_1(z_2)=-z_1,\,\partial_2(u_1)=0=\partial_2(u_2),\,\partial_2(x_1)=0=\partial_2(x_2)\;,\\ \partial_2(y_1)=y_2,\,\partial_2(y_2)=-y_1,\,\partial_2(z_1)=z_2,\,\partial_2(z_2)=-z_1\;. \end{array}$$

Defining the subspaces U, X, Y, Z of A by

$$U = \langle u_1, u_2 \rangle, X = \langle x_1, x_2 \rangle, Y = \langle y_1, y_2 \rangle, Z = \langle z_1, z_2 \rangle$$

we will show first that the product of any two of these spaces is contained in one of the subspaces. Specifically, we will prove

LEMMA 7.3. The products of the spaces U, X, Y, Z are given by the table

*Proof.* Since U is the kernel of Der A, we have  $U^2 \subseteq U$ . If

 $u \in U$  and  $x \in X$ , then  $u, x \in \ker \partial_2$ , so  $ux \in \ker \partial_2 = U + X$ . On the other hand, x is the image of some element  $x' \in X$  under  $\partial_1$ , and so  $ux = u\partial_1(x') = \partial_1(ux')$  is also in the image of  $\partial_1$  which is X + Z. Thus  $ux \in (U + X) \cap (X + Z) = X$ . Similarly, for  $u \in U$  and  $y \in Y$ , we have

$$uy \in (\ker \partial_1) \cap (\operatorname{Im} \partial_2) = (U + Y) \cap (Y + Z) = Y$$
.

For  $u \in U$  and  $z \in Z$ , we define  $\partial_3 = \partial_1 - \partial_2$  and note that

$$uz \in (\ker \partial_3) \cap (\operatorname{Im} \partial_1) = (U+Z) \cap (X+Z) = Z$$
.

The same calculations show that  $XU \subseteq X$ ,  $YU \subseteq Y$ , and  $ZU \subseteq Z$ . Also, if  $x \in X$ ,  $y \in Y$ ,  $z \in Z$ , we obtain

$$xy$$
,  $yx \in (\operatorname{Im} \partial_1) \cap (\operatorname{Im} \partial_2) = (X+Z) \cap (Y+Z) = Z$ ,  $xz$ ,  $zx \in (\operatorname{Im} \partial_2) \cap (\operatorname{Im} \partial_3) = (Y+Z) \cap (X+Y) = Y$ ,  $yz$ ,  $zy \in (\operatorname{Im} \partial_1) \cap (\operatorname{Im} \partial_3) = (X+Z) \cap (X+Y) = X$ .

Finally, if  $x, x' \in X$ , then we calculate that

$$\partial_1(xx')=\partial_1(x)x'+x\partial_1(x')$$
,  $\partial_1^2(xx')=-xx'+2\partial_1(x)\partial_1(x')-xx'$ ,  $\partial_1^3(xx')=-2\partial_1(x)x'-2x\partial_1(x')-2x\partial_1(x')-2\partial_1(x)x'$ .

But  $\partial_1^2$  acting on Im  $\partial_1$  has the effect of multiplying by -1, and so

$$0 = \partial_1(xx') + \partial_1^3(xx') = \partial_1(x)x' + x\partial_1(x') - 4\partial_1(x)x' - 4x\partial_1(x')$$
$$= -3\partial_1(xx').$$

showing that  $xx' \in \ker \partial_1$ . Since  $x, x' \in \ker \partial_2$ , so is xx', and

$$xx' \in (\ker \partial_1) \cap (\ker \partial_2) = (U + Y) \cap (U + X) = U$$
.

By an identical argument, we obtain  $Y^2 \subseteq U$  and  $Z^2 \subseteq U$ .

The existence of the two commuting derivations  $\hat{o}_1$ ,  $\hat{o}_2$  not only gives the block multiplication of Lemma 7.3 but also imposes some conditions on how the elements of these different blocks multiply. In particular, we have

THEOREM 7.5. If A is a real division algebra which has two linearly independent commuting derivations, then A has a basis  $u_1, u_2, x_1, x_2, y_1, y_2, z_1, z_2$  for which the multiplication table (7.6) holds.

|                            | $u_{_1}$                                                                                               | $u_{2}$                                                                          | $x_{_1}$                                                                                                                                                                       | $x_{\scriptscriptstyle 2}$                                                                                                                                                                                               | $y_1$                                                                                          | $y_2$                                                                                                                                                            | <b>%</b>                                                                                                         | $\mathcal{Z}_2$                                                                                     |
|----------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| $u_{_1}$                   | $\rho_1 u_1 + \rho_2 u_2$                                                                              | $\rho_3 u_1 + \rho_4 u_2$                                                        | $\alpha_{\scriptscriptstyle 1} x_{\scriptscriptstyle 1} + \alpha_{\scriptscriptstyle 2} x_{\scriptscriptstyle 2}$                                                              | $lpha_{_1}x_{_1}+lpha_{_2}x_{_2} \ -lpha_{_2}x_{_1}+lpha_{_1}x_{_2}$                                                                                                                                                     | $\alpha_5 y_1 + \alpha_6 y_2$                                                                  | $\left lpha_{b}y_{1}+lpha_{b}y_{z} ightlpha_{b}y_{z} ight\left lpha_{b}y_{z} ight. ight.$                                                                        | $\alpha_{\scriptscriptstyle 0}z_{\scriptscriptstyle 1} + \alpha_{\scriptscriptstyle 10}z_{\scriptscriptstyle 2}$ | $\left lpha_{_{0}}z_{_{1}}+lpha_{_{10}}z_{_{2}} ightlpha_{_{10}}z_{_{1}}+lpha_{_{0}}z_{_{2}} ight $ |
| $u_{\scriptscriptstyle 2}$ | $\left  \rho_5 u_1 + \rho_6 u_2 \right $                                                               | $\rho_{\rm r}u_{\rm l} + \rho_{\rm s}u_{\rm z}$                                  | $lpha_3 x_1 + lpha_4 x_2$                                                                                                                                                      | $lpha_{\scriptscriptstyle 3}x_{\scriptscriptstyle 1} + lpha_{\scriptscriptstyle 4}x_{\scriptscriptstyle 2} \ -lpha_{\scriptscriptstyle 4}x_{\scriptscriptstyle 1} + lpha_{\scriptscriptstyle 3}x_{\scriptscriptstyle 2}$ | $\alpha_{r}y_{\scriptscriptstyle 1}\!+\!\alpha_{\scriptscriptstyle 8}y_{\scriptscriptstyle 2}$ | $lpha_{\it r} y_{\scriptscriptstyle 1} + lpha_{\it s} y_{\scriptscriptstyle 2} \ -lpha_{\it s} y_{\scriptscriptstyle 1} + lpha_{\it r} y_{\scriptscriptstyle 2}$ | $lpha_{\scriptscriptstyle 11} z_{\scriptscriptstyle 1} + lpha_{\scriptscriptstyle 12} z_{\scriptscriptstyle 2}$  | $lpha_{_{11}}z_{_{1}}+lpha_{_{12}}z_{_{2}}-lpha_{_{12}}z_{_{1}}+lpha_{_{11}}z_{_{2}}$               |
| $x_{_1}$                   | $\eta_1 x_1 + \eta_2 x_2$                                                                              | $\eta_3 x_1 + \eta_4 x_2$                                                        | $\beta_1 u_1 + \beta_2 u_2$                                                                                                                                                    | $\partial_1 u_1 + \partial_2 u_2$                                                                                                                                                                                        | $\gamma_1 oldsymbol{z}_1 + \gamma_2 oldsymbol{z}_2$                                            | $\gamma_1 z_1 + \gamma_2 z_2 - \gamma_2 z_1 + \gamma_1 z_2$                                                                                                      | $\gamma_3 y_1 + \gamma_4 y_2$                                                                                    | $\gamma_3 y_1 + \gamma_4 y_2 - \gamma_4 y_1 + \gamma_3 y_2$                                         |
| $s_{z}$                    | $-\eta_z x_1 + \eta_1 x_2$                                                                             | $-\eta_4 x_1 + \eta_3 x_2$                                                       | $-\delta_1 u_1 - \delta_2 u_2$                                                                                                                                                 | $\beta_1 u_1 + \beta_2 u_2$                                                                                                                                                                                              | $eta_1 u_1 + eta_2 u_2 igg  - \gamma_2 oldsymbol{z}_1 + \gamma_1 oldsymbol{z}_2$               | $-\gamma_1 \mathbf{z}_1 - \gamma_2 \mathbf{z}_2$                                                                                                                 | $\gamma_4 y_1 - \gamma_3 y_2$                                                                                    | $\gamma_3 y_1 + \gamma_4 y_2$                                                                       |
| $y_{_1}$                   | $\eta_5 y_1 + \eta_6 y_2$                                                                              | $\eta_{7}y_{1}\!+\!\eta_{8}y_{2}$                                                | $\varepsilon_1 z_1 + \varepsilon_2 z_2$                                                                                                                                        | $-\varepsilon_{\scriptscriptstyle 2} z_{\scriptscriptstyle 1} + \varepsilon_{\scriptscriptstyle 1} z_{\scriptscriptstyle 2}$                                                                                             | $\beta_3 u_1 + \beta_4 u_2$                                                                    | $\partial_3 u_1 + \partial_4 u_2$                                                                                                                                | $\gamma_5 x_1 + \gamma_6 x_2$                                                                                    | $\gamma_5 x_1 + \gamma_6 x_2 - \gamma_6 x_1 + \gamma_5 x_2$                                         |
| $y_z$                      | $-\eta_6 y_1 + \eta_5 y_2$                                                                             | $-\eta_8 y_1 + \eta_7 y_2$                                                       | $-\boldsymbol{\varepsilon}_{\scriptscriptstyle 2}\boldsymbol{z}_{\scriptscriptstyle 1} + \boldsymbol{\varepsilon}_{\scriptscriptstyle 1}\boldsymbol{z}_{\scriptscriptstyle 2}$ | $-\boldsymbol{\varepsilon}_1\boldsymbol{z}_1 - \boldsymbol{\varepsilon}_2\boldsymbol{z}_2$                                                                                                                               | $-\delta_3 u_1 - \delta_4 u_2$                                                                 | $eta_3 u_1 + eta_4 u_2$                                                                                                                                          | $\gamma_6 x_1 - \gamma_5 x_2$                                                                                    | $\gamma_5 x_{\scriptscriptstyle 1} + \gamma_6 x_{\scriptscriptstyle 2}$                             |
| <b>%</b>                   | $\eta_{\mathfrak{o}} z_{\scriptscriptstyle 1} + \eta_{\scriptscriptstyle 10} z_{\scriptscriptstyle 2}$ | $\eta_{11}z_1\!+\!\eta_{12}z_2$                                                  | $\varepsilon_3 y_1 + \varepsilon_4 y_2$                                                                                                                                        | $arepsilon_4 y_1 - arepsilon_3 y_2$                                                                                                                                                                                      | $\boldsymbol{\varepsilon}_5 x_1 + \boldsymbol{\varepsilon}_6 x_2$                              | $arepsilon_6 x_1 - arepsilon_5 x_2$                                                                                                                              | $eta_5 u_1 + eta_6 u_2$                                                                                          | $\partial_5 u_1 + \partial_6 u_2$                                                                   |
| 8€                         | $-\eta_{10}oldsymbol{z}_1\!+\!\eta_9oldsymbol{z}_2$                                                    | $-\eta_{12}z_1\!+\!\eta_{11}z_2\left -arepsilon_4 y_1\!+\!arepsilon_3 y_2 ight $ | $-\varepsilon_{_4}y_{_1}\!+\!\varepsilon_{_3}y_{_2}$                                                                                                                           | $\boldsymbol{\varepsilon}_3 \boldsymbol{y}_1 + \boldsymbol{\varepsilon}_4 \boldsymbol{y}_2$                                                                                                                              | $-\varepsilon_6 x_1 + \varepsilon_5 x_2$                                                       | $\varepsilon_5 x_1 + \varepsilon_6 x_2$                                                                                                                          | $-\delta_5 u_1 + \delta_6 u_2$                                                                                   | $eta_5 u_1 + eta_6 u_2$                                                                             |

*Proof.* From (7.4) we know that  $x_1y_1 \in Z$ , say  $x_1y_1 = \gamma_1z_1 + \gamma_2z_2$ . Applying  $\partial_1$  and  $\partial_2$  respectively to this relation and using (7.2), we obtain

$$x_2y_1=\partial_1(x_1)y_1=\partial_1(x_1y_1)=\partial_1(\gamma_1z_1+\gamma_2z_2)=\gamma_1z_2-\gamma_2z_1$$
 ,  $x_1y_2=x_1\partial_2(y_1)=\partial_2(x_1y_1)=\gamma_1z_2-\gamma_2z_1$  .

And applying  $\partial_1$  to the last relation gives  $x_2y_2=\partial_1(x_1y_2)=-\gamma_1z_1-\gamma_2z_2$ . Similarly, there exist  $\gamma_3$ ,  $\gamma_4$ ,  $\gamma_5$ ,  $\gamma_6\in R$  such that  $x_1z_1=\gamma_3y_1+\gamma_4y_2$  and  $y_1z_1=\gamma_5x_1+\gamma_6x_2$ , and the application of  $\partial_1$ ,  $\partial_2$ ,  $\partial_3=\partial_1-\partial_2$  to these equations gives the remaining products of the form XZ and YZ. The products of the form YX, ZX, and ZY follow by leftright symmetry.

Next, choosing  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$ ,  $\alpha_4 \in R$  such that  $u_1x_1 = \alpha_1x_1 + \alpha_2x_2$  and  $u_2x_1 = \alpha_3x_1 + \alpha_4x_2$ , we get

$$u_1x_2 = u_1\partial_1(x_1) = \partial_1(u_1x_1) = \alpha_1x_2 - \alpha_2x_1, u_2x_2 = \partial_1(u_2x_1) = \alpha_3x_2 - \alpha_4x_1$$
.

By identical arguments, we obtain all the entries in (7.4) of the forms UX, UY, UZ, XU, YU, and ZU. Choosing  $\beta_1$ ,  $\beta_2$ ,  $\delta_1$ ,  $\delta_2 \in \mathbf{R}$  with  $x_1^2 = \beta_1 u_1 + \beta_2 u_2$  and  $x_1 x_2 = \delta_1 u_1 + \delta_2 u_2$ , we have the relations

$$egin{array}{ll} 0 = \partial_{\scriptscriptstyle 1}(x_{\scriptscriptstyle 1}^{\scriptscriptstyle 2}) = \partial_{\scriptscriptstyle 1}(x_{\scriptscriptstyle 1})x_{\scriptscriptstyle 1} + x_{\scriptscriptstyle 1}\partial_{\scriptscriptstyle 1}(x_{\scriptscriptstyle 2}) = x_{\scriptscriptstyle 2}x_{\scriptscriptstyle 1} + x_{\scriptscriptstyle 1}x_{\scriptscriptstyle 2} \ , \ 0 = \partial_{\scriptscriptstyle 1}(x_{\scriptscriptstyle 1}x_{\scriptscriptstyle 2}) = \partial_{\scriptscriptstyle 1}(x_{\scriptscriptstyle 1})x_{\scriptscriptstyle 2} + x_{\scriptscriptstyle 1}\partial_{\scriptscriptstyle 1}(x_{\scriptscriptstyle 2}) = x_{\scriptscriptstyle 2}^{\scriptscriptstyle 2} - x_{\scriptscriptstyle 1}^{\scriptscriptstyle 2} \end{array}$$

which give us  $x_2^2$  and  $x_2x_1$ . The entries in (7.4) of the form  $Y^2$  and  $Z^2$  are found in the same way. Finally, the derivations  $\partial_1$  and  $\partial_2$  impose no restrictions at all on the subspace U, so the constants have to be all different here.

As our final result, we establish

THEOREM 7.7. Let A be the modified octonion algebra defined by (6.8). Then

- (i) if  $\beta_1, \dots, \beta_7$  are all distinct, Der A = 0.
- (ii) if  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$ ,  $\beta_4$ ,  $\beta_6$  are distinct,  $\beta_3=\beta_5$ , and  $\beta_6=\beta_7$ , then dim Der A=1.
- (iii) if  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$ ,  $\beta_6$  are distinct,  $\beta_1 = \beta_4$ ,  $\beta_3 = \beta_5$  and  $\beta_6 = \beta_7$ , then dim Der A = 2 and Der A is abelian.

*Proof.* If  $\beta_1, \dots, \beta_7$  are all distinct, it is immediate from Lemma 6.11 that A cannot have any nonzero derivations, giving part (i). If the hypotheses of part (ii) of Theorem 7.7 hold and if  $\partial \in \text{Der } A$ , then Lemma 6.11 implies that

$$(7.8) \quad \begin{array}{l} \partial(e_3) = a_{35}e_5, \ \partial(e_5) = -a_{35}e_3, \ \partial(e_6) = a_{67}e_7, \ \partial(e_7) = -a_{67}e_6 \ , \\ \partial(u) = 0 = \partial(e_1), \ \partial(e_2) = 0 = \partial(e_4) \ , \end{array}$$

for some  $a_{35}$ ,  $a_{67} \in \mathbb{R}$ . From

$$a_{35}e_5 = \partial(e_3) = \partial(e_7e_1) = \partial(e_7)e_1 = -a_{67}e_6e_1 = -a_{67}e_5$$

we get  $a_{35} = -a_{67}$ . Thus, Der A is at most 1-dimensional. To show that  $\dim \operatorname{Der} A = 1$ , it is sufficient to verify that the special case of (7.8) with  $a_{35}=1$  and  $a_{67}=-1$  is a derivation of A. But this linear transformation was shown to be a derivation of the octonions in § 5 (under the correspondence  $e_3 \leftrightarrow y_1$ ,  $e_5 \leftrightarrow y_2$ ,  $e_8 \leftrightarrow y_3$ ,  $e_7 \leftrightarrow y_4$ ,  $\partial$  corresponds to  $\partial_2'$  in (5.4)), and so  $\partial$  will act as a derivation on any product of basis vectors where the verification does not depend on calculating the square of an  $e_i$ . Since  $\beta_3 = \beta_5$  and  $\beta_6 = \beta_7$  in the case we are considering, it is clear from (7.8) that  $\partial$  will act as a derivation even in those cases where the verification depends on calculating the square of an  $e_i$ .

Finally, suppose that the hypotheses of part (iii) of Theorem 7.7 hold. Then Lemma 6.11 shows that any  $\partial \in \text{Der } A$  has the form

(7.9) 
$$\begin{array}{l} \partial(u) = 0 = \partial(e_2), \ \partial(e_1) = a_{14}e_4, \ \partial(e_4) = -a_{14}e_1, \\ \partial(e_3) = a_{35}e_5, \ \partial(e_5) = -a_{35}e_3, \ \partial(e_6) = a_{67}e_7, \ \partial(e_7) = -a_{67}a_6, \end{array}$$

for some  $a_{14}$ ,  $a_{35}$ ,  $a_{67} \in \mathbf{R}$ . Since

$$a_{67}e_7=\partial(e_8)=\partial(e_3e_4)=\partial(e_3)e_4+e_3\partial(e_4)=a_{35}e_5e_4-a_{14}e_3e_1\ =(a_{35}+a_{14})e_7$$
 ,

we see that dim Der  $A \leq 2$ . It suffices to show that the special cases of (7.9) defined by the table

are both derivations of A. Again  $\partial_2$  and  $\partial_2'$  were shown in § 5 to be derivations of the octonions (see (5.4)), and as we argued in the last case,  $\partial_2$  and  $\partial'_2$  must be derivations here because  $\beta_1 = \beta_4$ ,  $\beta_3 = \beta_5$ , and  $\beta_6 = \beta_7$ .

REMARK. If A is a finite-dimensional real algebra with L=Der A as its derivation algebra, then the connected Lie group G corresponding to the Lie algebra L acts as a group of automorphisms on A. Furthermore, G necessarily has finite index in Aut A, the group of all automorphisms of A. One might ask in the case of a real division algebra whether G can be properly contained in Aut A, and we shall give an example to show that this can happen. In the algebra A defined by (6.8) with all  $\beta$ 's distinct, we have shown that  $\operatorname{Der} A = 0$  and hence G = 1. On the other hand, this algebra has 8 automorphisms, as one sees by noting that for any choice of  $\varepsilon_1$ ,  $\varepsilon_2$ ,  $\varepsilon_3 \in \{1, -1\}$  the map

$$a_0u + \sum a_ie_i \longrightarrow a_0u + a_1\varepsilon_1e_1 + a_2\varepsilon_2e_2 + a_3\varepsilon_3e_3 + a_4\varepsilon_1\varepsilon_2e_4 + a_5\varepsilon_2\varepsilon_3e_5 + a_6\varepsilon_1\varepsilon_2\varepsilon_3e_6 + a_7\varepsilon_1\varepsilon_3e_7$$

is an automorphism of A.

## REFERENCES

- 1. G. M. Benkart and J. M. Osborn, The derivation algebra of a real division algebra, to appear, in Amer. J.
- 2. M. Gunaydin and F. Gursey, Quark structure and octonions, J. Math. Phys., 14 (1973), 1651-1667.
- 3. I. N. Herstein, Topics in Algebra, Blaisdell, 1964.
- 4. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer Verlag, 1972.
- 5. N. Jacobson, Composition algebras and their automorphisms, Rend. Circ. Mat. Palermo, (2), 7 (1958), 55-80.
- 6. —, Lie Algebras, Wiley Interscience, 1962.
- 7. ----, Exceptional Lie Algebras, Marcel Dekker, 1971.
- 8. —, S. Okubo, *Pseudo-quaternion and pseudo-octonion algebras*, Hadronic Journal, 1 (1978), 1250-1278.
- 9. R. D. Schafer, Introduction to Nonassociative Algebras, Academic Press, 1966.

Received August 20, 1979. Partially supported by N.S.F. grant #MCS77-01724.

University of Wisconsin Madison, WI 53706