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TOPOLOGICAL PROOF OF THE G-SIGNATURE
THEOREM FOR G FINITE

PATRICK GILMER

The G-Signature Theorem was originally proved by
Atiyah and Singer as a corollary of their general index
theorem for elliptic operators. Subsequently Ossa gave a
proof for G finite and the fix point set orientable. His
methods are mainly topological. However, he uses the theory
of elliptic operators to show the ^-signature of a fix point
free diffeomorphism of finite order is zero. Janich and
Ossa gave a short completely topological proof of the theorem
for involutions. In part one, we give a complete proof for
semi-free actions and simultaneously a proof for general
actions modulo the theorem for fix point free actions. In
essence our argument here is similar to that of Ossa. However
it is shorter and conceptually simpler. Also we derive the
formula in a natural way as opposed to verifying it. In
part two, we prove a theorem which we use in part one to
prove the result for fix point free actions. I wish to thank
my advisor Professor E. Thomas for much help and encourage-
ment.

Part One. By considering the cyclic subgroup generated by a
given element, we may restrict our attention to cyclic group actions.
By a Zd manifold (g, M) we will mean a smooth, oriented, compact
manifold (without boundary unless otherwise stated or obvious)
together with an orientation preserving diffeomorphism of order d.
Frequently, we will omit the g in referring to Zd manifolds M. We
denote the disjoint union by +, the disjoint union of r copies of M
by rM, and the disjoint difference (one reverses the orientation of
the second manifold) by —. A Zd manifold If bounds (resp. rationally
bounds) if M (resp. r M) is the boundary of a Zd manifold. Two
Zd manifolds are bordant (resp. rationally bordant) if their disjoint
difference bounds (resp. rationally bounds). The collection of bordism
classes of Zd manifolds forms a graded ring O*(Zd) in the usual
manner.

Let (g, B) denote the d-fold branched cover of S2 along d points
together with the deck translation which rotates neighborhoods of
the fixed points through an angle 2π/d. Let (g, PJ denote the action
on ^-dimensional complex projective space given by g[z0, , zn_lf zn] —
[zQ, , zn_lf <ozn]. Here and throughout part one ω = exp(2πi/d).
The fix point set has two components: the point [0, , 0, 1] where
the action on the trivial normal bundle is multiplication by ώy and
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the Pn_λ given by zn — 0 where the action on the normal boundle is
given by multiplication by ω.

Given a Zd manifold (g, M), Atiyah and Singer [1] (p. 578) define
a complex number, the ^-signature Sign(gr, M) (specify that g acts
on H*(M, R) by g*~ι to get correct signs). The ^-signature of a
representative yields a ring homomorphism Sign: O*(Zd)> >C such
that

(1) Sign [g>\ B] = d^±J-~ for 0 < j < d

ω3 — 1

( 2 ) Sign [g*, Pn] = Sign Pn for 0 ^ j < d

(3) Sign [g, M] — 0 if g leaves no component of M invariant .
That Sign is well defined and a ring homomorphism are well known
relatively immediate consequences of the definition. (1) is not too
difficult a computation. See [4] (5.2). (2) is true since g is homo-
topic to the identity and therefore acts trivially on the cohomology.
(3) follows because one can define a (/-invariant positive definite inner
product on the middle real cohomology of M that respects the direct
sum decomposition into the cohomology of the connected components.
Sign(#, M) is defined as a difference of two traces which in the above
situation are easily seen to be zero. In part two, we show that
some multiple of a given fix point free Zd manifold is bordant to
one where no connected component is invariant proving property:

( 3') Sign [g, M] = 0 if (g, M) is fix point free .

If g acts freely on M, then M—>M/Zd is a covering space and is
classified by a map M/Zd —* BZd which in turn gives an element in
Ω*(BZd). Since Ω* (a point) (x)Q -^Ω*{BZd) <g) Q is an isomorphism,
we easily see that some multiple of a given free Zd manifold is
bordant to one that leaves no component invariant, proving the
weaker but easier:

(3") Sign [gr, M] = 0 if (g, M) is free .

The G-Signature Theorem expresses the ^-signature of a Zd manifold
in terms of the characteristic classes of the fixed point set and its
equivariant normal bundle. We will derive this expression for semi-
free Zd manifolds assuming 1, 2, and 3" and for general Zd manifolds
assuming 1, 2, and 3'.

By a Zd vector bundle (g, η), we mean a smooth real vector
bundle rj over a smooth manifold (without boundary unless otherwise
stated) with total space Eη oriented as a manifold together with a
bundle map g of order df preserving some Riemannian metric as well
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as the orientation on Eη. We also require that g covers a diffeo-
morphism of the base and acts fix point free restricted to the sphere
bundle. The associated disk bundle (g, Dv) of a Zd vector bundle is
a Zd manifold with boundary. If g covers the identity on the base
then (g, η) is called fixed. If g is free restricted to the sphere bundle,
(g, rj) is called semi-free. We frequently omit g in referring to Zd

vector bundles.
Fixed Zd vector bundles rj can be equivariantly decomposed rj =

φ j =1 ηό where η3- = {x e η \ g\x) - 2(Real ωj) g(x) + x = 0} where 0 <
j < d/2 = t and ηt — {x \ g{x) + x = 0}. For j Φ t, rjά can be given a
complex structure by J(x) = (1/(2 Imag ωj))(g(x) — g~\x)) with respect
to which g acts by multiplication by ωj. Note that rjt is even
dimensional as g preserves orientation. Let n5 = 1/2 dimΛ η§y then η
is semi-free if j is relatively prime to d whenever ni Φ 0. One also
has notions of bordism for Zd vector bundles: plain, fixed, oriented,
or semi-free bordism accordingly as the cobounding Zd vector bundle
is.

We define a special submanifold of a Zd manifold (g9 M) to be
an orbit of a component of the fixed point set of some iterate of g.
The equivariant tubular neighborhood theorem as described by Conner
and Floyd [2] (§22) asserts that an invariant tubular neighborhood
of a special submanifold is diffeomorphic as a Zd manifold with
boundary to the disk bundle of a Zd vector bundle (the equivariant
normal bundle). If F is a component of M° (the fixed point set of
g), then the resulting normal bundle is a fixed Zd vector bundle
denoted ηF.

LEMMA 1.1. If rj is a fixed (resp. and semi-free) Zd vector bundle
over a nonorientable base F then 2η is fixed (resp, and semi-free)
bordant to 9} the Zd vector bundle pulled up to the orientable double
cover F. h

Proof. We use a special case of the Dold construction as described
by Hirzebruch and Janich [5]. F can be constructed as follows.
Pick a submanifold K of F Poincare dual to w^F). Take two copies
of F "cut" along K and identify them together using the antipodal
map on the normal S° bundle of K in F. Let X be the double
branched cover of F x [0, 1] along K x {1/2} obtained by slicing
F x [0, 1] along K x [0, 1/2]. Then X is a bordism between 2F
and F. We can decompose η into ηά and then pull the ΎJ5 across
F x [0, 1] and then up to X to get a bordism between 2η and rj.
We only need to check that the total space of the bundle over X
is oriented. This is clear except over the branching locus as then
we have an ordinary cover. However the branching locus is codi-
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mension two and if wλ vanishes in the complement of a codimension
two submanifold then it is zero. •

LEMMA 1.2. Let rj be a fixed Zd vector bundle, then the sphere
bundle rationally bounds a fixed point free Zd manifold all of whose
special submanifolds have higher dimension than the base. If 7] is
semi-free, the cobounding manifold can be taken to be free.

Proof. By Lemma 1.1 we can assume the base is oriented and
therefore ηt can be given an SO(2nt) structure. The splitting of η
gives us an element of Ω*B(SO(2nt) x ILv*^(%)) See [2] §§4, 5, 6,
and 44 for a definition of the homology theory Ω*( ) and an exposi-
tion of that part of the theory needed here. We think of integral
elements of Ω*B(SO(2nt) x ΓL **^(%)) ® Q a s rational bordism classes
of fixed, oriented Zd vector bundles with representation give implicitly
by the sequence {%}. Thus the bordism is semi-free if the bundle
is. The map JS(Π 5PΛ0 -> B(S0(2nt) x YL^tU{n3)) of the splitting
principle induces an injection on rational cohomology and therefore
a surjection on rational homology and thus on the E2 term of the
spectral sequence for the theory Ω*( )(x)Q. Since both spaces only
have rational homology in even dimensions E2 = 2ΪL, and the map
induces an epimorphism on the filtration of Ω*( ) (x) Q, and so by
induction using the five lemma on Ω*( )(x)Q. In [2] (44.1), Conner
and Floyd prove a Kunneth theorem which in particular gives an
isomorphism ^^.Ω^BS1 -> Ω^iBS1) nJ = £*-B(Π$=i Γ*'"). Here the
tensor product is over Ω* and the map is given geometrically by
the cross product of bundles. Ω^BS1 is a free Ω* module on gen-
erators given by the canonical bundle over Pn: ζΛ. This follows from
[2] (18.1), however it is not difficult to see this directly (especially
rationally). Given these facts one sees that one only needs to prove
the lemma for a linear combination over Ω* of cross products of
canonical bundles. But given two bundles for which the lemma is
true, one can use the rational null bordisms provided by the lemma
to construct ambient Zd manifolds such that some multiples of the
given Zd bundles occur as the normal bundles to the fixed point set.
Forming the product of these Zd manifolds and removing a tubular
neighborhood of the fix point set, constructs a rational null bordism
of the sphere bundle of the cross product of the required type. Also
if the lemma is true for a bundle then it is true for any multiple
of the bundle by a manifold, one simply multiplies the provided null
bordism by the manifold. Thus we only have to prove the lemma
for the canonical bundle over Pn. To do this take dn+1 copies of
{g\ PΛ+i) and remove a tubular neighborhood of the dn+1 isolated
fixed points. Also take ( — l)n(gj, B)n+ί and remove neighborhoods of
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the dn+1 fixed points. The resulting boundaries can be identified
by an orientation reversing equivariant diffeomorphism to form a
closed Zd manifold for which the normal bundle to the fix point
set is dn+1 copies of the canonical bundle. If we remove a tubular
neighborhood of the fix point set we find our null bordism of the
required type. •

Given a fixed Zd vector bundle η, we define an invariant σ(η) e
Q as follows. By Lemma 1.2, there is a integer r and a Zd manifold
X whose boundary is r copies of the sphere bundle of rj. If η is
semi-free, we insist that X is free. Define

THEOREM 1.3. // (g, M) is semi-free or if we accept 3', then

Sign(g,M)= ΣtfOFi ) .
FC.M9

Here the summation is over the components F of M°. It follows
that σ is well-defined for semi-free bundles and in general assuming
3'.

Proof. For each F, let rF e Z and XF denote any choices as
above for calculating σ(τ]F). Let

Y = Π (rF))M - Σ( Π (rP.))lrFD,r U Xr
\ F / F \F'ΦF / \ * d

Then Sign((/, Y) = (J[F(rF))(Sign(g, M) - Σ^σ(ηF)). If we take Yxl
and attach copies of DVp x I appropriately, we may form a Zd mani-
fold whose boundary is Y + some free or fixed point free Zd manifold
as the case may be. Thus Sign(#, Y) = 0, and the main equality is
established. The proof is independent of the choices of rF and XF

for calculating σ(ηF). Every fixed Zd bundle can occur as the equi-
variant normal bundle of a component of a fixed point set (by (1.2)).
It follows that σ is well defined. Π

We now derive a formula for σ. Note that σ is an invariant of
semi-free fixed bordism (or simply fixed bordism assuming 3'). To see
this attach to (rDη \Jd X) x I r copies of the disk bundle associated
to a bordism of TJ. In view of Lemma 1.1, we can concentrate on
bundles with oriented base. We have the following commutative
diagram (specify % = 0 if j is not prime to d, if one only accepts 3"):
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Ω*B(SO(2nt) x Π U(n/)) ®

i
Ω.B(ΐ[T'0®Q

f "

where σ is defined as σ of a representative bundle. It is easy to
see that σ is an Ω* module homomorphism where C is made an Ω*
module via the signature homomorphism. σd is the map Ω^BS1(g)
Q -+C that is obtained by taking σ of a representative bundle with
action given by multiplication by ωj. The lower triangle commutes
because σ is multiplicative for cross products. To see this, realize
η and η' rationally as the normal bundles of the fixed point set for
two Zd manifolds and take their product as in the proof of Lemma
1.2.

We wish to determine σό. To place the formula in context, we
consider first a more general situation. If K is a multiplicative
sequence with characteristic series \Zs/R(\/s) and a: Ω^BS1 -+C is
a Ω* module homomorphism where C has been made an Ω* module
via the iί-genus and f(t) is the power series R\t) Σ^U a[ζn]Rn(t)
then a[ζFtX] = {f(x)K(F)}[F] where ζF>x is the line bundle over F
with first Chern class x. This is easily seen to be correct on [ζ j .

In our case K = L and R(t) = tan/&(£). Define fό(t) as above so
that σά[ηF,x] = {/,(α;)L(F)}[F]. Theorem 1.3 applied to (g\ Pn+1) and
{gd~j, β) yields σ^Λ = Sign(Pw+1) + ( - l ) ((α)' + l)/(ω' - l))«+ί =
Sign(P%+1) + (-l) ί i[coth(α)]M+1 where a is the complex number (jπ/d)ί.
Thus

f (t) - sech Htί t a n h ^ ) + I 1
Js Ll - tanh 2(ί) tanh (α) + tanh (ί)J '

Some hyperbolic trigonometric identities yield:

(1.4) fόit) - coth(ί + α) = ^ 1 + X .

α)^2ί — 1

Note also that

ft{x) = tanh (a?) - e(ηFtβ)L-\ηFllB) .

Our commutative diagram and the σά determine σ. In fact if
we write c(y]5) = ΠΓίi (1 + ^,y) formally for j Φ t then the formula

(1.5) σ(τj) =
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makes the diagram commute and therefore is correct. Finally if F
is nonorientable, so is ηt. F has a fundamental class in the homology
with coefficients twisted by the orientation system and e(τjt) lies in
the cohomology similarly twisted. The above formula makes sense
and yields half the value it would were we to pull ΎJ up to the
oriented double cover and calculate σ of that bundle. So by Lemma
1.1 the formula is correct for nonorientable base as well. Theorem
1.3 together with the formulas (1.4) and (1.5) constitute the content
of the G-Signature Theorem.

Part Two. In this part we prove the following theorem.

THEOREM 2.1. // (g, M) is a fixed point free Zd manifold then
some multiple of (g, M) is bordant to a Zd manifold where g leaves
no component invariant.

We define the Zs prolongation of a Zr manifold (h, F) to be the
Zrs manifold (g, Zs x F) where g(a, f) = {a + 1, /) for 0 ^ a < s and
feF and g(s, f) = (0, h{f)). One has a similar notion of a Zs pro-
longation of a Zr vector bundle. We need the following lemma. We
delay its proof showing first how 2.1 follows from it.

LEMMA 2.2. Let (g, 7)) be a Zrs vector bundle such that g acts
freely of order s restricted to the base and (g% rj) is a fixed Zr vector
bundle, then some multiple of rj is bordant through such bundles to
a Zs prolongation of a fixed Zr vector bundle.

Proof of 2.1. The proof is by induction on the maximum
codimension k of the special submanifolds of (g, M). If k is zero
then g is free of some order on the orbit of any component and we
already noted in the proof of 3" that the conclusion of this theorem
holds for each such orbit. Suppose the theorem holds for k < j , and
consider the case k = j . The special submanifolds Ft of codimension
j are disjoint as otherwise their intersections would consist of special
submanifolds of higher codimension. Moreover g restricted to Ft
acts freely of some order st, as otherwise there would be special
submanifolds of higher codimension. Thus the equivariant normal
bundle ηί of Ft satisfies the hypothesis of Lemma 2.2. Let r^ = d.
Let p%ηi be bordant through λ< to the ZH prolongation of the fixed
Zr% vector bundle ψt. Lemma 1.2 provides Nt a Zri manifold with
normal bundle to the fixed point set g-^, and all other special sub-
manifolds with lower codimension. Let r = ]ΓL ViQi, Lt be the ZH

prolongation of Nif and X = rM - YΛί{rlpίqι)Lί. X is a Zd manifold
for which the tubular neighborhood to the collection of special sub-
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manifolds of maximal codimension is provided with a null bordism,
namely Y = Σ , {^IVi)Dλi. X x I + Y with appropriate identifications
is a bordism between TM and a Zd manifold all of whose special sub-
manifold have codimension less than k. By the inductive hypothesis,
some multiple of this manifold is bordant to a manifold where no
component is invariant. Putting appropriate multiples of these two
bordisms together, we complete the inductive step. •

Proof of 2.2. This proof is based partially on an idea of Conner
the Floyd [3] 3.1. Consider the fixed Zr vector bundle (g% rj) and write
as before η = φ} = 1 ηs where now t = r/2, ω = e2πί/r and % = 1/2 dimΛ ηd.
Let Fbe the base and π:F' -^FjZ8 — B the projection. Let n = dimF
and kyn. Embed B in Sn+k with normal bundle v. Let S(p, q) be
SO(p + q)n(O(p)xO(q))(zO(p + q). Let iϊ" be S(Jfe, 2nt)xUJΦtU(nd) and
(? be Zr8xHjA where A is the cyclic group of order r generated by
(s, Ik — I2nt, ωlni, (ύ2ln2, , ω'J^., •). H is normal in G with quotient
Zs. Since wjc*(v) = wλ(F) = w ^ ) , π*v © 57 can be given an H
structure. π*v has a natural ϋΓrβ action of order s covering the
action on F, and η comes with a Zrs action. Thus the associated
principal H bundle with total space S has a Zrs action, (i.e., think
of elements of S as admissible maps, then Zr8 acts by composition
of mappings.) Let Zr8 x H act on S by s(α, h) = a^sh. Note s(α, ft) =
s if and only if (α, /̂ ) is in J. The quotient space is JB, thus S is a
principal G bundle over B. If we take the associated vector bundle
to its O(k) "extension", we recover v.

Since G is a subgroup of some O(m), if we let E be EO(m) restrict-
ed to the Grassmann of m planes in RN(N>n), then Z8 = G/H-+EjH->

E/G will approximate G/H-*BH^>BG (from the point of view of
an -^-complex) by an s-fold covering projection of smooth closed
manifolds. We write BH for E/H etc. Let 7 be the vector bundle
associated to the O(k) "extension" of the G bundle over BG. We
need that Γ(p)#: πn+k(T(p)*Ύ) -+πn+k(Ty) is rationally surjective. To
see this, note that the rational Hurewicz homomorphism from
π

n+k( ) (x) Q to Hn+k( , Q) is an isomorphism on both Thorn spaces as
they are k — 1 > n connected: see [7] 18.3. Using excision, we need
only show the map on the disk bundle rel the sphere bundle induces a
surjection in rational homology. However, as this is a finite covering
map, one has a right inverse on the relative rational chain level.
The result follows.

Pick a map of principal G bundles S —> EG and consider the
induced map v —> 7. The Thorn construction then gives a map
/: Sn+k —• T7 representing [/] in πn+k(T7). By the above, for some

m e Z, m[f] = [g] where g: Sn+k Λ Tip""7) -> Γ(τ). If we embed mB
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in %mSn+k — Sn+k and use the same bundle map v -> 7, the above
construction leads to a map (say) mf: Sn+k —> T(y) representing m[f].
We can insure that h is smooth away from h~\oo) and transverse
to BH. Therefore g will be smooth away from g~\oo) and transverse
to BG. We can pick a homotopy F between mf and g that is smooth
away from F~\<*>) and transverse to BG as well as being exactly
mf and g on a collar of the boundary. Let B' = F~\BG) and i? =
g~\BG) so 35' = mΰ + JB. There is a principal G bundle over B'
with total space Sf such that the associated vector bundle to the
O(k) "extension" is given an isomorphism to the normal bundle z/
of Br in Sn+k x /. Moreover, restricted to mB we have m isomorphic
copies of our original G bundle over B> and over B we have a (?
bundle which is an extension of an H bundle. Thus the associated
bundle over B with fiber G/H — Z8 has a section and thus is trivial
as it is also principal.

We now use this bordism of G bundles to construct the required
bordism of Zrs vector bundles. Consider the array

S'lS0(2nt) x Π U(nj) S'/Zrs x S0(2nt) x Π U(ns)/ά
it-t jφt

d l
S'/SO(k) - * — S'lH = F' ~ S'/G = B'

of quotients of S\ a is the projection of the O(k) "extension", π
is the projection of the associated principal G/H — Zs bundle and b
is a pulled up to F\ c is the projection of the associated principal
H/SO{k) = 0{2nt) x ]lo*tU(na) bundle with associated vector bundle
rf. The total spaces of the vector bundles associated to a and b are
oriented, d gives an orientation to rf Whitney sum the bundle
associated to 6. It follows that the total space of rf is orientable.

Let Zr8 generated by g act on S'/SOQc) via Zrs --> Zr8 x H-> G.
Since Δ acts trivially, gs which fixes F' will act in the fibers by
multiplication by ( — 1, ωj). Moreover g covers a map free of order
s on F'. Let g act on rf in such a way that it induces the above
action on S'/SO(k). In this way one gets a Zrs vector bundle (g, η')
with boundary of the type in the lemma. One can check that one
recovers m isomorphic copies of (g9 rj) if one restricts to π~\mB).
Let (g9 rj) be the restriction to π~\B). Since π~\B) ->B is a trivial
principal Zs bundle, one sees that (g, fj) is isomorphic to the Zs

prolongation of (g% fj) restricted to a single sheet. •
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