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CONSECUTIVE INTEGERS FOR WHICH n2 + 1
IS COMPOSITE

BETTY GARRISON

Let & = {pj?=o where p0 = 2 and p*, fc > 0 , is the fcth
prime in the sequence of positive integers congruent to 1
modulo 4. Thus & contains the prime divisors of all the
integers n*+l. For each ί=0,1, let P(ί)=Πί=o 2>*. It will
be shown that for each sufficiently large integer t there exists
a sequence ^ of consecutive integers n such that (i) (n2 + 1,
P(t)) > 1 for all n in ^ , (ii) card ^ ^ [(1 - e)^,], 0 < ε < 1,
for a certain positive constant λ, and (iii) pt < n < P(t) for
all n in ^ .

Viggo Brun [1] has shown that lim^oo U(x)/N(x) — 0, where U(x)
is the number of primes <̂  x of the form w2 + 1 and N(x) is the total
number of integers <S a; of that form. Hence there exist arbitrarily
long sequences of consecutive integers n for which n2 + 1 is composite.
Somewhat later Chang [2] proved a theorem which implies that if
C(t) is the maximum length of a sequence of consecutive integers
each divisible by at least one of the first t primes qu •••, qt, then
C(t) ^ cg4 log qt/(log log gt)

2 for all sufficiently large t. Rankin [9] has
improved Chang's result to C{t) ^ er~εt log21 log log log ί/(log log ί)2,
while Iwaniec [6] has shown C(t) < (ί log t)2. Obtaining estimates
for C(t) is a part of a problem posed by Jacobsthal [7], and the
principal result of the present paper might be regarded as a generali-
zation of that problem, also. The methods of proof here more akin
to those of Chang and Erdos [3] than to those of Brun or Rankin.

In what follows the notation pkf pt9 etc. will always indicate
elements of sequence & defined above. For each odd prime pk in
& there exist integers ±ak representing the two residue classes
modulo pk whose elements n have the property that pk divides
n2 + 1. For each t = 1, 2, let Sft denote the system x ^ 1 (mod 2)
and x Ξ£ ±ak (mod pk) for all k = 1, , t. Clearly n2 + 1 is relatively
prime to P(t) if and only if n satisfies Sft. By the Chinese Remainder
Theorem, any complete residue system modulo P(ί) contains Q(ί) =
ΠίLi (Pk — 2) solutions of Sζ. If the integers in a complete residue
system modulo P(ί) are consecutive, then P(t)/Q(t) represents an
average distance between consecutive solutions of £ft in that system.

The following Lemma will serve to define the previously
mentioned constant λ as well as to yield an asymptotic equality
needed later. The first part of the proof is a variation of one given
by Hardy and Wright [5, p. 349] and Halberstam and Roth [4, p.
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277] for Π,*.P/(P-1)

LEMMA. There exists a constant λ such that 0.648 < λ < 0.649

and Π U PkliPk - 2) ~ λ log pt as t -> oo.

Proof. For each odd prime p in ^ let s(p) = — log (1 — 2/p) —
2/p = 22/2p2 + 23/3p3 + 24/4p4 + . . Then 2/p2 < s(p) < (22/p2 + 25/p* +
24/p4 + . )/2 = 2/p(p - 2). Each s(p) is postive and Σ 2/p(p - 2 ) c o n -
verges. Therefore, Σ ϊ U S(P) = δ > 0 and Σ*=i s(ϊ>*) = δ — ε(t) where
lim^oo e(ί) = 0. Hence we have

Σ log pΛPu - 2) = Σ 2/3>t + δ - ε(ί) .
k=l k=l

Mertens [8, pp. 56-58] has shown that

Σ — = -ί log log G + a + /(G) ,
p = l(mod4), Ύ) 2

where a = -0.2867420562 and f(G) = O(l/log G). Hence

Π P»/(l>* - 2) = exp (2α + b - e(ί) + O(l/log p()) log p, ,

and, letting λ = e2a+b, ΠUp*/(p* - 2) - λ l o g p t .
We next obtain upper and lower bounds for δ. One easily proves

pk > pk - 2 > 6fc for all A; > 3. (Note p fe+2 - pA ^ 12 while 6(fc + 2 ) -
6Λ - 12.) Therefore, δ - Σi~i β(P*) + e(100) < 0.140595 + ΣϊUoi ZlPuiPk-
2) < 0.140595 + ΣSbUioi 2/36A;2 = 0.140595 + (π2/6 - Σi=i 1/Λ2)/18 < 0.14115.
Also, δ > Σi=iβ(P*) > 0.14059.

Thus we have -0.57349 + 0.14059 < 2a + δ < -0.57348 + 0.14115,
so 0.648 < λ < 0.649. •

We use the notation π(x; 4, 1) in the usual way to denote the
number of primes p ^ x such that J Ξ I (mod 4), and recall that the
prime number theorem for primes in arithmetic progression gives
π(x; 4, 1) — x/(2 log x). The Lemma implies P(t)/Q(t) — 2λ log pt as
t —* oo. Here and in the statement of the following Theorem the
constant λ is the same as in the Lemma, and the notation [r] indicates
the greatest integer ^ r.

THEOREM. Let ε be a fixed real number, 0 < ε < 1. Then for
each sufficiently large pt in 3^ there exists an integer X such that
X + h is not a solution of £ft for h — 1, 2, •••,[(! — ε)λpj, and



CONSECUTIVE INTEGERS FOR WHICH n2 + 1 IS COMPOSITE 95

Proof. For the ε of the statement of the Theorem, choose δ so
that δ ^ (1 - (1 - ε)1/2)/2 and 0 < δ < 3/14. Now choose a prime pt

in & large enough so that (i) (1 - 2δβ)x\2 log x < π(x; 4, 1) <
(1 + 2δβ)x/2logx for all x > δpt, (ii) (1 - 2S/3)2λ log p s < P(s)/Q(s) <
(1 + 2<5/3)2λ log ps for all ps > δpu and (iii) log (δpt) > (1 - 23/3) log pt.
Let pr be the smallest prime in & which is greater than δpt. For
any integer y let N(y) be the number of solutions of S^r in the
interval (y, y + (1 - ε)Xpt].

We have Σfl? N(y) = [(1 - ε)λpt]Q(r), since each of the Q(r)
solutions of £f is counted in exactly [(1 — ε)Xpt] terms on the left.
Hence there exists an integer x such that 1 ^ x ^ P(r) and

N(x) £ (1 - ^

- 2δ)2Xpt

(1 - 2£/3)2λ log pr

< (1 - 2δ) Pt .
2 log pt

, the number of primes in & between pr and pt is

π(pt; 4, 1) — π(pr; 4, 1)

> (1 - 2S/3) y* - (1 + 23/3)- g p *

2 log p4 2 log δpe

(JL — Δύ ό) —

21ogp, (1 - 2δ/3)21ogpί

> (1 - 2 δ ) — ^ -
2 log pt

Let a? + fe1? x + h29 '' -, x + hN(x) be the solutions of £fr in
(x, x + (1 — 6)λPί]. There exists X in the interval [1, P(t)] such that
X = x (mod P(r)), X = ak — fefc_r (mod pk) for A = r + 1, , r + iSΓ(a?),
and X Ξ 0 (mod p*.) for & = r + iV(x) + 1, ••-,£. This X satisfies the
conditions of the Theorem except for the possibility that X = P(t).
If so, then we use the integer X' such that X' = X= 0 (modP(£ — 1)),
Γ Ξ I (mod 20, P(ί - 1) ^ X' ^ P(ί). D
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