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Corrections to

THE GALOIS GROUP OF A POLYNOMIAL WITH
TWO INDETERMINATE COEFFICIENTS

S. D. COHEN

Volume 90 (1980), 63-76

We make modifications to the results of [3], principally Theorem
2 and Corollary 3, to take account of an error in Lemma 5 which
arises when wild ramification is involved. (This came to light
following a query by M. Fried to whom I am grateful.) In fact,
although some of the assertions of [3] conflict with known results,
we show that our conclusions remain true (and can even be streng-
thened) under modified hypotheses. We also take advantage of the
now complete classification of finite doubly transitive groups to
simplify the details. In our discussion (which proceeds with the
same notation) we can assume that p is a prime.

Now the proof of Lemma 5 is valid provided the cycle pattern
μ is tame, i.e., provided μt = 0 whenever p\i. When μ is wild the
claim that necessarily G(h, F{t}) is cyclic is unjustifiable, see [2],
§8, although further study may reveal what alternative deductions
could be made. Simply observe here that then the p-Sylow group
of G(h, F{t}) supplies non-trivial elements σ of G whose cycle lengths
are powers of p and for which λ(σ) <£ ΣpuV^ I n particular, the
validity of Lemma 5 and Corollary 6 is restored if the following
sentence is added to their hypotheses. Suppose that either μ is tame
or μ = (V»-*\ pw).

Clearly Lemma 7 and so Theorem 1 remain valid as stated.
Indeed, by the above, G — Sn whenever there exists (βu β2, βs) in
Fz with μ(B) = (Vn~2\ 2(1)) (even if g(X), Xa and Xb are linearly
dependent over F(XV), e.g. whenever p — 2). Thus, for example,
if p = 2, n is odd and f(X) = Xn + tX2 + u then G = Sn.

Next, observe that the purported existence of an automorphism
σt in Lemma 8 is actually only established when μ(σl) is tame or a
p-cycle. (Note however from the proof that, if pjfc then certainly
μ(σ4) is tame unless g(X) = gλ{Xv)Xa\ p\a). Consequently, the con-
clusion "G £ An" of Lemma 9 is conditional on one of the μ(σt) being
tame (or, if p = 2, a transposition) as well as odd.

In the revised version of Theorem 2 which follows, the condition
p X (α, n) is replaced by the condition p \ (a(n — α), c) (which although
generally stronger does allow the possibility that p \ (α, n) provided
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p\c). Following from the failure of Lemma 9 in some cases (e.g.
whenever p = 2), we cannot always distinguish between G = Sn and
G = An but the main conclusion that exceptions occur only when

a ~ n — 1 or c = 1 remains valid.

THEOREM 2. Suppose that f is given by (1) with a — n, b — 0
and pJf(a(n — a), c). Suppose G Φ Sn. Then one of the following
(i)-(v) holds.

( i ) a, c 6 {1, n - 1},
(ii) a — n — 1 and p\(n, c),
(iii) c — 1 αwd p |α(w — α, α — 1),

(iv) g(X) = gi(XηX«*,p)(a,
(v) G = An and either p\(c, n) with n even and a odd or

p\a(n — a) with c odd and also, if p \n, n odd.

Proof Assume An §£ G. By Theorem 1 we can suppose that
either p\a or p\(n{n — a), c(c — α)). Suppose p\c(Φ 1) and (iv) does
not hold. Then, as in [3], σ4 is a c-cycle and G is (n — c + l)-ply
transitive. Hence by Corollary 5.4 of [1] (now unconditional since
Hypothesis (S) is accepted as proven), G cannot be 6-transitive and
so c ^ n — 4. Moreover, the only 4 and 5 transitive groups are the
Mathieu groups Mn(n = 11, 12, 23, 24) and these possess no cycles of
length n — 3 or n — 4, [5]. Thus c ^ w — 2 and so either p\a(— n — ϊ)
and c = n — 2 or α = c. In the former case since F can be assumed
to be algebraically closed we can suppose g{X) — Xn + X71"2 and then
j«(flr(X) + χn~ι - !) = (1(w"2)» 2 ( 1 )) ( t h e repeated factor being (X + I)2)
while if a = c = n ~ 2 (with p \ n — 2), then <73 is a transposition.
In either case G = Sn. Hence if p \ e then a — e = n — 1. Similarly,
the assumption p ̂  α(w — a) yields a — n — 1 or α = c = 1.

Note finally that here one of the μ{p}) of Lemma 8 is odd and
tame unless the conditions in (v) apply.

To demonstrate that G = Sn is a possible conclusion even when
p = 2 we supplement Theorem 2 with

THEOREM 2'. Suppose f is given by (1) wiέfc p < n — I and that
either c — p or p\n with a = p or n — p. Then An Q G. Indeed,
if p = 2, ίfcew G = Sn.

Proof. Consideration of one of σ2, cr3 or σ4 produces the existence
of a p-cycle in G and the result follows from Theorem 13.9 of [10]
provided p<n — 2, while from the list on p. 8 of [1], c = n — 2 = p,
a prime, for example, is impossible for 3-transitive groups.

The scope of these results could be enlarged by considering
specific "non-awkward" g or by employing Theorem 13.10 of [10]
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(including more recent improvements such as in [7]) or by using
the classification of doubly transitive groups to improve the lower
bound given in Theorem 15.1 of [10] for the minimal degree of such
a group.

For Corollary 3 (regarding trinomials) we additionally assume
that p\ a{n — a) (but not necessarily that p\n as in [8]) and supple-
ment it with a special case of Theorem 2'.

COROLLARY 3. Let f(X) = Xn + tXa + u, where (α, n) = 1.
( i ) Suppose that p \ a{n — a) and also that p \ n if a — 1 or n — 1.

Then An £ G. Indeed, for p odd, G = Sn unless 2p\n.
(ii) Suppose that p < n — 1 and a = p or n — p. Then An Q

G with G = Sn if p = 2.

We comment here that existing results already called for modifi-
cation of the original Corollary 3. For example, the trinomial
discriminant formula [6] implies that if p \ (n — a) and n is even then
G £ An and, in particular, Uchida [9] showed that, if f{X) == X11 +
tX2 + u, then G = Mn when p — 3 (although, as mentioned earlier
G = Sn when p = 2).

Finally, although the original proof of Theorem 12 is lacking in
some cases (for example, when 6 = 0 and p\(n — a)(a — 6)6, we can
show that it remains valid as stated. Indeed (as is desirable in view
of the possibility that Theorem 2 yields only A n £(?), we can justify
the conclusion of Theorem 12 assuming only that An £ G (rather
than G — Sn). This flows from the improved version of Lemma 11
in [4] in which it is assumed only that AnQG with | G | > 3 for the
same conclusions to hold. Also, in [4] it is proved that if (15) holds
with \G\ > 3 (and n Φ 4, if q = 2), then necessarily f(X) divides a
polynomial of the form Xgl(X) — agl(X), where here aeF(t,u).
Indeed, aside from a factor Xm> say, / itself is of this form (other-
wise a zero of / is algebraic over F{t)) which is clearly impossible.
The remaining cases of small n and p can be cleared up separately
using Lemma 5 and its extensions. In particular, G = Az is impossible.
We omit the details.
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Correction to

THE TYPESET AND COTYPESET OF A RANK
2 ABELIAN GROUP

PHILLIP SCHULTZ

Volume 78 (1978)

Professors Vinsonhaler and Wickless have pointed out several
errors in my paper, of which one at least is irreparable.

The proof of admissibility in Section 6 fails to show that for
arbitrary coprime integers a and b, the group element ax + by has
the required height. In fact the argument in this section is incom-
patible with a Lemma of Dubois [1],

Vinsonhaler and Wickless have found a counterexample, similar
to one in [1], which shows that my main theorem, Proposition 4, is
false. Their results are to appear in [2].
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Correction to

NEW EXPLICIT FORMULAS FOR THE nΎR DERIVATIVE
OF COMPOSITE FUNCTIONS

PAVEL G. TODOROV

Volume 92 (1981), 217-236

( 1 ) page 219, line 8 from below:
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The printer has printed:
"Funktion und insbeson, inbesondere dere fur die der Umkehr-

funktion".
It must be:
"Funktion und insbesondere fur die der Umkehrfunktion"
(2) page 234, line 5 above:
The denominator in the formula (61) has been printed: (u"fn~
It must be: (u"fn-z

( 3) page 234, line 9 above:
It was printed:

It must be:

3!

Correction to

ON THE ISOLATION OF ZEROES OF AN
ANALYTIC FUNCTION

DOUGLAS S. BRIDGES

Volume 96 (1981), 13-22

On correcting the proofs of [1], I realized that the results of
[1] preceding Proposition 1 do not enable us to take the first step
in the proof of that Proposition. This gap in the proof can be filled
easily by an application of the following additional lemma.

LEMMA. Let f be differentidble and not identically zero on
B(0, 1). Let v be a positive integer, 0 < p < 1/2, r = pΣίΆ (1 — p)k,
and 0 < ε < r. Then there exists s such that r — ε < s < r and
inf{|/(z)|:|z| = s} > 0.

Proof. We argue by induction on v, the case v = 1 having been
dealt with in Lemma 2 of [1]. Suppose, then, that our Lemma
obtains when v = n — 1 > 0, and consider the case v = n. Choose a
positive integer m so that

t = r | ^ M _ _ X | < JL(1 „ r )

Δ

and define ζk = re2kzί/m (k = 0, , m — 1). It is routine to verify that
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the balls B(ζk, t) lie in B(0, 1) and cover {z: \z\ = r}; that \ζk+1 ~ ζk\ = t
for each k; and that there exists d > 0 such that z e U3K1 B(ζkf t)
whenever r — d <^ \z\ ^ r + d. Now

fe=o

n-2 n-2

= P Σ (1 - p)k + 1 - 2p - 2p(l - p) Σ (1 -

n-2

= (1 — 2(1 — ρ))p X (1 — p)k + 1 — 2p
fe=O

so that

and therefore the balls B(ζkf 1 — r) each intersect 5(0, p ΣΠo (1 — ^)fc).
The induction hypothesis now ensures that / is not identically zero
on B(ζk, 1 — r). Applying Lemma 2 of [1], we now compute τh so
that ί<r f c<(l/2)(l-r) and inf{|/(z)|: \z-ζk\=rk}>0 (0^fc^m-l). It
follows from Lemma 3 of [1] that either inf{j f(z) \:ze UΓ̂ o1 B(ζkf n)}>0,
in which case inf{|/(2)|: \z\ = s} > 0 for any s with r — min(cZ, ε) <
s < r; or there exist finitely many points ^ •••,£*• of [Jΐ=o B(ζk, rk)
and an operation d: R+ -^R+ such that \f(z)\ ^ δ(α) whenever a > 0,
£ e U/Ko1 J5(ζfc, rfc) and |« — ̂  | ^ α for each j . In the latter case, to
complete the proof we need only choose s so that r — min(d, e) < s < r
and s =£ |3y| for each j .
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Correction to

REGULAR FPF RINGS

S. PAGE

Volume 79 (1978), 169-176

In [2] Proposition 3 states that for a left FPF left nonsingular
ring any left ideal is essential in a direct summand of the ring.
Unfortunately the proof is lacking as was pointed out by E. P.
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Armendariz. The proof given only works for two sided ideals. The
final results of the paper are in fact valid. The arguments of [2]
do characterize the left self-injective left PPF regular rings. It is
also easy to see (as is pointed out in [2]) that a strongly regular
left FPF is left self-injective. In [3] it is shown that if R is non-
singular and left FPF, then Q(R), the maximal left quotient ring is
also left FPF. So we know the structure of the maximal quotient
ring. We will show that, if R is a left FPF regular ring, Proposition
3 does hold.

In what follows R is a ring with zero singular left ideal and
maximal left quotient ring Q. We first show that Q φR Q = Q by
establishing the following lemma:

LEMMA A. Let R be a left nonsingular left FPF ring and let
qeQ. Then R + Rq embeds in a finitely generated free module.

Proof. An idempotent e in Q is called abelian if for ϋί-submodules
I and J of Qe such that If] J=0, Homβ(/, J) = 0. Now each idempotent
of Q can be written as a finite sum of orthogonal abelian idempotents
because Q is a self-injective regular ring of bounded index. The
injective hull of Rq is Qe for some idempotent e. Let e = Σ?=i eu
where the e/s are abelian and orthogonal. Clearly, R + Rq embeds
in 12(1 - e) 0 Σ ? = i ( ^ + #?«<). Next look at Re, + Rqe, c Qe,. We
will show that Re, + Rqe, embeds in a free module for each i. To
this end, for convenience, we will assume e is abelian. Now we
can reduce to the case where Re is faithful. To do this note that
the left annihilator of Re + Rqef

 λ(Re + Rqe), is λ((Re + Rqe)R)f a
two sided ideal. The two sided version of Proposition 3 of [2] implies
that R = Rλ x R2 where (Re + Rqe)R is essential in iJle We can,
therefore, assume without loss of generality that R — Rx. This makes
Re faithful and so Re + Rqe is a generator. This gives the existence
of functions fu - -,fκ, to R so that R = Σf=1 Image ft. Let W =
Πί-iker/*. Let F be the sum of K copies of R, and Q(F) the
canonical hull of F. Let / be the map of Re + Rqe to F given by
fi on the ith coordinate. We have W = ker/. Since everything in
sight is nonsingular, W is not essential in Re + Rqe. Let WφUbe
essential in Re + Rqe. Since 1 eΣf=i Iπi/*, there exists rlf r2 in R so
that for w Φ 0 in W, wf^r^e + r2qe) Φ 0 for some i. Also since the
image of U is essential in im/, we see that Wf(U) Φ 0, in Q(F). It
follows, because all modules under consinderation are nonsigular,
that for some non zero submodule W1czW9 Homβ(TF, U) Φ 0, which
contradicts the fact that e was abelian, unless W — 0. The fact that
W = 0 implies that //s give rise to an embedding. Finally, treat
R(l — e) in the same way.
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THEOREM. Let R be a left nonsίngular left FPF ring. Then.Q
is flat as a left R module and Q (x) Q = Q.

Proof. Lemma A gives the essential ingredients to apply the
proof of Theorem 5.17 [1].

PROPOSITION. Let R be a regular left FPF ring. Let e = e2 e Q.
Then Re is a protective R module.

Proof. By Theorem 2.8 of [4] it suffices to show Q(&RRe is a
Q protective. Now we have 0 —»Re -> Q exact and Q is flat over R,
so 0 —• Q (x) Re —> Q (x) Q is exact. The isomorphism Q (x) Q = Q gives
Q (x) Re = Qe, and hence is Q protective.

COROLLARY. For any idempotent e e Q, Re Π R is a summand

of R.

Proof. The sequence 0-> Re Γ\ R-> R—> R(l - e) -> 0 splits.
We can now prove Proposition 3 of [2] for regular FPF rings.

If L is a left ideal of R, then L is essential in a summand Qe of Q.
Hence L is essential in iϋe, hence essential in Re Π R, a summand
of Λ.
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