CONSECUTIVE INTEGERS FOR WHICH $n^{2}+1$ IS COMPOSITE

Betty Garrison

Let $\mathscr{P}=\left\{p_{k}\right\}_{k=0}^{\infty}$ where $p_{0}=2$ and $p_{k}, k>0$, is the k th prime in the sequence of positive integers congruent to 1 modulo 4. Thus \mathscr{P} contains the prime divisors of all the integers $n^{2}+1$. For each $t=0,1, \cdots$ let $P(t)=\Pi_{k=0}^{t} p_{k}$. It will be shown that for each sufficiently large integer t there exists a sequence \mathscr{C}_{t} of consecutive integers n such that (i) ($n^{2}+1$, $P(t))>1$ for all n in \mathscr{C}_{t}, (ii) card $\mathscr{C}_{t} \geqq\left[(1-\varepsilon) \lambda p_{t}\right], 0<\varepsilon<1$, for a certain positive constant λ, and (iii) $p_{t}<n<P(t)$ for all n in \mathscr{C}_{t}.

Viggo Brun [1] has shown that $\lim _{x \rightarrow \infty} U(x) / N(x)=0$, where $U(x)$ is the number of primes $\leqq x$ of the form $n^{2}+1$ and $N(x)$ is the total number of integers $\leqq x$ of that form. Hence there exist arbitrarily long sequences of consecutive integers n for which $n^{2}+1$ is composite. Somewhat later Chang [2] proved a theorem which implies that if $C(t)$ is the maximum length of a sequence of consecutive integers each divisible by at least one of the first t primes q_{1}, \cdots, q_{t}, then $C(t) \geqq c q_{t} \log q_{t} /\left(\log \log q_{t}\right)^{2}$ for all sufficiently large t. Rankin [9] has improved Chang's result to $C(t) \geqq e^{r-\varepsilon} t \log ^{2} t \log \log \log t /(\log \log t)^{2}$, while Iwaniec [6] has shown $C(t) \ll(t \log t)^{2}$. Obtaining estimates for $C(t)$ is a part of a problem posed by Jacobsthal [7], and the principal result of the present paper might be regarded as a generalization of that problem, also. The methods of proof here more akin to those of Chang and Erdös [3] than to those of Brun or Rankin.

In what follows the notation p_{k}, p_{t}, etc. will always indicate elements of sequence \mathscr{P} defined above. For each odd prime p_{k} in \mathscr{P} there exist integers $\pm a_{k}$ representing the two residue classes modulo p_{k} whose elements n have the property that p_{k} divides $n^{2}+1$. For each $t=1,2, \cdots$ let \mathscr{S}_{t} denote the system $x \not \equiv 1(\bmod 2)$ and $x \not \equiv \pm a_{k}\left(\bmod p_{k}\right)$ for all $k=1, \cdots, t$. Clearly $n^{2}+1$ is relatively prime to $P(t)$ if and only if n satisfies \mathscr{S}_{t}. By the Chinese Remainder Theorem, any complete residue system modulo $P(t)$ contains $Q(t)=$ $\prod_{k=1}^{t}\left(p_{k}-2\right)$ solutions of \mathscr{S}_{t}. If the integers in a complete residue system modulo $P(t)$ are consecutive, then $P(t) / Q(t)$ represents an average distance between consecutive solutions of \mathscr{S}_{t} in that system.

The following Lemma will serve to define the previously mentioned constant λ as well as to yield an asymptotic equality needed later. The first part of the proof is a variation of one given by Hardy and Wright [5, p. 349] and Halberstam and Roth [4, p.

277] for $\Pi_{p \leqq x} p /(p-1)$.

Lemma. There exists a constant λ such that $0.648<\lambda<0.649$ and $\prod_{k=1}^{t} p_{k} /\left(p_{k}-2\right) \sim \lambda \log p_{t}$ as $t \rightarrow \infty$.

Proof. For each odd prime p in \mathscr{P} let $s(p)=-\log (1-2 / p)-$ $2 / p=2^{2} / 2 p^{2}+2^{3} / 3 p^{3}+2^{4} / 4 p^{4}+\cdots$. Then $2 / p^{2}<s(p)<\left(2^{2} / p^{2}+2^{3} / p^{3}+\right.$ $\left.2^{4} / p^{4}+\cdots\right) / 2=2 / p(p-2)$. Each $s(p)$ is postive and $\sum 2 / p(p-2)$ converges. Therefore, $\sum_{k=1}^{\infty} s(p)=b>0$ and $\sum_{k=1}^{t} s\left(p_{k}\right)=b-\varepsilon(t)$ where $\lim _{t \rightarrow \infty} \varepsilon(t)=0$. Hence we have

$$
\sum_{k=1}^{t} \log p_{k} /\left(p_{k}-2\right)=\sum_{k=1}^{t} 2 / p_{k}+b-\varepsilon(t)
$$

Mertens [8, pp. 56-58] has shown that

$$
\sum_{\substack{p=1(\bmod 4) \\ p s G}} \frac{1}{p}=\frac{1}{2} \log \log G+a+f(G)
$$

where $a=-0.2867420562 \cdots$ and $f(G)=O(1 / \log G)$. Hence

$$
\prod_{k=1}^{t} p_{k} /\left(p_{k}-2\right)=\exp \left(2 a+b-\varepsilon(t)+O\left(1 / \log p_{t}\right)\right) \log p_{t}
$$

and, letting $\lambda=e^{2 a+b}, \prod_{k=1}^{t} p_{k} /\left(p_{k}-2\right) \sim \lambda \log p_{t}$.
We next obtain upper and lower bounds for b. One easily proves $p_{k}>p_{k}-2>6 k$ for all $k>3$. (Note $p_{k+2}-p_{k} \geqq 12$ while $6(k+2)-$ $6 k=12$.) Therefore, $b=\sum_{k=1}^{100} s\left(p_{k}\right)+\varepsilon(100)<0.140595+\sum_{k=101}^{\infty} 2 / p_{k}\left(p_{k}-\right.$ 2) $<0.140595+\sum_{k=101}^{\infty} 2 / 36 k^{2}=0.140595+\left(\pi^{2} / 6-\sum_{k=1}^{100} 1 / k^{2}\right) / 18<0.14115$. Also, $b>\sum_{k=1}^{100} s\left(p_{k}\right)>0.14059$.

Thus we have $-0.57349+0.14059<2 a+b<-0.57348+0.14115$, so $0.648<\lambda<0.649$.

We use the notation $\pi(x ; 4,1)$ in the usual way to denote the number of primes $p \leqq x$ such that $p \equiv 1(\bmod 4)$, and recall that the prime number theorem for primes in arithmetic progression gives $\pi(x ; 4,1) \sim x /(2 \log x)$. The Lemma implies $P(t) / Q(t) \sim 2 \lambda \log p_{t}$ as $t \rightarrow \infty$. Here and in the statement of the following Theorem the constant λ is the same as in the Lemma, and the notation [r] indicates the greatest integer $\leqq r$.

Theorem. Let ε be a fixed real number, $0<\varepsilon<1$. Then for each sufficiently large p_{t} in \mathscr{P} there exists an integer X such that $X+h$ is not a solution of \mathscr{S}_{t} for $h=1,2, \cdots,\left[(1-\varepsilon) \lambda p_{t}\right]$, and $p_{t} \leqq X \leqq P(t)-p_{t}$.

Proof. For the ε of the statement of the Theorem, choose δ so that $\delta \leqq\left(1-(1-\varepsilon)^{1 / 2}\right) / 2$ and $0<\delta<3 / 14$. Now choose a prime p_{t} in \mathscr{P} large enough so that (i) $(1-2 \delta / 3) x / 2 \log x<\pi(x ; 4,1)<$ $(1+2 \delta / 3) x / 2 \log x$ for all $x>\delta p_{t}$, (ii) $(1-2 \delta / 3) 2 \lambda \log p_{s}<P(s) / Q(s)<$ $(1+2 \delta / 3) 2 \lambda \log p_{s}$ for all $p_{s}>\delta p_{t}$, and (iii) $\log \left(\delta p_{t}\right)>(1-2 \delta / 3) \log p_{t}$. Let p_{r} be the smallest prime in \mathscr{P} which is greater than δp_{t}. For any integer y let $N(y)$ be the number of solutions of \mathscr{S}_{r} in the interval $\left(y, y+(1-\varepsilon) \lambda p_{t}\right]$.

We have $\sum_{y=1}^{P(r)} N(y)=\left[(1-\varepsilon) \lambda p_{t}\right] Q(r)$, since each of the $Q(r)$ solutions of \mathscr{S}_{r} is counted in exactly $\left[(1-\varepsilon) \lambda p_{t}\right]$ terms on the left. Hence there exists an integer x such that $1 \leqq x \leqq P(r)$ and

$$
\begin{aligned}
N(x) & \leqq(1-\varepsilon) \lambda p_{t} \frac{Q(r)}{P(r)} \\
& <\frac{(1-2 \delta)^{2} \lambda p_{t}}{(1-2 \delta / 3) 2 \lambda \log p_{r}} \\
& <(1-2 \delta) \frac{p_{t}}{2 \log p_{t}} .
\end{aligned}
$$

Also, the number of primes in \mathscr{P} between p_{r} and p_{t} is

$$
\begin{aligned}
\pi\left(p_{t} ;\right. & 4,1)-\pi\left(p_{r} ; 4,1\right) \\
& >(1-2 \delta / 3) \frac{p_{t}}{2 \log p_{t}}-(1+2 \delta / 3) \frac{\delta p_{t}}{2 \log \delta p_{t}} \\
& >(1-2 \delta / 3) \frac{p_{t}}{2 \log p_{t}}-\frac{(1+2 \delta / 3) \delta p_{t}}{(1-2 \delta / 3) 2 \log p_{t}} \\
& >(1-2 \delta) \frac{p_{t}}{2 \log p_{t}} \\
& >N(x) .
\end{aligned}
$$

Let $x+h_{1}, x+h_{2}, \cdots, x+h_{N(x)}$ be the solutions of \mathscr{S}_{r} in $\left(x, x+(1-\varepsilon) \lambda p_{t}\right]$. There exists X in the interval $[1, P(t)]$ such that $X \equiv x(\bmod P(r)), X \equiv a_{k}-h_{k-r}\left(\bmod p_{k}\right)$ for $k=r+1, \cdots, r+N(x)$, and $X \equiv 0\left(\bmod p_{k}\right)$ for $k=r+N(x)+1, \cdots, t$. This X satisfies the conditions of the Theorem except for the possibility that $X=P(t)$. If so, then we use the integer X^{\prime} such that $X^{\prime} \equiv X \equiv 0(\bmod P(t-1))$, $X^{\prime} \equiv 1\left(\bmod p_{t}\right), P(t-1) \leqq X^{\prime} \leqq P(t)$.

References

1. V. Brun, Om fordelingen av primíallene iforskjellige talklasser, Nyt Tidsskrift for Matematik (B), 27 (1916), 45-58.
2. T.-H. Chang, Über aufeinanderfolgende Zahlen, von dener jede mindestens einer von n linearen Kongruenzen genugt, deren Moduln die ersten n Primzahlen sind, Schr. Math. Semin. u. Inst. angew. Math. Univ. Berlin, 4 (1938), 35-55.
3. P. Erdös, Problems and results on the differences of consecutive primes, Publ. Math.

Debrecen, 1 (1949), 33-37.
4. H. Halberstam and F. K. Roth, Sequences, Volume 1, Oxford Univ. Press, London, 1966.
5. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th Edition, Oxford Univ. Press, London, 1962.
6. H. Iwaniec, On the error term in the linear sieve, Acta Arith., 19 (1971), 1-30.
7. E. Jacobsthal, Über Sequenzen ganzer Zahlen von denen keine zu n teilerfremd ist, I-III, Norske Vidensk. Selsk. Forh. Trondheim, 33 (1960), 117-139.
8. F. Mertens, Ein Beitrag zur analytischen Zahlentheorie, J. reine u. angew. Math., 78 (1874), 46-62.
9. R. A. Rankin, The difference between consecutive prime numbers V, Proc. Edinburgh Math. Soc., 13 (1962-1963), 331-332.

Received March 25, 1980 and in revised form March 27, 1981.
San Diego State University
San Diego, CA 92182

