
PACIFIC JOURNAL OF MATHEMATICS
Vol. 96, No. 2, 1981

A NATURAL TOPOLOGY FOR UPPER SEMICONTINUOUS
FUNCTIONS AND A BAIRE CATEGORY DUAL

FOR CONVERGENCE IN MEASURE

GERALD BEER

Let X be a compact metric space. If we identify each
upper semicontinuons function / with its hypograph {(x, a):
a ^ f(x)} in X X R, then the set UC(X) of all u.s.c. functions
can be viewed as a metric subspace of the hyperspace of
X X R. Convergence with respect to this topology is in
some respects analagous to convergence in measure. For
example if {/„} is a sequence of continuous functions con-
vergent to an u.s.c. limit /, then there exists a dense Gδ set
G such that for each x in G f(x) is a subsequential limit of
{fn(%)} Integral convergence theorems are also presented.
However, the main results are as follows: (a) a characteri-
zation of this topology on UC(X) in terms of the monotone
functionals on C{X) that are u.s.c. with respect to the uni-
form metric (b) several characterizations of sublattices of
UC(X) from which UC(X) is retrievable via pointwise limits
of monotone decreasing sequences, e.g., C(X) or the sublattice
of u.s.c. step functions.

1* Introduction* The analogies between Baire category and
Lebesgue measure, so elegantly described by J. Oxtoby [7], have
been from time to time the objects of study of some of the most
eminent mathematicians of this century, including Banach, Ulam,
Sierpinski, Erdos, and Kuratowski. Category duals of standard re-
sults in measure theory abound, although frequently the results may
be stronger, weaker, or otherwise modified. Here is a typical example:

MEASURE THEOREM. A set is in the o-algebra generated by the
Borel sets and the sets of measure zero if and only if it can be
represented as a Fσ set plus a set of measure zero.

CATEGORY DUAL. A set is in the σ-algebra generated by the Borel
sets and the sets of first category if and only if it can be represented
as a Fσ set minus a set of first category.

A notion of importance in measure theory is that of convergence
in measure, for convergence almost everywhere can be replaced by
this notion in the standard integral convergence theorems: Fatou's
Lemma, the Monotone Convergence Theorem, and the Dominated
Convergence Theorem. It is one purpose of this article to exhibit
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a category dual for convergence in measure for upper semicontinuous
functions defined on a compact metric space X. We remark that if
μ is a regular Borel measure defined on such a space, then conver-
gence in measure can be described as convergence with respect to a
certain metric p (identifying functions equal almost everywhere) [3]:

p{f,g) = \ T^
-9\

Our category dual for the topology of convergence in measure also
admits a metric description: the upper semicontinuous functions are
viewed as a subspace of the hyperspace of X x R.

Although the relation of this topology to measure and integration
is of interest, the primary purpose of this paper is to show that this
topology for the upper semicontinuous functions is a natural one, both
in terms of approximation theory and with respect to the extension
of monotone functionals defined on the continuous functions on the
underlying space (e.g., Radon measures).

2* Preliminaries* Let X be a compact metric space with metric
d. One of a number of ways to make X x R a metric space in a
manner compatible with the product uniformity is to define the dis-
tance between (a?!, α j and (x2, a2) to be max {d(xl9 x2), \a2 — αj}. Since
no confusion results we will symbolize this distance in X x R by d,
too. We can now make the closed subsets of X x R a uniform
space, called the hyperspace of XxR [5], by defining the Hausdorff
distance D between closed sets C and K to be

D(C, K) = inf {λ > 0: Bλ[C] 2 K and Bλ[K] 2 C}

where Bλ[C] (resp. Bλ[K]) denotes the union of closed λ-balls whose
centers run over C. We note that each metric uniformly equivalent
to d induces the same hyperspace topology; a metric that is merely
topologically equivalent might induce a different one. We also note
that distance so defined might not yield a finite number, whence the
hyperspace is not in general a metric space.

It is well known that f:X—*R is upper semicontinuous (u.s.c.)
on Xif and only if its hypograph, the set hypo/ = {(x, a): xeX and
oί ^ f(x)} is a closed subset of X x R. Thus, if we identify an u.s.c.
function with its hypograph, then the set of all u.s.c. functions
UC(X) on X can be viewed as a subspace of hyperspace of X x R.
If / and g are in UC(X), let us write D(f, g) for Z)(hypo/, hypog).
We list some basic facts about UG{X) equipped with the metric D,
all of which are established in [1].

THEOREM A. // / and g are in UC(X) then D(ff g) < °o so
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that D is a bona fide metric on UC(X). Moreover, D(f, g) ^
ex I/O) - g{χ)\.

THEOREM B. For each f in UC(X) and for each λ > 0 define
f?

+:X->R by

ft(x) = sup {a: (x, a) e £,[hypo /]} .

Then // is both bounded and u.s.c, and D(ff, f) — λ. Moreover,
D(f, g) ^ λ if and only if f ' <; gt and g ^ //.

THEOREM C. Let {/J be a sequence in UC(X). Then {/J is D-
convergent to f in UC(X) if and only if at each point x in X

( i ) whenever {xn} —> x then lim supΛ_>oo/n(a?J ^ f(x).

(ii) there exists a sequence {xn} convergent to x for which

3* Category analogues for convergence in measure theorems*
A basic result of F. Riesz that we must seek to dualize asserts that
if a sequence of functions converges in measure, then the sequence
has a subsequence that converges almost everywhere. A category-
dual of equal strength would state that if a sequence of u.s.c. func-
tions D-converges, then a subsequence converges on a dense Gδ set
pointwise. We have obtained a somewhat weaker result.

THEOREM 1. Let X be a compact metric space. Let {fn} be a
sequence of continuous functions convergent in the metric D to an
u.s.c. function f. Then there exists a dense Gδ set G such that for
each x in G the number f(x) is a subsequential limit of

Proof. Let r > 0 be arbitrary. For each keZ+ we claim that
the closed set

is nowhere dense. To see this suppose instead that xemt(Akyr).
By Theorem C there exists {xn} convergent to x for which f(x) =
lim infn_,oo/«(#«). Thus there exists NeZ+ such that for all n>N
both fn(xn) > f{x) - r/2 and f(xn) < f(x) + r/2. However, this con-
tradicts {xn} in Aktr eventually because for all n > N

/.(*.) > /(*) - \ > [/(* J - f ] - f
= f(xJ - r .

Next for each two positive integers k and n let Ek>n = AkΛ/n.
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Since X is a complete metric space

G = ή ή (Ek,%γ

is a dense Gδ set. If x is in G, then there exists a subsequence {fnjc}
of {/J such that for each k fnje{x) > f(x) — Ilk. Moreover, by Theo-
rem C again we have lim sup^oo fnk{x) ^ f(x) for each x in X. In
particular this inequality holds in G and the theorem is proved.

No such Gδ set need exist if the terms of the sequence are merely
u.s.c. functions. To see this o n l = [0, 1] for each neZ+ let En =
{k2-n: k = 0, 1, , 2n} and define fn to be XE%. Then {/„} Z)-converges
t o / — Z[0)1], but /(#) is a subsequential limit of {/»(»)} if and only if
a? is a dyadic rational. By the Baire Category Theorem the set of
dyadic rationals is not a dense Gδ set.

Can we find a single subsequence in Theorem 1 that serves for
all points except for a set of first category? The answer is nega-
tive. It suffices to construct a sequence of continuous functions {fn}
on X = [0, 1] for which both {/„} and {1 — fn) are JD-convergent to
Z[0,i]. For the moment assume their existence and denote 1 — fn by
gn. Now suppose that in Theorem 1 the subsequence can be always
chosen the same for each point of some dense Gδ set. By twice
passing to a subsequence we can guarantee that {fn} and {gn} both
converge pointwise to Z[0,i] on dense Gδ sets Gλ and G2, respectively.
Since [0, 1] is a complete metric space, Gλ Π G2 is also a dense Gδ set,
and if x e Gι Π G2 then

limΛ(α?)+ (/.(«) = 2 .

This contradicts /„(#) + #„(#) = 1 for each n. We next produce such
a sequence {/J. For each % e Z + again let En = {fc2-%: fc = 0, 1, , 2n}
and let V% denote the 4~w neighborhood of En in X. Define f%: [0, 1] ~>
[0, 1] by fn(x) — £nd(x, V£). Notice that each fn is piecewise aίfine,
equal to one on En, and equal to zero on V°%. Clearly, both fn and
gn = 1 — fn are continuous. For each x e [0, 1] and neZ+ we can
choose xn in En such that \x — xn\ < 2~\ Now fn(xn) = 1 and
gn(xn + 4~w) = 1. Since both {xn} and {xn + 4""} are convergent to x
it follows from Theorem C that botlj {/J and {gn} are Z)-convergent
to Z[o>1].

We next point out that a sequence in UC(X) can Z)-converge yet
converge nowhere pointwise in a manner totally analogous to the
usual construction of a sequence convergent in measure yet nowhere
pointwise. Consider the following sequence of subintervals of [0, 1]:



TOPOLOGY FOR UPPER SEMICONTINUOUS FUNCTIONS 255

For each such subinterval take the negative of its characteristic
function and approximate it by a piecewise affine continuous function
that agrees with the step function except on the subintervals adjacent
to the one inducing the function. For example, the function cor-
responding to the subinterval [3/8, 1/2] would have a graph consisting
of line segments connecting the following points in succession: (0, 0),
(0, 1/4), (3/8, -1), (1/2, -1), (5/8, 0), and (1, 0). The sequence of func-
tions so constructed converges to the zero function on [0, 1] in the
metric D but converges nowhere pointwise.

We now produce an analogue of Fatou's Lemma.

THEOREM 2. Let X be a compact metric space and let μ be a
regular Borel measure on X. Then the map I: UC(X) —> [ — <=>°, °°)
defined by /(/) = I fdμ is upper semicontinuous with respect to the
D metric.

Proof. Let {/J be a sequence in UC(X) Z>-convergent to an
u.s.c. function /. For each keZ+ let hk = fjk. Each hk is u.s.c,
and since X is metric, each hk is the pointwise limit of decreasing
sequence of continuous functions. Since {hk} is a decreasing sequence
of such limits that is pointwise convergent to /, Proposition 4.24 of
[9] concerning the first Daniell extension of a Radon measure asserts
that lim^oo I(hk) = /(/). Since μ{X) < ^ and / is bounded above,
I(f) < °° If I(f) i s finite let ε > 0 be fixed. Choose k satisfying
I(hk) < I(f) + ε. Since {fn} D-converges to / there exists NeZ+

such that whenever n > N we have D(fn, f) <̂  I/ft. By Theorem B
fn <; hk so that

Upper semicontinuity of / at / if /(/) = — °o is established in the
same way.

As a consequence of this theorem we see that if {/J —> / in
measure and "in category", then lim^oo I(fn) = /(/) (provided that
J(inf/J > — oo so that Fatou's lemma holds). We of course also
get a monotone convergence theorem.

COROLLARY. Let X be a compact metric space and let μ be a
regular Borel measure on X. Suppose {/J is a sequence in UC(X)
D-convergent to f and for each n /w >̂ /. Then limM_oo I(fn) — ! (/).

If we consider the sequence {XEJ mentioned after Theorem 1
that is /^-convergent to Z[Ofl] and μ denotes ordinary Lebesgue measure
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on [0, 1], then for each n

whereas

Γ Z[o,i3^ = 1
Jo

This shows that there is no hope for a dominated convergence theo-
rem with respect to "convergence in category". Actually, we get
something that is in some sense just as nice: a characterization of
convergent sequences {/J of summable u.s.c. functions for which
the integral of the limit is the limit of the integrals.

THEOREM 3. Let X be compact metric space and let μ be a regular
Borel measure on X. Let I denote the integration functional induced
by μ. Suppose {fn} is a sequence of summable u.s.c. functions D-
convergent to a summable u.s.c. function f. For each keZ+ define
Ik: {fn: n e Z+} -> R by Ik{fn) = I[(fn)ϊlk\. Then limn_ /(/J - /(/) if
and only if {Ik} converges uniformly to I on {fn:neZ+}.

Proof Let Ω = {/} U {/«: n e Z+}. Since {/J ^-converges to /,
Ω is jD-compact. If lim^oo /(/J — /(/) then I is continuous on Ω
because / is its only limit point. Set Ik(f) equal to /(/Λ). By
Theorem 2 / is u.s.c. and since it is monotone, for each g e Ω we
have Iλ{g) ^ I2(g) ^ . . - ^ I(g) and \imk^ Ik(g) = I(g). By Dini's
theorem, {Ik} converges uniformly to I on Ω and therefore uniformly
on the subset {fn:neZ+}.

Conversely suppose lim^oo/(/J Φ /(/). Since I is u.s.c. at/, by
passing to a subsequence we can assume that for some ε > 0 and
for all n both D(fn, f) £ 1/n and I(/J < /(/) - ε. Since (/JJn ^ /
it follows that

Λ >
Hence {Ik} can't converge uniformly to I on {fn: neZ+}.

4* On the extension of monotone functional^* If μ is a
regular Borel measure on a compact metric space, then the integra-
tion functional I induced by μ when restricted to UC{X) is a mono-
tone functional u.s.c. with respect to the ^-metric. This functional
is the extension of one on C(X), the continuous functions on X, that
is continuous with respect to the uniform metric on C(X). In this
section we shall show that any monotone functional on C{X) con-
tinuous with respect to the uniform metric admits a unique D-u.s.c.
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monotone extension to UC(X). Actually we shall obtain much more
inclusive results.

The main theorem of [1] is a characterization of sublattices Ω
of UC(X) that are upper dense with respect to the D-metric, i.e.,
sublattices Ω of UC(X) for which each / in UC{X) is in the closure
of {g: geΩ and g ^ /}. Thus if Ω is upper dense then for each /
in UC{X) there exists a sequence {gn} in Ω such that gι^ g2^ ^ /
and {gn} J9-converges to /. Precisely a sublattice Ω of UC(X) is
jD-upper dense if and only if whenever (xl9 αx) and (x2f a2) are points
in X x R such that either xι Φ x2 or xt = #2 and αL < α2, then there
exists / in Ω such that

(xlf a,) e int (hypo /) and (x2, a2) g hypo / .

In the terminology of [1] Ω is said to isolate points in X x R. The
sublattice C(X) certainly meets this criterion as does the sublattice
of UC(X) consisting of those u.s.c. functions with finite range.

Our first result concerns the extension of certain functionals
whose domoins are filters in upper dense sublattices. A family of
u.s.c. functions θ on X is called a filter if {hypo/:/ 6 0} is a filter
of sets. Thus θ is a filter if (i) whenever feθ then f^g and
ge UC(X) imply geθ (ii) feθ and geθ imply / A geθ.

THEOREM 4. Lei X be a compact metric space and let Ω be a
sublattice of UC(X) that is upper dense. Let θ be a filter in UC{X)
and let φ: Ω f) ΰ->[—°°, °°] be monotone and u.s.c. with respect to
the D-metric. Then there exists a unique monotone D-u.s.c. extension
φ* of φ to θ.

Proof. Let feθ be arbitrary. Since Ω is upper dense there
exists a sequence {gn} in Ω such that gx ^ g2 ^ 2> / and {gn} D-
converges to /. Since θ is a filter each function g% is in θ Π Ω whence
Φ(gn) is defined. If φ* were an extension of φ the monotonicity of
φ* would require that φ*(f) ^ inf {0(#): geθ f] Ω and # :> /}. How-
ever, the upper semicontinuity of φ* forces

Φ*(f) ^ lim Φ(gn) ̂  inf {φ{g)\ g e θ Π J2 and g ^ /} .

Thus the extension if it exists must be defined by

φ*(f) - inf {φ(g): g e θ f] Ω and g ^ /} .

We note that this infimum is approached on any sequence in θ Γi Ω
D-convergent to / from above because D makes UC(X) a topological
join semilattice.

Clearly φ* so defined is monotone and is an extension of φ. To
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show φ* is u.s.c. at each / in θ there are three cases to consider:
(i) φ*(f) = oo (ϋ) φ*(f) is finite (iii) φ*(f) = -oo. Case (i) is trivial.
In case (ii) for each neZ+ Theorem B allows us to choose gn in
Ω Π θ f or which ^ ^ /2+«-i and £>(#„, /2^-i) ^ 2-*"1. Since D(^, /) ^ 2~*
{#J Z)-con verges to / from above whence limn-oo #(# J = Φ*(f). Pick
n so large that φ(gj < φ*(f) + ε. If j?(fc, /) < 2— 1 we have

0*(fc) ^ ^*(/2

+-.-i) ^ ^Q/J < φ*(f) + ε .

This establishes the upper semicontinuity of φ* at / if φ*(f) is finite.
Case (iii) is similar and is left to the reader.

We remark that in applications the filter θ in Theorem 4 is likely
to be either UC(X) itself or a principal filter, in particular {/: / ^ 0}.
The next result might seem surprising in that by Theorem A the
topology of uniform convergence on C(X) is stronger than the one
induced by the J9-metric; as we have seen {fn} can 2)-converge to /
yet converge nowhere pointwise to /.

THEOREM 5. Let φ: C(X) —> [— <*>, oo] be monotone and u.s.c. with
respect to the topology of uniform convergence. Then φ is u.s.c. with
respect to the D-metric on C(X).

Proof. Let / be in C(X). Since C(X) is upper dense in UC(X)
we can as in the proof of the last theorem choose for each ne Z+
a continuous gn for which gn ^ /£-*-*• a n ( i D(gn, f^-ι) ^ 2~n~ί. By
Theorem C {gJ converges pointwise to / and since gλ^> g2}> ^ /,
Dini's theorem ensures that the convergence is uniform. Thus
lim^oo φ{gJ = Φ(f). To verify upper semicontinuity at / we again
dispense with the three cases (i) φ(f) = oo (ϋ) φ(f) is finite (iii)
φ(f) — — co exactly as in the proof of the last theorem.

We remark that if φ: C(X) —> [— °°, °°] is monotone and continuous
with respect to the uniform metric, then φ need not be continuous
with respect to the D-metric. A simple example: let φ(f) = inf {/(a?):
xeX}.

Since the topology of uniform convergence on C(X) is stronger
than the one induced by the D-metric, the last two theorems com-
bined yield the following useful result.

THEOREM 6. Let φ: C(X) —> [— oo? oo] be monotone and u.s.c. with
respect to the topology of uniform convergence. Then φ admits a
unique monotone extension to UC(X) that is u.s.c. with respect to the
D-metric. Conversely, if φ: UC(X) —> [— °°, oo] is monotone and u.s.c.
with respect to the D-metric, then φ\C(X) is u.s.c. with respect to
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the topology of uniform convergence.

One might think that the uniqueness of the extensions as described
in Theorem 6 is a triviality and has nothing to do with the particular
topology we have placed on UC{X). Surely if fe UC(X) we must
define φ{f) to be inf {φ(g): g e C(X) and g ^ /}! Such reasoning is
fallacious. For instance if we give UC(X) the topology of uniform
convergence, then a monotone u.s.c. functional φ on C(X) can have
more than one extension even if φ is continuous and finite valued.
For example define φ: C(X) -> R by φ(f) = (/ V Q)(x0) where xQ is a
nonisolated point of X. Then φ can be extended in two different
ways to UC(X) equipped with the topology of uniform convergence
so that it remains monotone and u.s.c:

Λ(/) = (/Vθ)(α?o)
φ2(f) = lim inf (/ V 0)(x) .

X~+XQ

These extensions are different because Φι(l[Xo)) — 1 whereas φ2OC{Xo)) = 0.
Only φλ is upper semicontinuous with respect to the Z)-metric. To
see that φ2 is not u.s.c. let E% be the closed ball in X of radius 1/n
with center x0. Then {XEJ D-converges to 1{XQ} but for each n

ΦΆJ = 1.
In what sense is the D-metric topology on UC(X) "determined"

by the monotone functionals on C(X) that are u.s.c. with respect to
the uniform metric? To answer this question let Δ denote the col-
lection of all monotone functionals φ: UC(X) —> [— o°, oo] that are
u.s.c. with respect to the D-metric. By Theorem 6 Δ is totally
determined by the monotone functionals φ on C(X) that are u.s.c.
with respect to the uniform metric. More concretely if φ e A then
for each / e UC(X)

φ(f) = inf {φ(h): h e C(X) and h^f)

where φ\C{X) is u.s.c. with respect to the uniform metric. Consider
the weakest topology on UC(X) with respect to which each member
of Δ is u.s.c. Although it is weaker than the topology induced by
the D-metric, it is closely related to it.

THEOREM 7. Let X be a compact metric space. For eachfe UC(X)
let θ[f; λ] = {g: g ^ //}. Then {θ[f; λ]: λ > 0} forms a local base at
f for a topology σ on UC(X) that is weakest with respect to which
each member of A is u.s.c.

Proof Using a standard criterion [6, II.2.E] it is easy to show
that the sets so described do form a local base at / for a topology
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σ on UC(X). We first show that τξ^σ where τ denotes the weakest
topology with respect to which member of Δ is u.s.c.

Let φ e A and let / e UC(X). If φ{f) > - co and ε > 0 there exists
λ > 0 such that if D(f, g) ^ λ then φ(g) < φ(f) + ε. If g e θ[f; λ]
then D(f V g, f) ^ λ and we have

0(flr) ^ ?(/ V # ) < φ{f) + ε .

Thus φ is (j-u.s.c. at /when φ(f) > -co. A similar argument applies
if φ(f) = ~oo. This proves that τ £ σ.

To show that σ Q τ it suffices to show that if fe UC(X) and
λ > 0 there exists φ e Δ and α > 0 such that fe Φ~\[ — °°, α)) S ^[/ λ].
Choose ^ G C(X) such that g ^ / and D(f, g) ^ λ/2. Since g is con-
tinuous, for each h in UC(X) the function hV g — g is u.s.c. and
thus attains a maximum value on the compact set X. Define
φ: UC{X) -*Rhy

φQi) = max {(h V g)(x) — g(x): xeX} .

We claim that the functional φ is u.s.c. with respect to the D-metric.
First note that the operator h —>hV g is continuous because

D{K Vg,h2Vg)^ D(hu h2)

whenever hx and h2 are in UC(X). It remains to show that
σ: UC(X) —> R defined by σih) = max ϊ e z h(x) — g(x) is D-u.s.c. To see
this let {hn} be a sequence of u.s.c. functions D-convergent to h, and
choose for each n in N an xn in X such that hn(xn) — g(xn) is maximal.
Set a = lim supΛ_oo ftn(#J — flr(ίcj. By passing twice to a subsequence
we can assume both {xn} converges to some point x in I and
{hn(xn) — g(xj} converges to a. By Theorem C lim sup^oo hn(xn) <£
h(x); so, by the continuity of g at x

a = lim sup σ(hn) = lim sup hn(xn) — lim g(xn)
n—>oo n—>co n—>co

^ h(x) - gix) - σ(h) .

Since ^ is also monotone we conclude that φeΔ.
Now if h e Φ~\[-oof λ/2)) then max s e I (hVg)(x) - g(x) < λ/2. Thus

the uniform distance of k V g from # is less than λ/2, and by Theo-
rem A D(h V g, g) < λ/2. Hence if heφ-\[-°o, λ/2)) - ^([0, λ/2))f

then

h^hVg^ gU £ ff .

This proves that h e θ[f; λ] and σ £ τ is established.

Let 7 be a nonempty set. A nonempty collection ϋ^ of subsets
of Y x y is called a quasi-uniformity on F [4] if ^ is a filter of sets
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such t h a t for each
( i ) {(v,y):yeY}Q U.
(ii) there exists F e ^ such that F ° F £ U.
As with uniformities the sets {£/[?/]: U e &} for each y in Y

form a local base at y for a topology on Y. Unlike uniformities,
each topological space is "quasi-unif ormizable", not just the completely
regular ones ([2], [8]). If 2$ is a quasi-uniformity on Y then it is
clear that

{17 n F- 1: Όz3f and

describes the smallest uniformity on Y containing £&. Moreover, if
£&' and 22f are equivalent quasi-uniformities (in the sense that they
determine the same topology for Y), then the uniformities that they
generate are equivalent. Thus it makes sense to speak of the com-
pletely regular topology generated by a given topology.

These concepts allow us to see precisely how the monotone f unc-
tionals on C(X) u.s.c. with respect to the topology of uniform con-
vergence determine the D-metric topology on UC(X). There is a
weakest topology σ on UC(X) with respect to which passage via
monotone limits from functionals on C(X) monotone and u.s.c. with
respect to the topology of uniform convergence results in u.s.c. func-
tionals on UC(X). The D-metric topology is simply the completely
regular topology generated by σy for σ is determined by a quasi-
unif ormity on UC(X) with base {Ux: λ > 0} where for each λ Uλ =

We close with a list of characterizations of D-upper dense sub-
lattices of UC(X) which are, once again, sublattices Ω of UC(X) for
which each / in UC(X) is in the closure of {g: geΩ and g ^ /}.

THEOREM 8. Let Ω be a sublattice of UC{X). The following
are equivalent:

1. Ω is D-upper dense.
2. Whenever φ: Ω —> [— °o? oo] is monotone and D-u.s.c, there

exists a unique monotone D-u.s.c. extension φ* of φ to UC(X).
3. Whenever φ:Ω->R is monotone and D-u.s.c, there exists a

unique monotone extended valued ZMi.s.c. extension φ* of φ to UC(X).
4. For each fe UC(X) there exists a sequence {gn} in Ω conver-

gent pointwise to f for which g^g^ >̂ /.
5. Ω isolates points in X x R.

Proof
(1 —> 2) This is a special case of Theorem 4.
(2 -> 3) Trivial.
(3 —> 1) Suppose Ω fails to be D-upper dense. Since C{X) is
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upper dense in UC(X) there must be feC(X) that cannot be D-
approximated from above by members of Ω. The proof of Theorem
7 showed that the functional σ: UC{X) -> R defined by σ(h) =
max {h(x) — f(x): x e l ) is D-u.s.c. Since Theorem C ensures that
Σ = {h: h e UC(X) and h ^ /} is a closed set, the functional
φ1:UC(X)-*R defined by

σ(h) it heΣ

0 otherwise

is D-u.s.c. and monotone. Let φ denote the restriction of φι to Ω.
We claim that φ has an additional extension to UC{X). We distin-
guish two cases: (1) no function in Ω majorizes / (2) there exists g
in Ω such that g ^ /. In the first case φ extends to both φ1 and the
zero functional; these are distinct because 0 i ( / + l ) = l. In the
second case there must exist λ > 0 for which no g in Ω satisfies
f^g^ /;+. Define Γ Q UC(X) as follows:

Γ = {h: there exists x e X such that h(x) ^ f(x) + λ} .

Notice that Ω Π Σ £ Γ because for each x in X f(x) + λ ^ //(»). We
claim that Γ is also a closed set. As expected Theorem C will again
be invoked. Let {hn} C Γ be D-convergent to h. Choose for each n
a point xn in X such that hn(xn) ^ /(a?J + λ. By passing to a sub-
sequence we can assume that {xn} converges to some x in X. From
the continuity of / at x and Theorem C

h(x) :> lim sup hn(xn) ^ lim sup/(a?Λ) + λ = /(a?) + λ .

In addition to the extension φλ of ^, since Ω f) Σ Q Γ and Γ is closed
we get an additional extension φ2:

σ{h) if heΣ ΠΓ
Φ2Q1) =

0 otherwise .

The extensions are distinct because φ2(f + λ/2) = 0 whereas φx(f +
χ/2) = λ/2.

(1 —> 4) Since i2 is D-upper dense and is a lattice there is a
decreasing sequence {gn} in i2 that D-converges to / from above. By
Theorem C the convergence must also be pointwise.

(4 —> 5) First suppose (xlf ax) and (x2, a2) in X x R satisfy xι = α?2

and αx < α2. The constant function /— (ax + α2)/2 is in UC(X). Choose
{gn} S= Ω convergent pointwise to / for which g^ g2^> ^ /. There
exists a subscript n for which gn(xλ) < a2. We have

to, αx) e int (hypo /) £ int (hypo gn)
and
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(x2, a2) = (xlf a2) $ hypo gn .

Thus, gn isolates (xl9 at) from (cc2, α2). Next suppose xι Φ x2. Let J3
be a closed ball with center x1 that does not contain x2. Define
f:X-+R by

il + l«2| + 1 if xeB
- 1 if ίc ί f i .

Since B is a closed set, / is u.s.c. As in the first case we can approxi-
mate / from above by a member of Ω closely at xι and at x2 thus
isolating (xlf ax) from (x2, α2).

(5 —> 1) This is the main result of [1] alluded to earlier.
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