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A NOTE ON REAL ORTHOGONAL MEASURES

PATRICK AHERN AND N. V. RAO

Let X be an open Riemann surface and K a compact
subset of X such that X—K has only finitely many connected
components. Let R(K) denote the space of meromorphic
functions with poles off K. In this note, we investigate
the space of real measures supported on dK and orthogonal
to R{K) and connect it with the first homology group of
the interior of K.

1* Introduction and preliminary notations* Let X be a fixed
open connected Riemann surface; K a compact subset of X such
that X—K has only finitely many connected components. Let
^(dK) denote the space of all real valued continuous functions on
dK) &(K) denote the space of all meromorphic functions on X with

poles outside K; Re &(K) denote the closure of the space of real
parts of functions in &(K) under the sup norm on dK. Let
denote the space of all measures on dK that are orthogonal to
and m(K) denote those measures of ^//(K) that are real.

The sole purpose of this note is to establish the following
theorems.

THEOREM 1.1. There exists a natural isomorphism between
m(K) and the first cohomology group of K (which we shall denote
by Ω hereafter) with real coefficients.

THEOREM 1.2. One can select a set of functions depending only
on a homology basis of Ω in a natural way so that they form a
basis for <^{dK) modulo R

When X is the complex plane, Theorem 1.1 has already been
established by Ahern and Sarason in [2] and Glicksberg in [5].
Walsh [9] already proved in this case that log\z — α j , l^i<ίn

generate ^(dK) modulo Re^(K) where at are selected one each
from the connected components of X—K. He also saw that they
need not form a basis as in the case of the crescent moon.

The precise determination of which logarithmic terms are neces-
sary was first given in [2] and later by Glicksberg in [5] by another
method. In the case of the plane, we prove these theorems in a
separate note without recourse to the techniques of uniform algebras.

2* Topological preliminaries• We need some results that are
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purely topological and we give proofs where we can not give a
good reference.

THEOREM 2.1. Let U be an open subset of an open Riemann
surface Y such that Y — U has only finitely many connected com-
ponents each of which is noncompact. Then the canonical homomor-
phism i: HiiU)-> H^Y) is injective where Hx is the first homology
group functor.

Proof. Let K be a triangulation of Y and K{n) denote the nth
barycentric subdivision of K and let L{n) denote the subcomplex
made up of all those 2-simplices of K{n) that are contained in U.

Let v Hx{L{m>)) —> HX{Y) be the natural homomorphism. It is
enough to prove that in is injective for all n since H^U) is the
direct limit of H^L™). Writing the homology exact sequence

Ht(Y, L< >) > fζ(Z,< >) > fli(Γ)

we see that it is enough to prove that H2(Y, L{n)) = 0. Since the
considerations are the same for all n, we shall drop the superscript
n. Let z — Σf=i nisi be any two cycle made up of simplices not in
L such that zeL. Let | z | denote the set of all points that belong
to at least one of the st i.e., the so-called support of z. We claim
that the topological boundary of \z\ is contained in | L \ = support
of L. Let P be a boundary point of \z\ and P&\L\. But Pe\dSi\
for some i. Let a be the 1-simplex of sέ to which P belongs. By
hypothesis, a $ L and since dz c L, this a must get cancelled by
another 1-simplex of 8S for some j Φ i. Thus if P is not a vertex
of 8i9 Pe interior of \z\. And if P is a vertex of sίf then star of
P must be part of \z\. In either case if Pί\L\, Pe interior of \z\.

Also the interior of | z | must contain points of Y — U for other-
wise I z I would be contained in U and hence zdL. Hence the
interior of \z\ must intersect some connected component C of Y—U.
Since CΓi\L\= φ and boundary of \z\a\L\, Ca\z\. But then C
is noncompact whereas \z\ is compact. A contradiction! •

Hence z = 0 ie H2(Y, L) = 0 .

LEMMA 2.2. HX{Q) is finitely generated.

Proof. We can suitably shrink the ambient Riemann surface
X to Xo so that K c XOf Xo — K has finitely many connected com-
ponents each of which is noncompact and further HX{XO) is a free
Abelian group of finite rank.

By the preceding theorem, HX{Q) is a subgroup of H^XQ) and
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hence is a free Abelian group of finite rank.
For complete details regarding barycentric subdivisions, homo-

logy groups etc. one can confer [3], Ch. I.

LEMMA 2.3. Let Y be a connected open Riemann surface and
assume Hλ{Y) is finitely generated. Then there exists a subregion
Ωo relatively compact and bounded by simple closed curves yίf γ2, ,
yk such that every component of Y — Ωo is an annulus.

Proof. Canonical form of Y (see [3], p. 94) is (let us say) with
p handles and q contours i.e., by cutting out 2p + q discs out of
the Riemann sphere and then attaching p handles by pairing off
2p of the holes, we get a homeomorph of Y.

Thus by taking off q ringed domains one around each hole, we
get a subregion Ωo such that every connected component of Y — Ωo

is an annulus.

DEFINITION 2.4. Let U be an open subset of a Riemann surface
X. A path at x in U is a Jordan arc entirely lying in U except
possibly at one endpoint which is x when xedΐl.

Two paths at x in U are said to be equivalent if and only if
given any neighborhood N of x, there exists an arc joining the two
paths and lying entirely in Nf) U. A point x is said to be a
multiple point of U if there exist two inequivalent paths at x in U.

LEMMA 2.5. Let K be a compact subset of an open connected
Riemann surface X such that X — K has only finitely many con-
nected components. Let Ω = K. The set of multiple points of Ω is
countable and given any multiple point x of Ω, there exists at most
countably many inequivalent paths at x in Ω.

Proof. Let xQe3Ω. Since X — K has only finitely many con-
nected components, there exists a closed parametric disc Δ with
center at x0 such that no connected component of X — K is com-
pletely contained in A.

Let φ: J—>C denote the coordinate mapping and C, the image
of Δ Π K by φ. C is compact and the complement of C is connected
since any connected component of X — K that intersects Δ would
have points on the rim of A. Thus any multiple point of Ω contained
in the interior of Δ is mapped into a multiple point of C and further
any two inequivalent paths at x in Ω are mapped to inequivalent
paths at φ{x) in C.

Just for this discussion alone, let us make the convention that
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capital letters denote paths and small letters their extremeties.
Thus xPy shall denote a path P with extremeties x, y and oriented
from x to y.

Now let xPxyu xP2y2 be two paths at x in C and x a multiple
point of C. Assume further that these two paths lie in the same
connected component U of C. We join these two paths by a path
yλQy2 completely contained in U. Then xPλyxQy2P2x is a Jordan
curve completely contained in U but for the point x. Certainly the
interior of this curve must be completely contained in C for other-
wise it would intersect the complement of C thus trapping a con-
nected component of the complement of C But complement of C
is connected and unbounded leading to a contradiction. Thus
xPxyγQy2P2x is the boundary of a Jordan domain contained in U.
But Jordan domains are locally arc-wise connected even at the
boundary (see Goluzin [6], p. 46). Hence xPxyλ and xP2y2 are equi-
valent paths at x in C.

This proves that two paths are inequivalent if and only if they
are contained in different connected components of C. Thus the
number of inequivalent paths at a point x does not exceed the
number of connected components of C and hence they are at most
countable.

Now let Ulf U2 be two connected components of C and let x, u
belong to dUxΓi dU2, xPxyu xP2y2 be paths at x in Ux and U2 respec-
tively and uQfo, uQ2z2 be paths at u in U1 and U2 respectively. Let
VιRιZ19 y2R2z2 be two paths lying entirely in Ux and U2 respectively.
Now interior of the Jordan curve xP^JR^Q^Q^zJΆ^yJP^x must trap
a component of the complement of C for otherwise it would be
completely contained in C and hence in C joining U1 and U2 which is
impossible. This means that given any multiple point x of C, we
can associate a pair of coonected components of C where the inequi-
valent paths to x in C come from and this association is one-to-one.
Since the number of connected components of C is at most countable,
we obtain that the set of multiple points of C is also at most
countable.

Since K can be covered by the interiors of a finite number of
parametric discs, the lemma is proved.

LEMMA 2.6. Let Δ denote the annulus δ < \z\ < 1 and φ\ Δ-*U
be a conformal isomorphism and U be a relatively compact subset
of a connected open Riemann surface X. Assume d U = C U D where
C and D are both compact and disjoint.

Let φ(\z\ = δ) denote the set of all points ζ in X for which
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there exists a sequence zne Δ, \ zn \ —> 3 as n —> oo and Φ(zn) —> ζ as
n —> co. By analogy, we can define Φ(\z\ = 1).

Then 0(|21 = 1), φ(\z\ = δ) are both connected and either ψ(\z\ = l) =
C, φ(\z\ = 3) = D or 0(|sI = 3) = C, 0(|21 = 1) = Jλ

Proof, Evidently 0(|z| = 3) is a closed set in X, Assume that
0(|«I = δ) is disconnected i.e., φ(\z\ = 3) — At U A2 where Ax, A2 are
mutually disjoint nonempty closed sets in X. Then there exist open
sets V19 F 2 such that Vi 3 Aif i = 1, 2 and F x Π F 2 = φ. We claim
that 0(5 < \z\ < r) c V1 U F 2 for all r sufficiently close to δ. If not,
there exists a sequence rn | δ and zn with | 3 Λ | = r Λ and 0(«Λ) g Fill F 2 .

This is impossible since on the one hand all limit points of
φ{zn) would belong to φ(\z\ — δ) and on the other hand should lie
outside V1 U F 2 which is an open set containing φ(\z\ = δ).

Since φ(δ < \z\ < r) is connected, the fact that φ(δ < \z\ < r) c
V1 U F 2 implies that 0(3 < | z \ < r) c F x or F 2 which means that
0(1»I = δ)aV1 or F 2. Since F, n F 2 = F 2 n Vi = 0, φ{\z\ = δ) n F 2 -
0 or 0(|«| = 3) Π Fi = 0. That is impossible. Hence φ(\z\ = 3) is
connected. Similarly φ(\z\ = 1) is connected.

Further any boundary point of U must belong either to 0(|s| = 3)
or φ(\z\ = 1). Let ξoedU and {ζj be a sequence of points in U
such that ζΛ —> ζ0 as ^ —> oo. Then if φ(zn) = ζΛ, ^M 6 zί, any limit
point ô of {zn} must belong to dΔ. For if not, 2Λfc —> z0 as jfc —> oo
and z0 e J and 0(«nfc) = ζnk ->ζ0 = 0(«o) as k-> oo. But 0(^o) is an
interior point of Z7 and ζ0 is a boundary point of U. A contradic-
tion. A similar reasoning would prove that φ(dΔ) czdU. Consequently
φ(dΔ) = dU.

This proves t h a t dU has a t most two connected components.
By hypothesis dU has a t least two connected components. Hence
C and D must be connected and φ(\z\ = 1), Φ(\z\ = δ) must be
disjoint.

Hence φ(\z\ = 1) = C and ( |« | = 3) = Z) or φ(\z\ = 1) = Z? and
0(1 s I = 3 ) = C.

LEMMA 2.7. Hypothesis and notation same as in the previous
lemma. There exists a Borel set Ea[Q, 2π] of length 2π such that
limr_n φ(reiθ), limr_a 0(reiίf) exΐsί for all θeE.

Proof, Narasimhan [8] proved that any open Riemann surface
can be imbedded in C3 as a closed sub-manifold. Hence there exist
three holomorphic functions ψi} i = 1, 2, 3 such that ψ(ζ) = (ψ\(ζ),
^(0> ^ ( 0 ) from X—> C3 is a one-one holomorphic map.

Since Ϊ7 is compact, ψ/U is bounded and hence ψ^φ is bounded
for i = 1, 2, 3. By Fatou's theorem (see [10] pp. 99-100) on radial
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limits, there exists a Borel set Ea[0, 2π] of length 2π such that
l i m ^ ^ o ^ r e ^ ) , lim.^ψ^φ{τeί0) exist for all θ e E, i = 1, 2, 3.

Let 0e2£, rΛ 11 and φ(rne
i0) -» ζ0 as n—>^. Then limΛ ..,«> α̂ o

0(rΛe
ί<?) = < (̂ζ0) = lim^α/r.o^r^) for ΐ = 1, 2, 3. Since α/r is 1 - 1 ,

this shows that ζ0 does not depend on the sequence {rn}. Hence
\imr>ιό{τeί0) exists. Similarly limr_>3 φ{reί0) exists for all θ e E.

LEMMA 2.8. Hypothesis same as in Lemma 2.6. Further assume
that X — U has only finitely many connected components. Then by
discarding a countable subset of E {E as in Lemma 2.7), we can
assume that θ —> l im^ <f>(re%0) and θ —> lim}. ^ φ(rei0) are both one-one
on E.

Proof. Let θ eE, Po denote the path φ(rei0), 1 - ε < r < 1, ε a
fixed small positive number; ζ0 = l i m ^ ψ(rei0).

Now if θ1 Φ θ2 and ζθl = ζ 2̂, then ζθι is a multiple point and
POl, Po2 are inequivalent (see [6], pp. 38-39). Thus ζθχ is a multiple
point of U. By Lemma 2.5, the set of multiple points is countable
and at any given multiple point, there can be at most countably
many inequivalent paths.

Thus given a θ0 e E, the set of all θ e E, θ φ 0O, ζθ = ζβ0 is
countable; further the set of all θ0 for which there exists a 0 Φ θ0

such that ζ0 = ζoo is also countable. Hence by discarding all such
β0 out of E, we obtain a new Borel set E of length 2π such that
θ —> l im^ φ(reiθ) is a 1 — 1 map. A similar reasoning applied as
γ —> o would prove the rest of the lemma.

3* Boundary measures and analytic differentials*

DEFINITION 3.1. Let U be an open subset of a connected open
Riemann surface X. An increasing sequence {Un} of open sets is
said to be a regular exhaustion of U if Un is a relatively compact
subset of Un+1 for all n; U»=i Un = U; dlln consists of finitely many
piecewise analytic Jordan curves and U — Un has no relatively
compact connected components in U.

REMARK. Existence of regular exhaustions can be proved by
triangulations (see [3], pp. 62-63).

DEFINITION 3.2. Let U be an open subset of X M"(U) denotes
the set of all holomorphic 1-forms ω for which there exists a regular

exhaustion {Un) of U such that I | ω | ^ c where c is independent

of n.
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DEFINITION 3.3. Let U be a relatively compact open subset of
an open connected Riemann surface X. Let ωz£ίf{U). A finite
Borel measure μ on dU is called a boundary measure of ω if there

exists a regular exhaustion Un of U such that I hω —> 1 M,« as

n —> oo for any continuous function h on U where 3 Un is positively
oriented with respect to Un.

THEOREM 3.4. (Bishop-Kadama, see [7]). Let K be a compact
subset of X such that X — K has only finitely many connected com-
ponents. Let K = Ω. Given any a) e <%f(Ω), there exists one and
only one boundary measure μω of a).

The mapping ω —> μω is a linear isomorphism between Sίfiβ)
and ^?(K) (see § 1 for the definition of

DEFINITION 3.5. Let U be an open subset of X. A point xedU
is said to be an accessible boundary point of U if and only if there
exists a path at x in U. Ace 3 U shall denote the set of all accessible
boundary point of U.

THEOREM 3.6. Let K be a compact subset of X and X — K have
only finitely many connected components. Let K=Ω. Let {Uifiel}
be the family of all connected components of Ω. By Lemma 2.2,
HX{Ω) is finitely generated and consequently H^ Ui) is finitely gener-
ated for all iel. By Lemma 2.3, there exists a relatively compact sub-
region Vi of Ui bounded by finitely many analytic Jordan curves such
that each component of Ui—Vi is an annulus. Let {Δih l^j^N(ί)}
denote the set of all connected components of Ui— V*. Let ω e SίfiΩ).

Then 0 ) ^ 6 ^ ( 4 ) . Let μi5 denote the boundary measure of
ij located on dAi5CidΩ. Then μijf μiΊ> are mutually singular for
)^(ί'ff) Further Σ < e I ΣH&SNW llΛ ll i s finite a n d ^ =

Before proceeding to the proof of the Theorem 3.6, we need
two lemmas.

LEMMA 3.7. Let Δ denote the annulus {z; δ < \z\ < 1} and ωe
J%^(Δ). Let a) = f(z)dz where f is holomorphic in Δ. Then there
exists a Borel measurable function f defined on dΔ such that

lim Pi/(re") - f(eίθ)\dθ = 0 and lim p | / ( r e " ) - f{δeίθ)dθ - 0 .
r->l-OJO r~><3+OJθ

Proof. Let μ denote the boundary measure μω of ω.
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ICI=iζ —
and

! ζ i=δζ —

so that /i is holomorphic in | z | < 1 and /2 is holomorphic in | z \ > δ
and / = Λ + /2 in Δ.

Let vu v2 be finite complex Borel measures defined by

d»2(Q = dμ(ζ)

Then for δ < \z\ < 1,

on ICI =

on I d =

f
J ζ - Z JlCNiJζ

= /i(2) -

2πί Jιcι=i ζ —

If f dμ(ζ')dζ
srΐJιc'i-.3ιcι-i ( ζ ' - ζ ) ( ζ -(ζ ' -Q(ζ-z)

since

ζ — Z

By analytic continuation, we get that

F u r t h e r for \z\ > 1,

since

5 |

= -2πi/(ζ' - z)

Therefore

/ 1 ( β

ζ — z

= 0 for | * | > 1 .

By F. and M. Riesz theorem ([4], for a very general form), we
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obtain that

P \f(reίθ) - f(rrei0) \ dθ > 0 a s r, r ' > 1 .
Jo

Now by a similar reasoning, we find that

^ = = / 2 ( s ) for |* | > δ

= 0 f or I z I < δ .

Applying an inversion and F and M. Riesz theorem, we obtain
that

\2π\f2(reiθ) - / 2 ( r ' O | dθ > 0 as r, r ' > δ .
Jo

This together with completeness of L\[0, 2π]) proves our lemma.

DEFINITION 3.8. Let φ:X-+ Y be a holomorphic map where X
and Y are Riemann surfaces. Then for any holomorphic 1-form ω
on Y, φ*ω denotes the holomorphic 1-form defined as follows: for
any peX and a coordinate function ζ in a neighborhood iV of
Φ(P), φ*ω = f(ζoφ)dζoφ where ω = f(ζ)dζ in a neighborhood of
ζoφ(p).

DEFINITION 3.9. Let X, Y be two measurable spaces and φ: X-»
7 be a measurable map. For any measure μ on X, φ*μ denotes
the measure defined by (Φ*μ)(S) = μ(Φ~1(S)) for any measurable
subset S of Y.

LEMMA 3.10. Let Δiά be as introduced in Theorem 3.6 and
φ: Δ —> Δiά be a conformal isomorphism where Δ = {z; δ < | z \ < 1}
and δ depends on ί, j .

Let B denote the set of all points z on dΔ for which lim^^o φ(rz)
or limr_>δ+0 φ(rz) exists and let us extend φ to B by these limits.
Let a) 6 ^^(Δίj). Then φ*ω e £%f(Δ) and if v is the boundary measure
of φ*Q), there exists a Borel subset Bo of B on which v is supported
and φ*(v) is the boundary measure of ω.

Proof. If {Z7J is a regular exhaustion of Δijf then {φ~λ(Un)} is
a regular exhaustion of Δ and further

\ω\.

Consequently by definition, ^ e ^ J ) , By Lemma 3.7, if φ*ω =
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f(z)dz; we can extend / as a Borel measurable function to Δ such
that

( l )

lim Γ I f{reiβ) - f{eiβ) \ dθ = 0 and
r-.i Jo

lim Γ \f(reiβ) - /(δeM)l<W = 0 .
r-+δ JO

In view of Lemma 2.8 there exists a Borel set £/c[0, 2π] of
measure 2π such that limr^ φ(reiθ), l i m ^ ψ(reiθ) exist for all θeE.
Let So denote the set {z; z — eίθ or δeίθ for some θ e 1?}. Obviously
Bo is a Borel set and φ can be extended by radial limits to Δ U Bo

as a Borel measurable function.
The above considerations imply that if h is any continuous

function on ΔiS.

lim \ h°φ(z)f(z)dz = liml hω and
/ o x r->l J | z | = r r-*l)φ(\z\=r)

lim I hoφ(z)f(z)dz = lim I feω
r->5 J |z!=r r->δ J^(k!=r)

exist and are respectively equal to

hoφ(eiθ)f(eiθ)deiθ and ( h(δeίθ)f(deiθ)dδeiθ

n l l JBf]\\δ

for any continuous function h on 9z/.
Let us define the boundary measure v on dΔ as follows: dv =

f(eiθ)deίθ on |z | = 1 and dv = -f(δeίθ)ddeίθ on |^| = δ. Because of
(1), v is the boundary measure of φ*ω and because of (2),

S fe^eίv = lim \ ha) — \
dΔ n-*oo }dVn Jdidj

where F Λ = φ({z; δ + 1/n < \z\ < 1 — 1/n}). Since {Vn} is a regular

exhaustion of Δijf by the Theorem 3.4 follows that φ*v is indeed
the boundary measure of ω on Δi5.

REMARK 3.11. Boundary measure of ω is supported on accδΛy
and any countable set is a null set for this measure.

Proof of Theorem 3.6. By Remark 3.11, it follows that μiS is
supported on a Borel set contained in ace dΔiό c ace 3 Ut and any
countable set has measure zero.

Now fixing i, ace dΔiά f] aec dΔir is countable for j Φ f thanks
to Lemma 2.5. Hence μih μiά, are mutually singular.

Let us assume i Φ V. The support of μi5 and support of μiΊ ,
are respectively contained in acc3ί7i and accdZ7/. By Lemma 2.5,

Π accdUi, is at most countable and by Remark 3.11 follows
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that fty, ft/y/ are mutually singular.
Let ft denote the boundary measure of ω restricted to Ut. We

shall now prove that ft = Σf^ί* fti The boundary of 4<y falls into
two parts, a Jordan curve 7<y contained in Ut and d£? Π dΔi3- which
of course are disjoint closed sets. Thus as in lemma 3.10, φ: {z; <5<
\z\ < l}-*Δi3- is a conformal isomorphism, by lemma 2.6 the limit
sets φ(\z\ = <5) and 0(|js| = 1) are disjoint and must coincide with
7i, and dJ2 Π 3Ji:; is some order. We can assume without loss of
generality that φ(\z\ = I) = dΩ ft dΔi3 . Let yijn denote the Jordan
curve φ(\z\ = 1 — I/ft) oriented positively with respect to φ(δ < \z\<
1 — I/ft). For any fixed ft and ΐ, ^ J i ^ ^ u ) bound a domain Z7in

contained in Ui and further for any continuous function h on Ω,

lim i hω — \hdμi3 because of Lemma 3.10.
«->oo jri3 n J

Hence

lim \ hω = Σ

i.e., ft = Σf=ί} fti This also proves that ft, ft/ are mutually singular
if i Φ if. Now we shall prove that Σ*er I! ft II < °°

Since α> e βί?(Ω), it follows that there exists a regular exhaus-
tion {Ωn} of β such that

S | ω I ̂  C where C does not depend on n .

Further for any h continuous onfi, Λα> -> \ hdμω as ft —> ©o.
JdΩn J

Let F b e a finite subset of / and let UF = UieF ί̂  Now from

the above considerations, we obtain that I \ω\ ^ C for all n

and by weak compactness of measures follows that by passing to a

subsequence if necessary that \ hω —> \hdμF as n —> °o where

jEip is the boundary measure of ω restricted to UF. Hence ||

hω — Σieip Σ f ^ \ Λα) —> Σi«

and {(JieF ίΛ»} is a regular exhaustion of UF, we see that Σie^ft

is also a boundary measure of ω/UF. By Theorem 3.4, Σtei?ft = iMί
Consequently ||Σ<β^ft|| ^ C for an arbitrary finite subset ί7 of

I and now by the fact that ft are mutually singular, we obtain
that Σiei II ft II ̂  C.

Now if μ' = Σiezft, we can prove that any function / mero-

morphic on X with poles off dif, I /d^ f = \fdμω. It is enough to

prove for a function with one pole. If the pole is not in Ω, it is

immediate that I fω = 0 and I fω = 0 for all i and ft. Hence
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I fdμ' = \fdμω = 0. Now if the pole is in some Ut, then I fω =

\ fω provided the pole is in Ωn Π Uin. Hence by going to the

limits, \fdμω = \fdμt and of course \fdμs = 0 for j Φ i.

Thus \fd(μ' — μJ = 0 for all functions meromorphic with poles

off dif. By a theorem of Kodama (see [7]), we obtain μf = μω.
Thus μ = Σ ei Λ = Σiβi Σ ί ^ /%•

COROLLARY 3.12. Lei Ui = Ki. Given fte^/f^) swd ί&αί
Σ IIΛII < °°> ^ e ^ Σ f t e ^ € { K ) . Further, μt are mutually singular.
Conversely given any μ e ̂ f(K), μ can be uniquely expressed as
Σ μt where μi e ̂ £(KΪ) and Σ IIΛII < °° •

Proof. By Theorem 3.6 /i< is supported on a Borel set contained
in ace 3 ^ and any countable set is a null set modulo μt. By Lemma
2.5, ace d Ut ΓΊ ace 3 Uά is a countable set and consequently, μt and μy

are mutually singular.

Since \fdμt = 0 for any / continuous on Kt and analytic in Ui9

\fdμt — 0 for any / continuous on K and analytic in Ω. Therefore

μ^^iKJii and Σ ^ e ^ ( ί O
For the converse, the fact that μ — Σ μ^ l*i € ̂ ^{K%) is a con-

sequence of Theorem 3.6. Uniqueness follows from mutual singu-
larity.

COROLLARY 3.13. Assume that m{K%) s HXU^Viel. Then
m(K) s JEPφ).

Proof. H1^) is finitely generated by Lemma 2.2. Hence
H\U%) = 0 but for finitely many i. The set of i for which H\Uτ)Φ
0, we shall denote by F.

Then H\Ω) =(BieFHχUi). On the other hand, given any μe
m(K) by Corollary 3.12, μ = Σϊejft, ^ e i l f ^ ) , ^ , ̂  are mutually
singular; which implies that μi is real for all i, i.e., μtem(Ki) for
every i and by our assumption above

μt = 0 f or i $ F .

Thus the natural mapping m(K) —>φί6jp w(ίΓ4) is an isomorphism.
Thus by our hypothesis,

H\Ω) = m{K) .

4* Harmonic 1-forms, real boundary measures*

LEMMA 4.1. Let ω be a holomorphic 1-form defined on an
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annulus D = {z; δ < \z\ < 1}. Assume that 3 a real measure μ on

\z\ ~ 1 such that for any continuous function h on D, \ hω—>

S ee J\z\=r

hdμ as r - » l —0. Then \\ωΛ*ω < oo and for any &ι-function h

defined on D, vanishing in a neighborhood of \z\ = δ and

Iί dhΛ*dh < oo 11 dhΛlmω = 0.
(For the definition of * ω, Im ω see Ahlfors-Sario [3] p. 271.)

Proof. Since ω is a holomorphic 1-form, there exists a holo-
morphic function g{z) on D such that ω = g{z)dz.

Let D denote the annulus δ < |^ | < 1/5, the double of D. Define
ώ a holomorphic 1-form on D in the following way. Define ώ =

for \z\<l and for |« | > 1,

= —gl-zr)—— We note that ώ is not defined on Izl = 1 .
V ^ / z2

ώ

By hypothesis, we obtain that there exists a constant C such that

\ \ω\ < C for r such that (1 + δ)/2 ^ r < 1.
J l s ! = r

i.e.,

Thus if g is defined as g(z) on \z\ < 1 and —g(l/z)l/z2 on | s | > l ,
# belongs L1 > 1 O C(JD). We shall now prove that dgydz = 0 in the sense
of distributions.

Let h be any C^-function with compact support in D. Then

([ Jh-g(z)dzΛdz = [[ dhΛg(z)dz = [[ dhΛώ
))7J dz JJ/> JJi>

= lim ( hω - ( - hg (-h-)-^-
ε-*0 J|«|=i_e Jl«l=l+e \ Z ' Z2

(by S t o k e ' s f o r m u l a a p p l i e d t o t h e a n n u l i i <? < ] z | < l — ε, l + ε <
z\ < IIδ)

= \hdμ + lim I hg i-^r-)—
J ε-0 J|2|=l+e \ Z ' Z

f f / 1 \_ _
= IM/ί — lim I h[-=^)g{z)dz

r r
= \ hdμ — \M/^ = 0 since μ is real .

Therefore we obtain that g can be defined suitably on \z\ = 1

so that # is holomorphic in all of D. Hence 11 ωΛ*ω<

co and consequently,
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11 <

(l + δ)/2< \z\ < 1.
Also for any real h, &1 on D and vanishing in a neighbor-

hood of \z\ = δ,

\ I dhΛω = I hω = \hdμ
JJD Jkl=i J

and so

Im 11 dhΛω — 11 dhΛ Im ω — 11 dhA Im ω = Im 1/wZμ = 0 .

Now given any h, ^ on D and vanishing in a neighborhood of
\z\ = δ, define hε(z) = h(zl(l+ε)). Then hε is ^ x on 5 for every ε > 0

and vanishes in a neighborhood of \z\ = δ and furthermore \\cZfeβJ4*

dfcε < oo and \ ιd(fe — hε)Λ*(dh — dfcε) —> 0 as s —• 0.

Hence, since we already know that 11 dhεΛ Im ά) = 0 for all ε
rr JJD

and I \ Im ωA*lm ω < oo 9 we can take the limit under the integral

sign and obtain that

ί ί dhΛ Im α> = 0 . •

LEMMA 4.2. Let ω be a holomorphic 1-form on D = {z; δ <

\z\ < 1} swcfe ίfeαί \\ coΛ*co < oo. Further assume that for any h,
J J D rr

cέ?1 on D and vanishing in a neighborhood of \z\~d and \\ dhΛ*

dh < oo, ί ί dhΛlmω = 0.
Then 3 a real measure μ on \z\ = 1 such that for any continu-

ous function h on D, \ hω -> \hdμ as r —> 1 — 0.

Proof. Let α> = g(z)dz for δ < | s | < 1 and ώ be defined as ω
on δ < «| < 1 and

By hypothesis, \\ ωΛ*ω < co. We shall now establish that
_ JJ3<|z!<l/3

dώ — 0 in the sense of distributions.
Let h be any ^ ^ f u n c t i o n with compact support in δ < \z\ <

1/δ. Then
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\\ dhΛώ = \\dhΛώ = lim \l dhΛώ + \\
JJδ<\z\<l/δ JJ r->l-θj jκ | 2 |<r J Jl/r

= (By Stoke's) lim fί &α> - ί hω)
r-»l-0 \}\z\=r Jlβl=l/r /

= lim(ί hω-\ m

= lim f[ hω - ( ft, f-4
r-»l-0 \JUI=r JUI=r \ Z

<!«Kl/ί

))
Z '' Z

— lim 1 hω — I /^(-^-

- lim f[ ffc(«) - fef-i-^Re ω + i( (W) + ̂ f-4-) Im
J|*|=Λ V Z // JUI=Λ

Since /̂ (̂ ) + λ(l/2) vanishes in a neighborhood of | z \ = δ and

11 dhΛ*dh < ^ , we have, by hypothesis,

ίί dyimίi) = 0 =

(By Stoke's)

lim I \ dhΛ Im α> = lim I /̂  Im ft) = 0 .
r-^1-0 J Jδ<!z! <r r^l-OJ|«!=r

Hence

ίί 3ftylώ - lim ( (Λ(S) - h (—)) Re
J Jδ<!z| <i/5 r-»i-o J ls !=r\ \ Z

- lim (ί d fλ(ίj) - fc f—))/l Re α> (By Stoke's) .
r-l-0 J h<\z\<r \ \ Z / /

Since fe(«) — Λ(l/2) 6 fl"2(-D) (here it denotes the Sobolev space) and
vanishes on 3 D, we find that

h(z) - h(l/z) 6 H2(D) (see Agmon [1], p. 131, Lemma 9.10). But

11 dhΛ Re ω = 0 for any ft, that is (^ ? 1 and has compact support in

D and hence for any h in H£(JD).

Therefore dώ = 0. Hence ώ is a holomorphic 1-form on <5<|z|<

1/δ which implies that \ I flf(») 11 dί51 is bounded as r—>1—0. That

means that ω defines a real boundary measure on \z\ = 1. •

THEOREM 4.3. Borrowing the notation of Corollary 3.12,
H\Ui) for every i.

Proof Let Γ(Ui) denote the set of all holomorphic 1-forms ω
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such that 11 ωΛ*ω < co and for any ^-function h on Ut such
re jjϋi cc

that \\dhΛ*dh < ©o, \\ehΛlmω = 0.
The fact that H\ U%) ^ Γ{ Ut) is well-known and can be found

in Ahlfors-Sario [2], p. 284-288. Thus we need only prove that
miKt) is Γ(U<).

Let 4 y (l <; j ^ iV(i)) be the annulii as introduced in Theorem
3.6. Now if ω is a holomorphic 1-form on Z7€ whose boundary
measure is real, then ω\Aiά e £έ?(AiS) and further its boundary measure
μiό on dUiΠdJij is real. We can apply now Lemma 4.1 to ω\Aiό

and obtain 11 ωΛ*a) < co and I \ dhΛ Im a) = 0 provided /̂  is a

^-function vanishing in a neighborhood of 3 ^ — 3 ^ . Thus using

partition of unity, we obtain that \\ &λ4*ω<oo and 11 dhΛImω =

0 for any h9 ^ on Ut and \\dhΛ*dh < <*>.

Now assume that a)eΓ(Ui). Now (d\Ai5 satisfies the following

conditions: \ I ωΛ*ω < oo and any ^^function h vanishing in a

neighborhood of dJ^ — dUt and \\ dhΛ*dh <oo 1 ^/f Im α) = 0.

This is easily obtained by defining h%= 0 on £7* — Δti. Now we can
apply Lemma 4.2 to obtain that the boundary measure μiό of ω
on dAijΓϊdlli is real. Since boundary measure μt of ω is *Σιf=i fas
by Theorem 3.6, /*< is real. •

THEOREM 4.4. m(K) = ff 1^).

Proof, It is immediate from Corollary 3.13 and Theorem 4.3.

5. A natural basis for 9f(diΓ)/Re &(K) (Theorem 1*2), We
may assume without loss of generality that X is a noncompact
surface with analytic boundary and K a compact subset of X such
that X — K has only finitely many connected components none of
which is relatively compact. By Theorem 2.1, the canonical homo-
morphism HX(K) —»Hλ(X) is injective.

Let Ji(l <; ί <; k) be a homology basis for iΓ and 7^1 ^i^k + l)
be a homology basis for X. Let θ denote the space of all harmonic
functions h on X such that \\dhΛ*dh < ©o.

We contend that given any Σ affi ^ 0, α̂  real, there exists
heQ such that

1 *dh Φ 0. Assume the contrary .

Then there exists a harmonic differential σ with compact support
(see Ahlfors-Sario [3], p. 288) such that
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* dh — \\σΛ*dh

and so

\σΛ*dh = OVfeeP)\\<

i.e. *#" also has compact support. But σ — i*<7 is a holomorphic
1-form and it can not have compact support unless σ = i*σ = 0
which implies Σ atji is homologous to zero.

This proves that the mapping ψ: Q -» Rk+ι given by ψ(h) —

G *dh, •••, I *dh) is a surjection. Now let us pick ^ 6 0 such

that I *dht = 1 and \ * cife, = 0 for j Φ i.

We claim now that hl9h2-,hk form a basis of <g*(dK) modulo

Assume Σ α A e E e ^ ί Γ ) . Then there exists a function
/ holomorphic in a neighborhood of 2? such that | X α ^ — Re /1 < ε
on dK.

Since T* lie in iέ" for 1 ^ ΐ ^ k, and ί | Σ α , * ^ - Im d/| < Ce

where C depends only on yjm

Since I df=0 and \ * dht = δu (Kronecker δ), we obtain that

\at\ < Ce for 1 ^ ί ^ &. Since this is true for all ε > 0, α̂  = Ovi.

Thus {fejî î fc are linearly independent modulo Re &(K) and because

dim <^(dK)/Re &(K) = fc, we have that {/̂ K *̂ is a basis for

Re

.Nofe: Theorems 1.1 and 1.2 for plane domains are published by
us in the Journal of Approximation Theory, Vol. 30, No. 1, 1980
under the title "The Rational Defect of a Plane Domain."
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