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INVERTING DOUBLE KNOTS

WILBUR WHITTEN

We disprove J. Montesinos's conjecture that every inver-
tible knot in S3 is strongly invertible.

Let K denote a tame, oriented knot in S3, and fix an orientation
of S3. If there exists an orientation-preserving, PL involution of
S3 that inverts K, then K is strongly invertible. J. Montesinos
proposed this definition [5], and he has conjectured [3; Problem 1.6,
p. 277] that every invertible knot is strongly invertible. In this
paper, we disprove this conjecture; our results are as follows.

THEOREM 1. A knot K is strongly invertible if and only if each
double of K is strongly invertible.

COROLLARY. NO double of a noninvertible knot is strongly inver-
tible; hence, there exist invertible knots that are not strongly invertible.

Proof of Corollary. Any double knot is invertible [6; Theorem
1, p. 235].

THEOREM 2. If L is a strongly invertible knot with exactly one
maximal companion CL, then CL is also strongly invertible.

Section 1 contains a preliminary lemma. We prove Theorems 1
and 2, in §2. In §3, we give a counterexample to the converse of
Theorem 2; in §4, we discuss surgery on invertible knots, give
several examples, and formulate a conjecture.

I wish to thank C. Gordon and K. Murasugi for discussing this
work with me.

1* Preliminaries* In this paper, all spaces are polyhedrons;
the three-sphere has a fixed orientation; all maps are piecewise linear;
all submanifolds, polyhedral; and all knots, oriented. We shall need
the following lemma.

POSITIONING LEMMA. If K is a strongly invertible knot, then
there exists an orientation-preserving, K-inverting, PL involution
p: S3 —> S3 with nonempty, fixed point set A and there exists a
polyhedral, p-invariant 2-sphere S such that (a) the "axis" A of p
belongs to S, (b) the set K Π A contains exactly two points, (c) the
knot K is transverse with respect to the 2-sphere S, and (d) the set
K Π S contains only a finite number of points.
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Proof. Because K is strongly invertible, there exists an orienta-
tion-preserving, iΓ-inverting, PL involution pf\ SB -» S\ The Lefschetz
fixed-point theorem implies that p'\K has exactly two fixed points.
Because the fixed-point set (or axis) A! of p' is, therefore, nonempty,
the axis A must be a knot [7; Theorem, p. 162]. If we set Ss —
R3 u {oo}, then, because pf is piecewise linear and orientation-preserv-
ing, there exists a PL autohomeomorphism φ of S3 such that
φp'φ-\ = po) is a "standard" (orthogonal) 180°-rotation and such that
φ(A') = (y-axis) U {«>}( = Ao) [10].

Because φ{K) is polyhedral, because the rotation p0 takes φ(K)
onto itself, and because φ(K) meets Ao in only two points, xλ and
cc2> we can (if necessary) find a small angle a°(a > 0) such that an
a°-rotation pa about Ao takes φ(K) to a knot paφ{K) that is trans-
verse to the 2-sphere S0( = (?/£-plane) U {°°}) at each of the points, xx

and x2. We shall find a knot K' (ambient isotopic to paφ(K)) such
that K', the involution p0 (of S3) with axis Ao, and the 2-sphere So

satisfy the hypothesis and the conclusion of the lemma. The lemma's
proof will easily follow.

Choose ε(>0) so that (closed) ε-neighborhood Vε of paφ(K) is a
solid torus; such a choice is possible, because paψ(K) is polyhedral
in S3. Because paφ(K) is transverse to So at xx and at x2f we can
restrict ε so that Vε Π So contains (among other things) two disjoint
meridional disks, Ex and E2, of Ve, with Et Π Paψ{K) = {xj(i = 1, 2).
By a final restriction of ε, we can assume that Vε Π Ao = (JEΊ U ^2) ΓΊ
A0( = two, disjoint arcs). (The constructions involved in our restric-
tions of ε are standard, and we shall omit them.) Finally, note that
po(Vε)=Vε.

The points xx and x2 divide paφ{K) into two (closed) arcs, k± and
k2; the disks JEΊ and E2 divide Vε into (closed) 3-cells, Bx and B2,
with kt unknotted in B^i — 1, 2) (see [4; p. 134]). We note that
PoCBi) = ^2 and that B, Π Ao = (Et U S£) ΓΊ Λ

Keeping xι and x2 fixed, we now put kγ in general position
with respect to So by an orientation-preserving autohomeomorphism
hλ: S

3 —• S3 moving each point of kx less than ε. We can evidently
assume that hx \ (S3 — Int Bx) is the identity map.

The arc pji^kd is clearly unknotted in B2. Hence, there exists
an orientation-preserving autohomeomorphism h2: S

3 —• S3 taking k2

onto jO0fei(*i) and leaving each point of S3 — Int U2 fixed. The auto-
homeomorphism h of S3 given by

^(a?), if x e Int B^i^ 1, 2)

a; , otherwise ,

preserves the orientation of S8 and takes ρaφ{K) onto a knot h^kj U
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Pohάh) that is in general position with respect to SQ and that is
strongly inverted by p0. We set K' = hpMKX^Kik,) U pMh)) and
note that the knot K', the involution p0 with axis Λ, and the 2-
sphere So satisfy the hypothesis and conclusion of the lemma. The
proof of the lemma now follows by taking p = (JfiρaψY1p^pofP)i

taking A - A/( = 9>"1(A0) - ( V ^ Γ W ) , and taking S - (hpaφ)-\S0).

2* Proofs*

Proo/ o/ Theorem 1. We shall assume that if is not trivial, for
otherwise, the theorem is evidently true.

(1) Necessity, We assume that if is strongly invertible. Let
p, and A, and S denote the objects our Positioning Lemma guarantees,
and let K n A = {xly x2}. By the Positioning Lemma's proof, we can
assume (without loss of generality) that p is the 180°-rotation about
j4( = (2/-axis) U {<*>}) and that S = (ys-plane) U {«>}. Moreover, we can
choose ε(>0) and Vε exactly as in the lemma's proof. We have K =
kλ U h (with ^(^) - h) and F £ - A U 52; moreover, Et Π Aii - 1, 2)
is a properly imbedded arc in Et.

Let C denote a cylindrical 3-cell with core k and with two disks,
A and A, meeting in an arc and imbedded in C, as shown in Figure
1. Let v be a (closed) arc in I n t ^ Π A) such that x2 e Int(v) (see
Figure 2(a)). It is easy to find an arc vx c Int Ex such that ^ ί l i ^
{ajj = Vln p(vλ) = A Π Int vλ; note that p(vt) c Int ̂  (see Figure 2(b)).

Now, let g:C-^B1 be a homeomorphism such that g(E[) = £?t(i =
1, 2), such that flr(vί) - vx and flr(vί) = jθ(Vi), such that g(v') = vf and
such that 0(fc) - kx. Then [^(A U A)] U [pg(Dx U A)] is a singular
disk ^ with one clasping singularity, and the dΣ is a double of K
with twisting number σ (an integer depending on the homeomorphism
g\C->Bx) and with self-intersection number ^(=±2). (By changing
g (to change σ) and by replacing C with its mirror image (to change
the sign of η), we can assume that dΣ is any double of K that we
desire.) Evidently, dΣ is strongly invertible (by the involution p).
This completes the proof of the necessity.

FIGURE 1



212 WILBUR WHITTEN

FIGURE 2(b)

(2) Sufficiency. We assume that some double, DKJ of K is
strongly invertible. Replace K by Dκ in the Positioning Lemma; we
can assume that p is the standard rotation (of period 2) about
A( = (i/-axis)U {<*>}), that S=(2/z-plane)U{°°}, and that Dκf]A = {xl9 x2}.

Let F* denote a (closed) regular neighborhood of a clasping disk
whose boundary is Dκ; note that K is equivalent to a core of F*
[6; p. 238]. Now K is a unique maximal companion D x [6; p. 242];
that is, any companion of Dκ, other than K, is also a companion of
K. Hence, the torus p(dV*) is ambient isotopic to dV* in S3 — Dκ.
So, by [9; Theorem 1, p. 223], the dV* is ambient isotopic (in S3 — Dκ)
to a torus T in general position with respect to A, and either p(T) Π
Γ = 0 or ^(Γ) = T. If |θ(Γ) Π Γ = 0 , then T and ^(Γ) are parallel.
Because ρ\T) — T and because each of p(T) and T separates S3 — D^,
it easily follows that p moves fixed points of itself, which is absurd.
Thus, p{T) - T.

Now T splits S3 into a solid torus V (containing Dκ in its interior)
and a JBΓ-knot manifold. If A Π T = 0, then AczlntV, because A Π
Dκ φ 0 . Because K is knotted and A is unknotted, A belongs to a
polyhedral 3-cell c IntF; otherwise, A would have a companion, which
it does not [6]. Applying Tollefson's lemma [8; Lemma 1, p. 141],
we can find a 2-sphere Sf c Int( V — A) such that S' bounds no 3-cell
in V - A and such that either p(S') Γi S' = 0 or p(S') = S'. As
with the tori T and p(T) in the preceding paragraph, we cannot
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have p(S') n S ' = 0 . If p(S') = S', then take the 3-cell B\a S3) that
does not contain A and that S' bounds (in S3), and consider the
homeomorphism p\B: B-+B. By the Brouwer fixed-point theorem,
p\B has a fixed point, and so p has a fixed point not on A (which
it does not). Hence, Af]Tφ0.

Because T is in general position with respect to A, the cardinality
6 of A Π T is finite. Let To denote the orbit space of p\T. The
projection p: T -> TQ is a branched covering, and the two Euler
characteristics, X(T) and X(T0), are related by the Riemann-Hurwitz
branch-point formula,

X(T) = 2X(T0) - b

see [1; p, 93]. But X(T) = 0 and b > 0. Hence, Z(Γ0) = 2, and so
To is a 2-sphere and b = 4. (Because the orbit space of ^ is S3 and
because S3 contains no protective planes, we cannot have X(T0) = 1.)

FIGURE 3

Now let T denote the torus (r - 2)2 + ^ = 1 (see Figure 3), let
m denote the curve {(r, z) \ θ = 0 and (r — 2)2 + 2;2 = 1} (which we shall
take as one of the two components of T Π S), and let K{pj){{pf q) =
1) denote the torus knot {(r, z) \ r = 2 + eos(pθ/q), z = sin(p^/^)} on Γ'
(cf. [2; p. 92]). To fix the (r, 0, ^-coordinate system on T\ let the
point a shown in Figure 3 have (r, θ, ̂ -coordinates (3, 0, 0). Note
that p(Tf) — Tf and that p{m) — m"1 (after we have oriented m). If
TO denotes the orbit space of p\T, then the projection p'\ T-+To

is a branched covering. As with p: T —> To, the covering pf has four
branch points, and To is a 2-sphere.
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According to [1; Theorem 3.4, p. 94], the coverings p and p'
are equivalent; that is, there exist homeomorphisms ψ: T —> Tr and
y:S2—>S2 such that p'ψ = jp. It follows easily that φ preserves
covering fibers.

Thus, if {x, p(x)} is a fiber of p, then {ψ(x)9 ψp(x)} is a fiber of
p', and so (p\Tf)f{ρ\T)(x) = f(x); that is, ψ = (pi T')f (pi T). Because
p2 = id., we have (p\T')φ = φ(p\T). Notice that ρ(K&t-q)) = i^V;
thus, for any (p9 g)-torus knot, there exists a representative, K{p-q),
of it on T' that p inverts (and, hence, strongly inverts).

If λ is an (oriented) longitude of K on T, then ψ(X) is isotopic
on Tf to m or to one of the torus knots K^^, for some pair (plf qj.
Thus, either ψ~\m) or ^(K^^) is a longitude of T meeting the
axis A of p in exactly two points, because ψ maps branch points of
p to branch points of p'. Because (p\ Tf)ψ — ψ(p\ T), we have
either ρ(ψ~\m)) = ψ~\p\T')(m) = ψ~ι{m~ι) = [i/r-Xm)]"1 or, similarly,
^(α/r-1^^,,-))) = [ir~ι{K{^Tl))Yι. Therefore, p strongly inverts a
longitude of K, and it follows that K itself is strongly invertible.

Proof of Theorem 2. We need only note that, in the proof of
Theorem 1, the sufficiency portion depends on the uniqueness of the
maximal companion K of Dκ and not on the knot type of Όκ.

3* A counterexample. The noninvertible knot SίΓ in [11; Figure
3, p. 1275] is a counterexample to the converse of Theorem 2. Because
the knots Sλ and 5X (of the Alexander-Briggs table) are simple, one
can apply Schubert's theorem [6; p. 216] to show that 3ίΓ has exactly
one maximal companion, which is a trefoil knot and, hence, strongly
invertible; details of the application are routine, and we shall omit
them.

4* A conjecture* A link L in S3 is strongly invertible, if there
exists an orientation-preserving PL involution of S3 that inverts each
component of L. In [5, Theorem 1, p. 231], Montesinos proved that
any 3-manifold derived from surgery on a strongly invertible link
is a 2-fold cyclic covering space of S3 branched over a link and,
conversely, that one can produce any particular 2-fold branched cyclic
covering space of S3 by surgery on a suitable, strongly invertible
link. I do not know whether nontrivial surgery on a knot that is
not strongly invertible will produce a 2-fold branched cyclic covering
space of S3. It is, however, a different story for links. Here are
some examples.

F. Gonzalez-Acuna and J. Montesinos gave the first such examples
(unpublished). Assign any rational coefficient to the component Kλ

of the unsplittable and noninvertible Borromean rings, Kγ U K2 U Kz
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[5]. Take nonzero integers, a and δ, and assign the coefficient I/a to
K2 and the coefficient 1/6 to K3. We now have a surgical description
of a closed, connected, orientable 3-manifold, M. By applying an
appropriate twist across a disk spanning each of K2 and K3, we can
replace our original surgical description on M by one involving only
a knot, K, which (with a little adjusting) is easily seen to be
strongly invertible. Hence, M is a 2-fold branched cyclic covering
space of S3. Some of the various knots that K might be are 83, 103,
and any twist knot.

For the second group of examples, let Kx denote a double of a
noninvertible knot and let K2 denote a trivial knot in S3 — Kx placed
near the "critical" part of Kx so that exactly one (suitable) twist, t,
across a disk spanning iΓ2, will unknot Kx. Now assign any rational
coefficient to Kx and assign either +1 or — 1 to K2 so that the
coefficient of K2 becomes oo after the twist t. The link K1[jK2( = L) is
invertible, but not strongly invertible. Furthermore, with the two
coefficients attached, L provides a surgical description of a manifold
N. After twisting by t about a disk spanning K2, we can replace
our first surgical description of N by one involving only a trivial
knot. Hence, N is a 2-fold branched cyclic covering space of S3; in
fact, N is a lens space.

CONJECTURE. NO manifold obtained from nontrivial surgery on
a double of a noninvertible knot is a 2-fold branched cyclic covering
space of S3.

We conclude with two remarks, added in October, 1980, just
before the paper went to press.

REMARK 1. Let K be a knot nontrivially imbedded in the
interior of an unknotted solid torus V in S3, and suppose that one
can invert K inside V (without disturbing S3 — Int(F)). Let W be
a solid torus in S3 whose core is not strongly invertible, and let
f:V—>W be a faithful homeomorphism. With only minor technical
restrictions on K, we can conclude that f(K) is invertible but not
strongly (see Theorem 2 of [12]). One can easily construct examples
(each with genus > 1) that are not double knots (see [12]).

REMARK 2. Richard Hartley has independently constructed coun-
terexamples to Montesinos's conjecture (that every invertible knot
is strongly invertible); see Hartley's paper [Knots and involutions,
Math. Zeit., 171 (1980), 175-185].
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