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A NON-COMPACT MINIMAX THEOREM

CHUNG-WEI HA

This paper contains an extension of Ky Fan's theorem
on sets with convex sections (for the case two sets are
involved) by relaxing the compactness condition. It is then
applied to obtain a generalization of Sion's minimax theorem
in which neither underlying set is assumed to be compact.

Ky Fan gave his theorem on sets with convex sections for a
family of n sets (n ^ 2) and its various interesting consequences in
[1, 2]. It was recently extended in [4] by removing the compactness
condition on the underlying sets. Our first result is the following
Theorem 1, which is also an extension of the Fan's theorem for the
case n = 2 in the same direction, but under a much weaker condition.
The proof of Theorem 1 relies on the minimax inequality of Fan in
its geometric formulation ([3], Theorem 2). It says that if Z is a
nonempty compact convex set in a Hausdorίf topological vector space
and if S is a subset of Z x Z such that the set {z e Z: (x, z) e S} is
open in Z for each xeZ and the set {xeZ: (x, z) eS) is nonempty
and convex for each ze Z, then there exists xoe Z such that (xOf xQ) e S.

THEOREM 1. Let X, Y be nonempty convex sets, each in a
Hausdorff topological vector space, and let A, B be subsets of X xY
such that

(a) For each xeX, the set A(x) — {y e Y, (x, y) e A} is open in
Y, and the set B{x) = {y e Y: (x, y) e B) is nonempty and convex;

(b) For each y e Y, the set B{y) = {x e X: (x, y) e B) is open in
X, and the set A(y) = {x e X: (x, y) e A) is nonempty and convex.

If there exists a nonempty compact convex subset K of X such
that

(c) The set {y e Y: (x, y)$ A for all x e K) is compact in Y,
then Af] B Φ 0 .

Proof. By (b) we have Γ c U . e i A(x). The condition (c) implies
that Y\\JxeKA(x) is compact. Since each A(x) is open, there exists
a finite subset {xlf x2, , xj of X such that Y\\JxeK -A(β) c (JΓ=i A(xt).
Let Z be the convex hull of K U {xu x2, , xm}, then Z is compact
convex in X and Ya\JxezA(x). By (a) we have ZczXa \JxeYB(y).
Since each B(y) is open, there exists a finite subset {ylf y2, , y%} of Y
such that Zd\J]=1 B(y3). Let au a2, , an be a continuous partition
of unity subordinated to the cover {B(yό): 1 <£ j ^ n) of Z, that is,
alf a2, - - , an are nonnegative real-valued continuous functions on Z
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such that a5 vanishes on Z\B(yά) for each 1 <; j <; n and Σ?=i as(x) = 1
for xeZ. We define a map p:Z —>Y by p(α?) = Σ*=i #/0&)2/y» then p
is continuous. Moreover, for each x e Z and 1 <; j" <; w, if aά(x) Φ 0,
then x e B(ys) and so (a?, y5) e Z?. By (a) we have (a?, p(»)) 6 i? for all
# e i ? . Now let

S = {(x, z)eZ x Z: (x, p(z)) e A] .

By the construction of Z, clearly S satisfies the hypothesis of the
geometric form of the minimax inequality stated above. Consequently
there exists xoeZ such that (xQ, x0) e S, that is, (x0, p(x0)) e A. But
we also have (xOf p(x0)) e B and so the result follows.

The condition (c) in Theorem 1 is obviously fulfilled if either X or
Y is compact. In this case, Theorem 1 reduces to the Fan's theorem
on sets with convex sections involving two sets. Among various ap-
plications given in [1, 2], Fan used his theorem to derive in a direct
and simple way the Sion's minimax theorem [5]. In a similar fashion,
we shall use Theorem 1 to obtain a noncompact minimax theorem
that generalizes the Sion's result. Let X be a convex set in a vector
space and let / be a real-valued function defined on X. We recall
that / is called quasi-concave if for any real number t the set {x e X,
f(x) > t) is convex; / is called quasi-convex if —/is quasi-concave.

THEOREM 2. Let X, Y be nonempty convex sets, each in a
Hausdorff topological vector space, and let f be a real-valued function
defined on X x Y such that

(a) For each xeX, f(x, y) is lower semi-continuous and quasi-
convex on Y;

(b) For each y e Y, f(x, y) is upper semi-continuous and quasi-
concave on X.

If there exists a nonempty compact convex set K in X and a
compact set H in Y such that

(1) inf suf f(x, y) ̂  inf max f(x, y) ,

y e Y xeX yίH xeK

then

( 2 ) inf sup f{x, y) = sup inf f(x, y) .
y e Y x e X x e X y e Y

Proof. We always have that the left-hand side of (2) is no less
than the right-hand side. To prove (2) we can assume that the
left-hand side of (2) is not equal to — oo. We choose any real number
t such that inf supper *ex/(βf V) > t and let

A = {(x,y)eX xY: f(x,y) > t]

B={(x,y)eXxY:f(x,y)<t} .
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Obviously AnB—0. On the other hand, the condition (1) implies
that the set {y e Y: (x, y)$ A for all x e K) is compact. Clearly the
sets A, B also verify other conditions in the hypothesis of Theorem
1 with the exception that the sets B{x) Φ 0 for all xeX. We must
have B(x0) = 0 for at least one point x0 e X, that is, (x0, y)§ B for
all y e Y. This shows that swpinixeZyeYf(x9 y) ^ t and therefore
completes the proof.

By a similar argument we can show that Theorem 1 remains
valid if the condition (c) is replaced by the contion that: There
exists a nonempty compact convex subset H of Y such that the set
{x e X: (x, y)§ B for all y e H] is compact in X. Consequently the
minimax identity (2) also holds if (1) is replaced by the condition
that: There exists a nonempty compact convex set H in Y and a
compace set K in X such that

sup inf /O, y) ^ sup inf f(x, y) .
x ί K yen xeX y e Y
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