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ABSOLUTE CONVERGENCE FIELDS OF SOME
TRIANGULAR MATRIX METHODS

ARUN KUMAR AND D. P. SAHU

Recently Das [2] has obtained results on the comparison
of the absolute convergence fields between the Nδrlund
matrix and its product with the Cesaro matrix. In the
present paper a similar investigation for the Riesz matrix
((N, pn) matrix) is made.

1* Let A = (αWlfc) be an infinite lower triangular matrix, that
is an>k = 0, if k > n, transforming sequence s = {sn} into the sequence
-4(8) defined by

4(8) = {A.(8)} = \±an,ksk
U=o

The sequence s is said to be absolutely summable A or summable
I il | , if the transformed sequence A(s) is of bounded variation, that
is if Σ2U I Λ («) — Λ -i(s) I < °° The absolute convergence field of
A, denoted by \A\, is the set of all sequences which are summable
| i l | . The matrix A is said to be absolute conservative if | / | £ |A|,
where I is the identity matrix.

Let {pn} be a sequence of constants, real or complex, such that
Pn = Σfc=o pk =£ 0. When aΛtk = (pn_*)/PΛ, A is called the (N, pn) matrix
and for an>k — pk/Pn, A is called the (N, pn) matrix. The (N, pn)
matrix for pn > 0 and Pn —> oo is also denoted by the (R, Pn, 1)
matrix. When the sequence {pn} is such that pn = 1 for all n, both
the (N, pj and the (N, pn) matrices reduce to the (C, 1) matrix.

For two matrix methods A and B, AB transform of s is defined
by A(B(s)). In particular,

(i.i) t (P,ί) = 4-Σ-^ΣffA,
Pm k=Q Qk n=0

where tn(p, q) denotes (N, pn)(N, qn) transform of s.
Throughout the present paper we write P™ = Σ&=o Ph$ and for

any sequence {θn}, Jnθn = Δθn = θn — θn+1 and θn = 0, if w < 0; K de-
notes a positive constant, not necessarily the same at each occur-
rence.

2. Concerning the relative inclusion of the absolute convergence
fields of (ΛΓ, pn) and (N, pn)(C, 1), the following is known (see Das
[2], Theorem 2 and Theorem 5).

THEOREM A. Let the sequence {pn} be such that pn > 0 and
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P +i/P ^ P WP +i ̂  1. ϊ 7 ^ IJV, Pn\ S I(C, 1)(2V, p JI .

Silverman [5] has shown that the (JV, pn) matrix is not per-
mutable with the (C, 1) matrix unless the (N, p J matrix is a Cesaro
matrix. However, it has been proved that Theorem A is true even
if the (C, ΐ)(N, pn) is permuted ([2], Theorem 4).

It has been proved (see Prasad and Pati (4)) that the absolute
Riesz summability \R,\wr\ implies the summability \R, φ(Xn), r\,
provided, roughly speaking, the φ(x) is reasonable regular and does
not increase more rapidly than a power of x. But from Lemma 4
we see that

(1.2) \N,Pn\Q\N,pn\

if and only if pJPJ" = O((PJ2).
The following theorems which we prove in the present paper

show that if we consider the product of (C, 1) and (Nf pn) in place
of (JV, p j in (1.2) the relation (1.2) holds good for a fairly wider
class of sequences {pn}.

THEOREM 1. Let {pn} be a nonnegative sequence. Then \N, Pn\ £

J|, if

(1.3) Mϊp- Σ - ^ - £K, fc = 1, 2, . . . .

THEOREM 2. Let {pn} be a nonnegative sequence. Then

\N,Pn\Q\(N,pn)(C,l)\.

The condition (1.3) seems to be quite less restrictive but it is
not true even for all nonnegative sequences; for if we consider the
sequence {pn} such that Po = log 2 and for n > 0, pn is chosen to be
either 0 or 1 in such a way that log(w + 2) ~ Pn. It is easy to see
that for this case (1.3) is not satisfied.

Concerning the inclusion relation between the absolute convergence
fields of the (ΛΓ, qJ and the (C, Ϊ)(N, pn) methods we prove the fol-
lowing.

THEOREM 3. Suppose that {pn} is nonnegative nonincreasing
sequence and that {qn} is positive and nondecreasing sequence. Then

\N,qn\Q\(C,l)(N,pn)\.

It is interesting to observe that the relation |JV, qn\ £
I (N, pJ(C, 1) I also holds good follows from Lemma 4. Since for non-
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decreasing sequence {qj, Qn^ (n + l)qn, we see that with {qn} in place
of {pn} and qn = 1 in Lemma 4, the hypotheses of Lemma 4 are
satisfied. Hence

(1.4) | i \ U j £ | C , 1 | .

But for nonnegative nonincreasing sequence {pn} it follows from
Lemma 3 that (JV, pn) is absolutely regular. Hence |JV", qn\ £

2* For the proof of the theorems we need the following results.
In what follows we write an = pn+iPί1]/Pn+i and Cm = m + 1 —

LEMMA 1. iw order ί/̂ αί αnj/ {a?»}€|J| implies {a?Je|A|f where
A = (αm, J , ίί is necessary and sufficient that Σ?=o αΛ>fc converges for
all n and

V i ^ K , m = 0, 1, 2, .

LEMMA 1 is contained in ([6], Theorem 3).

LEMMA 2. For m, n = 0,1,2,

( i )

(ϋ

The proof of Lemma 2 is direct. The following lemma is con-
tained in [3].

LEMMA 3. // {pn} is nonegative, nonincreasing, then for all
k Ξ> 0 and 1 :£ α ^ 6 ^ <x>,

and, for any n > 0, P(w, fc) ̂  0.

LEMMA 4. Lei gΛ > 0 and pn Φ 0. Then in order that \N, pn\ζZ
\N, qn\, it is necessary and sufficient that PJpn = O(QJqn).

The sufficiency part of the lemma in a less general form is due
to Sunouchi [6]. The present form is due to Bosanquet ([1], p. 654).



446 ARUN KUMAR AND D. P. SAHU

3* Proof of Theorem 1. Let tn(P) denote the (JV, P J transform
of {sj. We have

, n = 0, 1, 2,

so that

Ui, v) = — ί - Σ 4- Σ -^(P
n + 1 =o P 8 r=o P

= ΐ τ i S i is ( J f )«"F'(ί>) + α-

Σ α..,* ,(P) ,
r=0

say. Wri t ing /3Λ>m = ΣΓ=o<xw,r and observing t h a t α n > r = 0 for r >

we see t h a t βn>m = 1 for n <ί m and for n^m

+
Ps

 +

We first simplify βntm for n ^ m. By v i r tue of t h e result (i)

of Lemma 2, we have 1

m % / ~ \ p(l)

r=0 S=r \ PrJPs

= Σ (Σ + Σ V^-f-)^

Σ -I-Σ -I- Σ
»=m+1 P s r=0

- m + 1 + (P. - α j Σ 1/P. - Σ <xJPs

so that

(3.2) βM = ™±± + —4—(Pm - α J Σ - 5 -

In order to prove the theorem, it is sufficient to show that the
matrix (αw>r) in (3.1) is absolutely conservative. From Lemma 1,
we see that the matrix (αΛ>r) will be absolutely conservative if

/Q Q\ V V~» I /} Γ> I <^ TΓ nnn ft 1 O

\O.ό) 2-1 — Zu \βn+l,m "~ βn,m\ = -& 9 W& = U, 1, ώ, ,

since /3n>m = 1 for n ^ m. From (3.2) we get

1 We assume here onwards Σ ^ = 0 if b < a.
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m + 1 , 1 /D
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(n + l)(τt + 2) ' (» +
+ 2 r m

-(P. - a.

1
P.

Evidently,

(3.4)

where

Σ ^ Σ

2)P n + 1

+ 2) + B(m) + L(m) ,

2) .=« 2 ) P M +

and L(m) = amR(m)/Pm

We have

1)(» + 2)
m + 1

= PmX(m) + PmΓ(m) , say.

In view of the fact that for nonnegative sequence {pn}, {PJ is
nondecreasing, it follows that

(3.5) PmY(m) £ K .

Observing that Σ"=m 1/P. > (n — m)/Pn, we obtain

X(m) = Σ j- Σ 4 + Γ(m) .
. (n + l)(w + 2) =

We now prove that PmX(m) 5ί K. For, we first estimate

X*(N, m) =
+ l)(n + 2) Σ {n + 2)PΛ+1

First changing the order of summation and then using that
+ l)n - 1/8 - 1/(N + 1), we get

(3.6) X*(N, m) =
(8 + 1)P8

N 1 N+l

v _L _ vP 8 (n + 1)PΛ

If PM->oo as n->°of it follows from (3.6) that X*(N,m)-+0 as
iV—> oo, If P Λ V 4 oo? then, since {PJ is nondecreasing, Pn-±a finite
limit P, say, as % —> ©o; and in this case X*(N, m) —> — 1/P. In view
of this and (3.5) it follows that

(3.7) PmX(m) £ K .
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From (3.5) and (3.7) we get

(3.8) R(m) ^ K .

Now we estimate L(m). We have

From the hypothesis (1.3) we see that an is bounded whenever
Pn <; K. Using this fact and the observations made just after (3.5),
we see that amX(m) <i K. That amy{m) ^ K follows from the hypo-
thesis (1.3). Thus L(m) ^ K. This together with (3.8) and (3.4)
yields Σ = 0(1), since the first term in (3.4) is bounded. This proves
Theorem 1.

Proof of Theorem 2. Following closely the proof for (3.1) we
see that

PrP?
(r + l)Pr+ι

tr(P)

= Σ anJr(P) .

Thus, in this case

n,m 7-j 2-Λ Σ P.P?
PJ (rH

for n ^ m and βn,m — 1 for m ^ n.
Using the technique, with the result (ii) in place of (1) of Lemma

2, for obtaining (3.2) we see that

βn,m = PJPn + (CJPn)s±+pJ(s + 1) .

Now we proceed to prove that for this case also (3.3) holds
good. We have

Pn+lPm Pn+l(

Ps Pn-Pm

Pn . 4 2)Pn

4- C P V

To prove that Σ± is bounded we first consider the following sum
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Observing that (n + 2) Σ?=m+i Ps/(s + 1) > Pn - Pm we see that the
expression under the modulus sign in Σ(N) is nonnegative. Hence
by a change of order of summation we get

Since

(3.9)

Σ(N)
N

— V
s=m+l S

+ Pm
s

N

Ps ^
+ 1^3

N

v

P.+l

PnPn+1

- 2)P β P M + 1

and pM/PΛ ^ 1, we have

"" m

It is clear that the term of 2Ί for n — m is bounded. In view
of this and (3.10) we get that Σ1 is bounded, since Cm ^ Km by
the fact that P™ ^ (m + 1)PW. That ^ and Σz are bounded follows
from (3.9). Thus we get that Σ ^ K for all m. This completes the
proof of the theorem.

Proof of Theorem 3. It is interesting to observe from the
result (1.4) that to prove Theorem 3, it is sufficient to show that
\C, 1| C |(C, l)(iV, j>J|, which is just special case of Theorem 3 when
(N, qn) is (C, 1). But to prove this special case we require the
same argument (except minor simplification of the method of the
proof) as for the general case. In order to give a direct proof we
consider the general case.

Let tn(l, p) denote (C, Ϊ)(N, pn) transform of the sequence {sn}.
We have

= Σ
r=0

So far the case

It is clear that /3Λ,m = 1 if m^n. Simplifying by using Lemma
2(ii) we see that for m ^ n
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βn,m ~ 1
-Lk-m-1 i QmVk-m-1

n + 1 * ^ + Λ Ph qm+1Pk

Now we prove that (3.3) is true for this case also. We have

y = v - -
n p p
v

n + 2 \n + 1 *= P,.

qm+1\(n + 2)Pn+1 (TO + 1)(» + 2) *=£•+! Pk

P 1 n P
± n-m , , ± ^ -1- k—m

M

Σ

Qm+1 M~m (n + 2)P,,+l

= lim 2"(M) + Σ" + 2"" ,

4 -

2)(w

»_ v . V Vk-m-1
2 ) fc=

say. We first consider Σ\M). Since for nondecreasing sequence
{Vn), {Pk-m-i/Pk) is nondecreasing in & for k > m, we get that the
expression under the modulus sign in Σ\M) is nonnegative. By a
change of order of summation we obtain

Σ\M) - v
~ 2

.v p

2)PΛ

Hence

(3.12)

(If + 2 ) P j m (m + 2)P Λ + 1 M

y (M) = o( i ) .

V 1 <

To prove the boundedness of Σ" and Σtn we first estimate the
following sum. Observing that (n — m + l)pn-m ^ P«-m ^ P«+i w e

see that for a = 1 or 2

Σ = Σ v
(3.13)

(m + α)Pw+i
+ Σ

m + m

Since for nondecreasing sequence {qn}, Qn ^ (n + 1)#Λ, we obtain
from (3.13) that

(3.14) Σ" < co .

Applying the above reasoning after a change of order of summation,
we see that

(3.15) rrr QmΣtn = Pk-m-i

Qm+i J f e =
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That Σ is bounded follows when we use (3.12), (3.14) and (3.15)
in (3.11). This completes the proof of Theorem 3.

The authors would like to express their grateful thanks to
Professor B. Kuttner of the University of Birmingham for some
valuable comments. Our thanks are also due to Professor H. P.
Dikshit and a referee for comments which have imporved presentation
of the paper.
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