INVERTING DOUBLE KNOTS

Wilbur Whitten

We disprove J. Montesinos's conjecture that every invertible knot in S^{3} is strongly invertible.

Let K denote a tame, oriented knot in S^{3}, and fix an orientation of S^{3}. If there exists an orientation-preserving, PL involution of S^{3} that inverts K, then K is strongly invertible. J. Montesinos proposed this definition [5], and he has conjectured [3; Problem 1.6, p. 277] that every invertible knot is strongly invertible. In this paper, we disprove this conjecture; our results are as follows.

Theorem 1. A knot K is strongly invertible if and only if each double of K is strongly invertible.

Corollary. No double of a noninvertible knot is strongly invertible; hence, there exist invertible knots that are not strongly invertible.

Proof of Corollary. Any double knot is invertible [6; Theorem 1, p. 235].

Theorem 2. If L is a strongly invertible knot with exactly one maximal companion C_{L}, then C_{L} is also strongly invertible.

Section 1 contains a preliminary lemma. We prove Theorems 1 and 2 , in $\S 2$. In $\S 3$, we give a counterexample to the converse of Theorem 2; in $\S 4$, we discuss surgery on invertible knots, give several examples, and formulate a conjecture.

I wish to thank C. Gordon and K. Murasugi for discussing this work with me.

1. Preliminaries. In this paper, all spaces are polyhedrons; the three-sphere has a fixed orientation; all maps are piecewise linear; all submanifolds, polyhedral; and all knots, oriented. We shall need the following lemma.

Positioning Lemma. If K is a strongly invertible knot, then there exists an orientation-preserving, K-inverting, PL involution $\rho: S^{3} \rightarrow S^{3}$ with nonempty, fixed point set A and there exists a polyhedral, ρ-invariant 2 -sphere S such that (a) the "axis" A of ρ belongs to S, (b) the set $K \cap A$ contains exactly two points, (c) the knot K is transverse with respect to the 2 -sphere S, and (d) the set $K \cap S$ contains only a finite number of points.

Proof. Because K is strongly invertible, there exists an orienta-tion-preserving, K-inverting, PL involution $\rho^{\prime}: S^{3} \rightarrow S^{3}$. The Lefschetz fixed-point theorem implies that $\rho^{\prime} \mid K$ has exactly two fixed points. Because the fixed-point set (or axis) A^{\prime} of ρ^{\prime} is, therefore, nonempty, the axis A^{\prime} must be a knot [7; Theorem, p. 162]. If we set $S^{3}=$ $R^{3} \cup\{\infty\}$, then, because ρ^{\prime} is piecewise linear and orientation-preserving, there exists a PL autohomeomorphism φ of S^{3} such that $\varphi \rho^{\prime} \varphi^{-1}\left(=\rho_{0}\right)$ is a "standard" (orthogonal) 180°-rotation and such that $\varphi\left(A^{\prime}\right)=(y$-axis $) \cup\{\infty\}\left(=A_{0}\right)$ [10].

Because $\varphi(K)$ is polyhedral, because the rotation ρ_{0} takes $\varphi(K)$ onto itself, and because $\varphi(K)$ meets A_{0} in only two points, x_{1} and x_{2}, we can (if necessary) find a small angle $\alpha^{\circ}(\alpha>0)$ such that an α°-rotation ρ_{α} about A_{0} takes $\varphi(K)$ to a knot $\rho_{\alpha} \varphi(K)$ that is transverse to the 2 -sphere $S_{0}(=(y z$-plane $) \cup\{\infty\})$ at each of the points, x_{1} and x_{2}. We shall find a knot K^{\prime} (ambient isotopic to $\rho_{\alpha} \varphi(K)$) such that K^{\prime}, the involution ρ_{0} (of S^{3}) with axis A_{0}, and the 2 -sphere S_{0} satisfy the hypothesis and the conclusion of the lemma. The lemma's proof will easily follow.

Choose $\varepsilon(>0)$ so that (closed) ε-neighborhood V_{ε} of $\rho_{\alpha} \varphi(K)$ is a solid torus; such a choice is possible, because $\rho_{\alpha} \varphi(K)$ is polyhedral in S^{3}. Because $\rho_{\alpha} \varphi(K)$ is transverse to S_{0} at x_{1} and at x_{2}, we can restrict ε so that $V_{\varepsilon} \cap S_{0}$ contains (among other things) two disjoint meridional disks, E_{1} and E_{2}, of V_{ε}, with $E_{i} \cap \rho_{\alpha} \varphi(K)=\left\{x_{i}\right\}(i=1,2)$. By a final restriction of ε, we can assume that $V_{\varepsilon} \cap A_{0}=\left(E_{1} \cup E_{2}\right) \cap$ A_{0} (=two, disjoint arcs). (The constructions involved in our restrictions of ε are standard, and we shall omit them.) Finally, note that $\rho_{0}\left(V_{\varepsilon}\right)=V_{\varepsilon}$.

The points x_{1} and x_{2} divide $\rho_{\alpha} \varphi(K)$ into two (closed) arcs, k_{1} and k_{2}; the disks E_{1} and E_{2} divide V_{ε} into (closed) 3-cells, B_{1} and B_{2}, with k_{i} unknotted in $B_{i}(i=1,2)$ (see [4; p. 134]). We note that $\rho_{0}\left(B_{1}\right)=B_{2}$ and that $B_{i} \cap A_{0}=\left(E_{1} \cup E_{2}\right) \cap A_{0}$.

Keeping x_{1} and x_{2} fixed, we now put k_{1} in general position with respect to S_{0} by an orientation-preserving autohomeomorphism $h_{1}: S^{3} \rightarrow S^{3}$ moving each point of k_{1} less than ε. We can evidently assume that $h_{1} \mid\left(S^{3}-\operatorname{Int} B_{1}\right)$ is the identity map.

The arc $\rho_{0} h_{1}\left(k_{1}\right)$ is clearly unknotted in B_{2}. Hence, there exists an orientation-preserving autohomeomorphism $h_{2}: S^{3} \rightarrow S^{3}$ taking k_{2} onto $\rho_{0} h_{1}\left(k_{1}\right)$ and leaving each point of $S^{3}-\operatorname{Int} B_{2}$ fixed. The autohomeomorphism h of S^{3} given by

$$
h(x)= \begin{cases}h_{i}(x), & \text { if } x \in \operatorname{Int} B_{i}(i=1,2) \\ x, & \text { otherwise }\end{cases}
$$

preserves the orientation of S^{3} and takes $\rho_{\alpha} \varphi(K)$ onto a knot $h_{1}\left(k_{1}\right) \cup$
$\rho_{0} h_{1}\left(k_{1}\right)$ that is in general position with respect to S_{0} and that is strongly inverted by ρ_{0}. We set $K^{\prime}=h \rho_{\alpha} \varphi(K)\left(=h_{1}\left(k_{1}\right) \cup \rho_{0} h_{1}\left(k_{1}\right)\right)$ and note that the knot K^{\prime}, the involution ρ_{0} with axis A_{0}, and the 2sphere S_{0} satisfy the hypothesis and conclusion of the lemma. The proof of the lemma now follows by taking $\rho=\left(h \rho_{\alpha} \varphi\right)^{-1} \rho_{0}\left(h \rho_{\alpha} \varphi\right)$, taking $A=A^{\prime}\left(=\varphi^{-1}\left(A_{0}\right)=\left(h \rho_{\alpha} \varphi\right)^{-1}\left(A_{0}\right)\right)$, and taking $S=\left(h \rho_{\alpha} \varphi\right)^{-1}\left(S_{0}\right)$.

2. Proofs.

Proof of Theorem 1. We shall assume that K is not trivial, for otherwise, the theorem is evidently true.
(1) Necessity. We assume that K is strongly invertible. Let ρ, and A, and S denote the objects our Positioning Lemma guarantees, and let $K \cap A=\left\{x_{1}, x_{2}\right\}$. By the Positioning Lemma's proof, we can assume (without loss of generality) that ρ is the 180°-rotation about $A(=(y$-axis $) \cup\{\infty\})$ and that $S=(y z$-plane $) \cup\{\infty\}$. Moreover, we can choose $\varepsilon(>0)$ and V_{ε} exactly as in the lemma's proof. We have $K=$ $k_{1} \cup k_{2}$ (with $\rho\left(k_{1}\right)=k_{2}$) and $V_{\varepsilon}=B_{1} \cup B_{2}$; moreover, $E_{i} \cap A(i=1,2)$ is a properly imbedded arc in E_{i}.

Let C denote a cylindrical 3-cell with core k and with two disks, D_{1} and D_{2}, meeting in an arc and imbedded in C, as shown in Figure 1. Let v be a (closed) arc in $\operatorname{Int}\left(E_{2} \cap A\right)$ such that $x_{2} \in \operatorname{Int}(v)$ (see Figure 2(a)). It is easy to find an arc $v_{1} \subset \operatorname{Int} E_{1}$ such that $v_{1} \cap A=$ $\left\{x_{1}\right\}=v_{1} \cap \rho\left(v_{1}\right)=A \cap \operatorname{Int} v_{1} ;$ note that $\rho\left(v_{1}\right) \subset \operatorname{Int} E_{1}$ (see Figure 2(b)).

Now, let $g: C \rightarrow B_{1}$ be a homeomorphism such that $g\left(E_{i}^{\prime}\right)=E_{i}(i=$ $1,2)$, such that $g\left(v_{1}^{\prime}\right)=v_{1}$ and $g\left(v_{2}^{\prime}\right)=\rho\left(v_{1}\right)$, such that $g\left(v^{\prime}\right)=v$, and such that $g(k)=k_{1}$. Then $\left[g\left(D_{1} \cup D_{2}\right)\right] \cup\left[\rho g\left(D_{1} \cup D_{2}\right)\right]$ is a singular disk Σ with one clasping singularity, and the $\partial \Sigma$ is a double of K with twisting number σ (an integer depending on the homeomorphism $g: C \rightarrow B_{1}$) and with self-intersection number $\eta(= \pm 2)$. (By changing g (to change σ) and by replacing C with its mirror image (to change the sign of η), we can assume that $\partial \Sigma$ is any double of K that we desire.) Evidently, $\partial \Sigma$ is strongly invertible (by the involution ρ). This completes the proof of the necessity.

Figure 2(b)
(2) Sufficiency. We assume that some double, D_{K}, of K is strongly invertible. Replace K by D_{K} in the Positioning Lemma; we can assume that ρ is the standard rotation (of period 2) about $A(=(y$-axis $) \cup\{\infty\})$, that $S=(y z$-plane $) \cup\{\infty\}$, and that $D_{K} \cap A=\left\{x_{1}, x_{2}\right\}$.

Let V^{*} denote a (closed) regular neighborhood of a clasping disk whose boundary is D_{K}; note that K is equivalent to a core of V^{*} [6; p. 238]. Now K is a unique maximal companion D_{K} [6; p. 242]; that is, any companion of D_{K}, other than K, is also a companion of K. Hence, the torus $\rho\left(\partial V^{*}\right)$ is ambient isotopic to ∂V^{*} in $S^{3}-D_{K}$. So, by [9; Theorem 1, p. 223], the ∂V^{*} is ambient isotopic (in $S^{3}-D_{K}$) to a torus T in general position with respect to A, and either $\rho(T) \cap$ $T=\varnothing$ or $\rho(T)=T$. If $\rho(T) \cap T=\varnothing$, then T and $\rho(T)$ are parallel. Because $\rho^{2}(T)=T$ and because each of $\rho(T)$ and T separates $S^{3}-D_{K}$, it easily follows that ρ moves fixed points of itself, which is absurd. Thus, $\rho(T)=T$.

Now T splits S^{3} into a solid torus V (containing D_{K} in its interior) and a K-knot manifold. If $A \cap T=\varnothing$, then $A \subset \operatorname{Int} V$, because $A \cap$ $D_{K} \neq \varnothing$. Because K is knotted and A is unknotted, A belongs to a polyhedral 3 -cell $\subset \operatorname{Int} V$; otherwise, A would have a companion, which it does not [6]. Applying Tollefson's lemma [8; Lemma 1, p. 141], we can find a 2 -sphere $S^{\prime} \subset \operatorname{Int}(V-A)$ such that S^{\prime} bounds no 3-cell in $V-A$ and such that either $\rho\left(S^{\prime}\right) \cap S^{\prime}=\varnothing$ or $\rho\left(S^{\prime}\right)=S^{\prime}$. As with the tori T and $\rho(T)$ in the preceding paragraph, we cannot
have $\rho\left(S^{\prime}\right) \cap S^{\prime}=\varnothing$. If $\rho\left(S^{\prime}\right)=S^{\prime}$, then take the 3 -cell $B^{3}\left(\subset S^{3}\right)$ that does not contain A and that S^{\prime} bounds (in S^{3}), and consider the homeomorphism $\rho \mid \boldsymbol{B}: B \rightarrow B$. By the Brouwer fixed-point theorem, $\rho \mid B$ has a fixed point, and so ρ has a fixed point not on A (which it does not). Hence, $A \cap T \neq \varnothing$.

Because T is in general position with respect to A, the cardinality b of $A \cap T$ is finite. Let T_{0} denote the orbit space of $\rho \mid T$. The projection $p: T \rightarrow T_{0}$ is a branched covering, and the two Euler characteristics, $\chi(T)$ and $\chi\left(T_{0}\right)$, are related by the Riemann-Hurwitz branch-point formula,

$$
\chi(T)=2 \chi\left(T_{0}\right)-b ;
$$

see [1; p, 93]. But $\chi(T)=0$ and $b>0$. Hence, $\chi\left(T_{0}\right)=2$, and so T_{0} is a 2 -sphere and $b=4$. (Because the orbit space of ρ is S^{3} and because S^{3} contains no projective planes, we cannot have $\chi\left(T_{0}\right)=1$.)

Figure 3
Now let T^{\prime} denote the torus $(r-2)^{2}+z^{2}=1$ (see Figure 3), let m denote the curve $\left\{(r, z) \mid \theta=0\right.$ and $\left.(r-2)^{2}+z^{2}=1\right\}$ (which we shall take as one of the two components of $\left.T^{\prime} \cap S\right)$, and let $K_{(\bar{p}, \bar{q})}((\bar{p}, \bar{q})=$ 1) denote the torus $\operatorname{knot}\{(r, z) \mid r=2+\cos (\bar{p} \theta / \bar{q}), z=\sin (\bar{p} \theta / \bar{q})\}$ on $T^{\prime \prime}$ (cf. [2; p. 92]). To fix the (r, θ, z)-coordinate system on T^{\prime}, let the point α shown in Figure 3 have (r, θ, z)-coordinates ($3,0,0$). Note that $\rho\left(T^{\prime}\right)=T^{\prime}$ and that $\rho(m)=m^{-1}$ (after we have oriented m). If T_{0}^{\prime} denotes the orbit space of $\rho \mid T^{\prime}$, then the projection $p^{\prime}: T^{\prime} \rightarrow T_{0}^{\prime}$ is a branched covering. As with $p: T \rightarrow T_{0}$, the covering p^{\prime} has four branch points, and T_{0}^{\prime} is a 2 -sphere.

According to [1; Theorem 3.4, p. 94], the coverings p and p^{\prime} are equivalent; that is, there exist homeomorphisms $\psi: T \rightarrow T^{\prime}$ and $\gamma: S^{2} \rightarrow S^{2}$ such that $p^{\prime} \psi=\gamma \rho$. It follows easily that φ preserves covering fibers.

Thus, if $\{x, \rho(x)\}$ is a fiber of p, then $\{\psi(x), \psi \rho(x)\}$ is a fiber of p^{\prime}, and so $\left(\rho \mid T^{\prime}\right) \psi(\rho \mid T)(x)=\psi(x)$; that is, $\psi=\left(\rho \mid T^{\prime}\right) \psi(\rho \mid T)$. Because $\rho^{2}=i d$. , we have $\left(\rho \mid T^{\prime}\right) \psi=\psi(\rho \mid T)$. Notice that $\rho\left(K_{(\bar{p}, \bar{q})}\right)=K_{(\bar{p} \bar{q})}^{-1}$; thus, for any (\bar{p}, \bar{q})-torus knot, there exists a representative, $K_{(\bar{p} \bar{q})}$, of it on T^{\prime} that ρ inverts (and, hence, strongly inverts).

If λ is an (oriented) longitude of K on T, then $\psi(\lambda)$ is isotopic on T^{\prime} to m or to one of the torus knots $K_{\left(\bar{p}_{1}, \bar{q}_{1}\right)}$, for some pair ($\left.\bar{p}_{1}, \bar{q}_{1}\right)$. Thus, either $\psi^{-1}(m)$ or $\psi^{-1}\left(K_{\left(\bar{p}_{1}, \bar{q}_{1}\right)}\right)$ is a longitude of T meeting the axis A of p in exactly two points, because ψ maps branch points of p to branch points of p^{\prime}. Because $\left(\rho \mid T^{\prime}\right) \psi=\psi(\rho \mid T)$, we have either $\rho\left(\psi^{-1}(m)\right)=\psi^{-1}\left(\rho \mid T^{\prime}\right)(m)=\psi^{-1}\left(m^{-1}\right)=\left[\psi^{-1}(m)\right]^{-1}$ or, similarly, $\rho\left(\psi^{-1}\left(K_{\left(\bar{p}_{1}, \bar{q}_{1}\right)}\right)\right)=\left[\psi^{-1}\left(K_{\left(\bar{p}_{1}, \bar{q}_{1}\right)}\right)\right]^{-1}$. Therefore, ρ strongly inverts a longitude of K, and it follows that K itself is strongly invertible.

Proof of Theorem 2. We need only note that, in the proof of Theorem 1, the sufficiency portion depends on the uniqueness of the maximal companion K of D_{K} and not on the knot type of D_{K}.
3. A counterexample. The noninvertible knot \mathscr{X} in [11; Figure 3, p. 1275] is a counterexample to the converse of Theorem 2. Because the knots 3_{1} and 5_{1} (of the Alexander-Briggs table) are simple, one can apply Schubert's theorem [6; p. 216] to show that \mathscr{K} has exactly one maximal companion, which is a trefoil knot and, hence, strongly invertible; details of the application are routine, and we shall omit them.
4. A conjecture. A link L in S^{3} is strongly invertible, if there exists an orientation-preserving PL involution of S^{3} that inverts each component of L. In [5, Theorem 1, p. 231], Montesinos proved that any 3 -manifold derived from surgery on a strongly invertible link is a 2 -fold cyclic covering space of S^{3} branched over a link and, conversely, that one can produce any particular 2 -fold branched cyclic covering space of S^{3} by surgery on a suitable, strongly invertible link. I do not know whether nontrivial surgery on a knot that is not strongly invertible will produce a 2 -fold branched cyclic covering space of S^{3}. It is, however, a different story for links. Here are some examples.
F. González-Acuña and J. Montesinos gave the first such examples (unpublished). Assign any rational coefficient to the component K_{1} of the unsplittable and noninvertible Borromean rings, $K_{1} \cup K_{2} \cup K_{3}$
[5]. Take nonzero integers, a and b, and assign the coefficient $1 / a$ to K_{2} and the coefficient $1 / b$ to K_{3}. We now have a surgical description of a closed, connected, orientable 3-manifold, M. By applying an appropriate twist across a disk spanning each of K_{2} and K_{3}, we can replace our original surgical description on M by one involving only a knot, K, which (with a little adjusting) is easily seen to be strongly invertible. Hence, M is a 2 -fold branched cyclic covering space of S^{3}. Some of the various knots that K might be are $8_{3}, 10_{3}$, and any twist knot.

For the second group of examples, let K_{1} denote a double of a noninvertible knot and let K_{2} denote a trivial knot in $S^{3}-K_{1}$ placed near the "critical" part of K_{1} so that exactly one (suitable) twist, t, across a disk spanning K_{2}, will unknot K_{1}. Now assign any rational coefficient to K_{1} and assign either +1 or -1 to K_{2} so that the coefficient of K_{2} becomes ∞ after the twist t. The link $K_{1} \cup K_{2}(=L)$ is invertible, but not strongly invertible. Furthermore, with the two coefficients attached, L provides a surgical description of a manifold N. After twisting by t about a disk spanning K_{2}, we can replace our first surgical description of N by one involving only a trivial knot. Hence, N is a 2 -fold branched cyclic covering space of S^{3}; in fact, N is a lens space.

Conjecture. No manifold obtained from nontrivial surgery on a double of a noninvertible knot is a 2-fold branched cyclic covering space of S^{3}.

We conclude with two remarks, added in October, 1980, just before the paper went to press.

Remark 1. Let K be a knot nontrivially imbedded in the interior of an unknotted solid torus V in S^{3}, and suppose that one can invert K inside V (without disturbing $S^{3}-\operatorname{Int}(V)$). Let W be a solid torus in S^{3} whose core is not strongly invertible, and let $f: V \rightarrow W$ be a faithful homeomorphism. With only minor technical restrictions on K, we can conclude that $f(K)$ is invertible but not strongly (see Theorem 2 of [12]). One can easily construct examples (each with genus >1) that are not double knots (see [12]).

Remark 2. Richard Hartley has independently constructed counterexamples to Montesinos's conjecture (that every invertible knot is strongly invertible); see Hartley's paper [Knots and involutions, Math. Zeit., 171 (1980), 175-185].

References

1. I. Bernstein and A. L. Edmonds, On the construction of branched coverings of lowdimensional manifolds, Trans Amer. Math. Soc., 247 (1979), 81-124.
2. R. H. Crowell and R. H. Fox, Introduction to Knot Theory, Graduate Texts in Mathematics 57, Springer-Verlag, New York, 1977.
3. R. Kirby, Problems in low dimensional manifold topology, Proceeding of Synposia in Pure Mathematics XXXII, Amer. Math. Soc., Providence, R. I., 1978.
4. E. E. Moise, Geometric Topology in Dimensions 2 and 3, Graduate Texts in Mathematics 47, Springer-Verlag, New York, 1977.
5. J. Montesinos, Surgery on links and double branched covers of S^{3}; Knots, Groups, and 3-Manifolds, Annals of Mathematics Studies 84, 227-259, Princeton University Press, Princeton, N. J., 1975.
6. H. Schubert, Knoten und Vollringe, Acta Math., 90 (1953), 131-286.
7. P. A. Smith, Transformations of finite period, Ann. of Math., 39 (1938), 127-164.
8. J. L. Tollefson, Involutions on $S^{1} \times S^{2}$ and other 3 -manifolds, Trans. Amer. Math. Soc., 183 (1973), 139-152.
9. —, Periodic homeomorphisms of 3-manifolds fibered over S^{1}, Trans. Amer. Math. Soc., 223 (1976), 223-234.
10. F. Waldhausen, Über Involutionen der 3-sphäre, Topology, 8 (1969), 81-91.
11. W. Whitten, Surgically transforming links into noninvertible knots, Amer. J. Math., 44 (1972), 1269-1281.
12. - Switching and inverting knots, preprint.

Received January 24, 1979.
University of Southwestern Louisiana
Lafayette, LA 70504

