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UNIVERSAL CONNECTIONS: THE LOCAL PROBLEM

ROGER SCHLAFLY

It is well known that the canonical connection on the
Stiefel bundle over the Grassman manifold is universal in a
certain range of dimensions. We give some local results
specifying necessary and sufficient conditions for the connec-
tion to be universal for particular dimensions.

1. Introduction. In this paper we consider connections on a
principal G-bundle over a manifold M of dimension m, where G is
O(n), U(n), or Sp(n). The universal examples are the bundles

O(N)/O(N — n) —> O(N)/O(n) X O(N — n)
UWN)/UN — n)— UN)/U(n) X UN — n)
Sp(N)/Sp(N — m) — Sp(N)/Sp(n) X Sp(N — n)

with their canonical connections. (See §2 for the definitions.) These
are the Stiefel and Grassman manifolds for B, C, and H. It is a
theorem of Narasimhan and Ramanan that the canonical connection
is universal in the sense that any connection on a principal G-bundle
over M™ is induced by a map into the appropriate Grassman mani-
fold N is sufficiently large. According to [2], [4], and §8, it suffices
to take

N=2n(m + D@mnt +1)  or —;—[('n + m) + T + m) + 10]

for O(n),
N =z n(m + D)@2mn® + 1)
for U(n), and
N = n(m + L)(dmn* 4+ 2mn + 1)
for Sp(n).

These inequalities are not sharp. The situation is analogous to
the problem of finding isometric imbeddings of Riemannian manifold
into Euclidean space. In that case, global results are available, but
they are not sharp with respect to dimension. The only sharp results
date back to L. Schlafli [3] who found the least dimensional Euclidean
space for the local isometric imbeddability of a real-analytic Riemannian
manifold. This was made more rigorous by M. Janet, C. Burstin,
and E. Cartan. (See [5] for an account of this theorem.)

The principal result of this paper is to show how E. Cartan’s
theory of differential systems can be used to get local existence
theorems for connection preserving maps into the appropriate Grass-
manian. These results are sharp with respect to dimension.
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I would like to thank my advisor, I. M. Singer, for suggesting
this problem to me. I am also grateful to S. S. Chern for explaining
differential systems. Finally, I am indebted to Uncle Ludwig for
inspiration.

2. Definition of the universal connection. Let F be R, C,
or H. The Stiefel manifold S is the set of N-by-N matrices P over
F such that P*P=1. For PeS, let

W, = im PP*

so PP* is the projection from F” onto W,. The map P+ W, gives
a fibration of S over the Grassman manifold

{W < F¥: W is a subspace of dimension n} .

It is a principal bundle with the obvious action of U(n, F') (i.e., O(n),

U(n), or Sp(n)). It has a canonical connection defined as follows:

the horizontal space at P is hom, (W, W;) where T,S is identified

with the subspace of N-by-N matrices A such that A + A* = 0.
The connection one-form is given by

w(A) = P*AP, AeT,S.
The curvature is
®(A, B) = —P*[A, B]P + [P*AP, P*BP], A,BeT,S.
Let o be the point
1

. O
o .
1
in S. The horizontal vectors at o can be indentified with (N — »)-
tuples of vectors in F™ as follows: (a,, -+, ay_,)€F™ x -« X F"_is
identified with
0 a, - ay_,

The curvature form is
@((aly tt a’N—n)y (bly ° ‘7 bN—n)) = a’l /\ bJ. + M + a’N—n /\ bN—'n

where
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aAb=ab*—b*a, a,beF"
so @ A b is an n-by-n matrix.
3. Cartan’s method. Suppose we have a real-analytic connec-
tion on a principal U(n, F')-bundle over R™ With respect to a

moving frame, the connection is given by a skew-hermitian matrix
® = (w,;) of one-forms on R™. The curvature is

RQ=W)=do+oNo.
We want to find a map
f:R™— UN, F)JUN — n, F")
such that in a neighbor hood of oc R™,
® = f*y.

The graph of f will be a submanifold of R™ x UN, F)/UN — n, F')
containing (0, 0), having dimension m, and transverse to U(N,
F)/JUWN — n, F). The one-forms

71'{“(0,-]--—7'[.';(0”, 1§i,j§’l’b

vanish on this submanifold, where =, and =, are the obvious projec-
tions. Furthermore, our given connection may be obtained from the
universal connection if and only if we can find a submanifold with
these properties.

Let _# be the ideal of differential forms generated by

TE®; — Ty, 151, 5=n
and

EfQi,-—TCf@H, 1§7:,j§’n/.

LemMMA 3.1. (a) 7 s closed under the exterior derivative.
(b) If the forms wiw;; — wFp;; vanish on a submanifold, then
all of -7 does.

Proof. (a) We have, by definition,
.Q,;j = d(l)ij + ; a)ik /\ wkj
;= dopi; + % Vo N\ Prj »

SO
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d(mfw;; — Ti;) = w¥dw,; — TFdap;
= T (@i — 3, 0 A Oy) — T (Pis — 3 pu A ras)
=2, — n;“@ﬁ—g TFEW 4 N\ (TF W5 — TFAr;)
- Zk] (TF Wy, — TFApa) N\ T
Also, the Bianchi identities are
a9, + Ek]wi,,/\.Qk,- —~2uNw; =0

ao,; + %’!ﬁ‘ik/\@kj— Qi Ni; =0,
SO

d(mfQ2;; — n¥d,;)
= ﬂ'l*dngij — ﬂ;d@ii
= %, Qu N\ Wy — Dy \ 2y

— 7 Zk Do A\ Yii — Yo N\ Dy
= % (7¥ 2y — TXDPy) \ T Wy; + % TF Dy N\ (W5 — T y;)
— SR A @ — T00) — 5 (W0, — ) AT

It follows easily that d_7 c .~
(b) Let f be the inclusion map of a submanifold. If

fratw; — i) =0, 1=4,j=mn,
then
fr@EQy; — wfyy) = frad@fwy; — wiy;)
= d[f*(mfw;; — ﬂgﬁb‘ﬁ)]
=0. O

Thus _# is a differential system and our problem is equivalent
to finding an integral submanifold for .7~ The Cartan-Kahler theo-
rem gives a sufficient condition for such a submanifold to exist (see
[1] or [5] for modern treatment). For the rest of this paper we
assume that all connections are real-analytic.

Let e, ---, ¢, be the standard basis for R™. It is not hard to
show that for N sufficiently large, every

Aec AA(R™ QR uln, F)
is of the form

1
3.2) A=

N—n

S SeAe) @ (@t Aah)

i,5=1 k=1

for some a*ec F”. Let N,, be the least such integer N.
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We now discuss the problem of finding the least N such that
every connection on a U(n, F')-bundle over R™ is obtained from a map

f:R™— U(N, F)JUN — n, F) .

A necessary condition is that N = N,,, because if A is the value of
f*® at some point, then A satisfies equation (3.2) where (ai, -+, ai' ")
corresponds to the horizontal part of f,(e;). Conversely, at least in
the generic case, the Cartan-Kahler theorem may be used to show
that we may actually take N = N,,. In the following four sections,
this procedure is worked out for specific examples.

4, O(n)-Bundles over R

THEOREM 4.1. Ewvery O(n)-bundle over R* is locally obtained from
a map
f: R*—— O(N)/ON — n)

iof and only if N = (3n — 1)/2.

Proof. Suppose n is 2k or 2k+ 1, and N=n+%k so N=
(3n — 1)/2. We are going to apply the Cartan-Kahler theorem, so
the reader is referred to [1] or [5] for the relevant definitions.

Each point is a regular integral element, as its polar space always
has dimension two.

Choose a,, +--, @y, b, -+, b, in R™ such that

e, e) =a, Nb,+ -+ +a,A\b, .

That we can do this follows from the normal form theorem for skew-
symmetric bilinear forms. Furthermore, we can arrange a,, -:-, @;
to be linearly independent.

Let Y, Y,e T O(n + k)/O(k) be the vectors with vertical parts
w(e,), w(e,) (resp.) and horizontal parts (a,, - -, @), (b, -+ -, b,) (resp.).
The polar space for (e, Y)) is

&(e, Y1) = {(X, YV): 0(X) = 4(Y), e, X) = &(Y,, Y)} .

It is not hard to see that this has constant dimension &k + 2 +
k(k — 1)/2, so (e, Y,) is a regular integral element.

Thus we can now apply the Cartan-Kahler theorem to get an
integral submanifold tangent to (e, Y,) and (e, Y,). The existence
of f follows. ™

5. SU(2) and U(2) bundles over R.

LEMMA 5.1. Suppose Mecu(2) has eigenvalues Mi, Mt with A, <
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Ae. Then there exist a,be C* such that a + 0 and
(5.2) M=aAb

if and only if M = 0 = N\,

Proof. Suppose that (5.2) holds for some a,beC®. We can as-
sume that |a| = 1. Choose u € U(2) such that

(]

<(¥—|—1:B>
. —'Il;b.
7+’L3

Define a, 3, v, 6€ R by

Then
uMu* = u(a A b)u*
= ua A\ ub

NONGe
(a5

__( 0 —-a—i,@)
S \a—ig  —2id

has eigenvalues )4 and A\, so

M=—0— VAT G+
M=—0+1VF G+ .

It follows that A, £ 0 = ..
Convesely, if A, < 0 <\, then we can find «, 8, 6 € R such that

(5.3) holds. Therefore

=l o) (757 e

for some u e U(2), and hence

=Y a5, g

(5.3)

1 10

Now suppose we have a connection @ on a U(2)-bundle over R?,
with curvature 2. Let M7, M7 (O = \,) be the eigenvalues of 2(e,, e,).
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THEOREM 5.4. On a meighborhood V of 0¢€ R* the conmection is
obtained from a map

[ V—U®)/U@2) x U?2) .

In order for there to exist a meighborhood V of o€ R* such that the
given conmection is obtained from a map

g: V—U@B)/U2) x UQ)

it is necessary and suficient that there exist a neighborhood of o € R?
such that \, £ 0 £ N\,

Proof. Suppose

i 0
*Q = .
u (el) eﬁ)u ( 0 )\12?:)
If we let
1 0
a=1u ’ = ’
. p u<1
b= —%‘—Mia, d = ——;—7\,2?30 ,

then a and ¢ are linearly independent and
Qe,e)=aNb+cAd.

Let Y, Y.e T,U(4)/U(2) be the vectors with vertical parts w(e,), w(e,)
(resp.) and horizontal parts (a, ¢), (b, d) (resp.). Then, as in the proof
of Theorem 4.1,

(0’ 0) < (ely Yl) < {(61; Y.l); (62’ YZ)}

is a chain of ordinary integral elements satisfying the hypothesis of
the Cartan-Kdhler theorem. Hence an appropriate integral submani-
fold exists.

The second part of Theorem 5.4 follows similarly, given Lemma

5.1. O

COROLLARY 5.5. FEwvery connection on a SU(2)-bundle over R?
comes locally from a map

g: R*— UB)/U2) x UQ).
Conmnections on U(1)-bundles over R* come locally from a map

h: R — U(2)/U(1) x UQ).

6. 0(2) and O(3)-bundles over R’. Let ®w be a connection on
an O(2)-bundle over R?, with curvature 2.
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THEOREM 6.1. Suppose 2, = 0. Then there exists a neighborhood
V of 0 such that w is induced by a map

[ V——0(3)/02) x 0Q1) .

Proof. Let
0 iy
ae,er=( o )

—a“- 0

where we have chosen our basis ¢, ¢, ¢, for R® so that a, # 0. Let

-l
(2

/
/

< — Qg am)
a, = .

Qs

Then we have
Qe e;) = a; Na; .

Let Y, e T,0(8)/O(1) have vertical part w(e;) and horizontal part a,.
Since a, and a, are linearly independent, we have a chain of ordinary
integral elements:

0,0) < (e, Y) < {(ey, 1)), (e, Y,)}
< {(ely Yl); (929 YZ); (33, Y3)} .

Thus the Cartan-Kdhler theorem applies. O

Define T: R® — 0(3) by

x 0 z —v
T(y) = (—z 0 x) ,
P2 y —x 0

aANb=T(@xb), abecR

so

where a X b is the usual cross product on R°.

LEMMA 6.2. Supposeb,, b, b, € R® are linearly independent. Then
there exist vectors a,, a, a, in R® such that
a; X a, = b,
(6.8) a, X a; = b,

la, X a, = b,
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if and only if det (b, by, b;) > 0. Inthis case, a,, a,, a;, must be linearly
independent.

Proof. Suppose (6.3) holds. Let u,, u,, u; € R* be the unique (up
to sign) unit vectors such that u, is perpendicular to b, and b, u, is
perpendicular to b, and b,, and wu, is perpendicular to b, and b,. Then
there exist unique real numbers a,, a,, @;, B, B:, B: so that

a, = U, b, = By X Us
A, = AU, b, = Bty X U,
a; = a3%3 b3 = B;.;ul X YUy .

Equation (6.3) now reduces to

a0, = B3y
o0, = B,
an = (3, .

These equations imply

Baf3:/B: = i
BSBI/BZ = a%
6162/63 = a:zs ’

which can be solved if and only if 8,8,8, > 0. But this holds if and
only if det (b,, b,, b,) > 0, since

det (by, by, b)) = B1B:Bsldet (u,, us, us)]* . O

THEOREM 6.4. Suppose that @ is a connection on an O(3)-bundle
over R?, with curvature 2, and that

v = det (T'e,, e5), T~'2es, e,), T~2e,, €,)) # 0 .
Then on a neighborhood V of 0 in R®, @ is induced from a map
F:V—0()/02) .

In order for there to exist a neighborhood W of 0 in R® such
that @ is induced by a map

g: W— 04)/0Q) ,

it is necessary and sufficient that v > 0.

Proof. To find g, it is necessary to find vectors a, a, a, in R®
such that

Q,e) =a,Na;, 114,73
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or equivalently,
T-'Q2,e)=a,xa;, 1=175=3.

By Lemma 6.2, this requires that v be positive. If v is positive,
then a,, a,, @, exist, so we can apply Cartan-Kihler as before. The
linear independence of a,, a,, a; guarantees that the resulting integral
element be ordinary.

If v is negative, we need to write the curvature at 0 as

Qe e;) =a, Na; + b, A\Nb; .
Let
¢, = T7'Q(e,, ¢,)
c, = T7'Q(e,, e,)
c; = T7'Qey, e,) ,
so we want to solve
€, = @y X a3 + by, X by
(6.5) = a3 X a; + by X b,
¢, =a, X a,+ b, X0,

given that det(c, ¢, ¢;) < 0. Let b, =0 and let a, be the unique
(up to sign) unit vector perpendicular to ¢, and ¢,. Let a, a, be
vectors satisfying

C = Ay X G

=0, X a, .
By Lemma 6.2, ¢, # a, X a,, so choose b, and b, with
(6.6) b, X by =¢, — a, X a, .

Thus we can solve (6.5).

I claim that we can arrange that

(i) @, by, b, are linearly independent;

(ii) if a, = ra, + sb, + tb, then s + 7t == 0.

There is only one line perpendicular to ¢, and ¢;, and there exists
vector v along that line such that ¢, = a, X v. Redefine a, as v + a,,
S0 ¢ = @y X a,. Since a, #* v, a, is not perpendicular to ¢, From
(6.6) and the fact that a, is perpendicular to a, X a,, it follows that
a, is not perpendicular to b, x b,. We know that b, and b, are linearly
independent because b, X b, = 0. If a, were a linear combination of
b, and b,, then a, would be perpendicular to b, x b,, a contradiction.
Part (i) of the claim follows.

Similarly, we can arrange to have a,, b, b, linearly independent.
Suppose that

a, = ra, + sb, + tb, .
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Then 7, s, and ¢ are unique and 7 = 0. Part (ii) of the claim follows
if s+7rt=+0.

Otherwise, assume that s + ¢ = 0. Replace b, with b; = b, + &b,
for sufficiently small ¢ > 0. Then (6.5) is still satisfied, and so is
part (i) of the claim. Then

a, = ra, + sb, + (& — €)b,

is the unique relation of its type. This completes the proof of part
(i) of the claim since

s+rt—¢e) = —re+#0.

Define Y, e T,0(5)/0(2) to have vertical part w(e;) and horizontal
part (a,;, b;). The existence of f now follows once we show that

{(ely Yl); (62, YZ); (63; YS)}

is an ordinary integral element. It is, by definition, an integral
element.

As before, the point (0, 0) is regular. To show that (e, Y)) is
regular,we must show that

(d,dYeRa, x d+b xd =0}

has the least dimension possible, namely three. This happens precisely
when a, and b, are linearly independent. But we know this to be
the case by part (i) of the claim.

Finally, we must show that

{(ely Yl); (eZ) Y2)}
is regular. This means that if

(6.7a) a, X d+b xd =0
(6.7b) a, X d+b,xd =0

for some d, d’ € R’ then d =d' = 0.

Suppose that (d, d’) is a nontrivial solution to (6.7). If d' =0,
then d would be a multiple of a, and of a,, implying that a, and a,
are linearly dependent. But then ¢, and ¢, would be linearly dependent,
a contradiction. Thus d’ = 0. Similarly, d = 0.

It follows from part (i) of the claim that there exists a unique
line I through the (a,, b,)-plane and the (a,, b,)-plane. The general
solution to (6.7a) is

d = a,a, + v:b,

6.8) ,
d = ,81b1 + 7ma,
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and the general solution to (6.7b) is:

d= a,a, + 72b2

6.9) ,
d = B, + T, .

Hence d and d’ are along [, so for some nonzero 6, d = éd. From

(6.7),
(@, + 0b) X d =0

(a2+3b2) X d=0.
Hence for some pteR,

a, + 0b, = p(a, + 0b,) .
This gives

a, = pa, + péb, — ob, ,
which contradicts part (ii) of the claim. Thus {(e, Y)), (¢, Y,)} is a
regular integral element and the hypotheses of the Cartan-Kahler
theorem are satisfied. D

7. O(2)-bundles over R:. Let @, be the 2-form on 0O(3)/0(1)

such that <_(1) (1))@0 is the curvature of the canonical connection on

the O(2)-bundle
0(3)/0(1) —> 0(3)/0(2) x O(1) .
Since dim 0(3)/0(1) =38, &, A ®, = 0. Hence if (_(1) (1))90 is the cur-
vature of the connection on the O(2)-bundle induced by a map
f:R*—— 0(3)/0(2) x 0(1)
then 2, A 2, = 0.
THEOREM 7.1. Suppose we are given a connection @ on an O(2)-

bundle over R* with curvature Q = <_(1) %)Qo. Assume that 2, # 0.
Then locally the connection is imduced by a map

f: R*— 0(3)/0(2) x O(1)
if and only if 2,2, = 0.

Proof. Necessity of the condition 2, A 2, = 0 has already been
shown. We now assume that 2, A 2, = 0. Choose coordinates with
24(e, e,) 0. Let a,; = 2e, e;) and

<1> ( 0 > <—a23/a12> ("'au/an)
a, = ’ Ay = ’ Az = ’ ay = .
0 Q! Qs ay
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Since
0 =092 A 2 = (@0t + 0, — oa,)dvel,

it follows that
Qe,e) =a,Na;.

Let Y,e TO(3)/O(1) have vertical part w(e,) and horizontal part a,.
Using a,, # 0, it is easy to show that

{(ely Yl)’ (92’ Y2)) (63’ Ys), (64, Y4)}

is an ordinary integral element, so we can apply the Cartan-Kahler
theorem to complete the proof. O

THEOREM 7.2. IfQ, N\ 2, # 0then locally the connection is induced

by a map
FiR*— 04)/0(2) X 0(2) .

Proof. Let
=g w=lo) @=(T0) =y
1 0 ? 2 a12 H 3 a13 ? 4 0
yy Xy, [4 2% 0
b‘—<0>’ 2“(0>’ b“‘“(O)’ b‘“(l)'

Then
e, e;) =a,Na; +b,A\b; .

Let Y, have vertical part w(e;) and horizontal part (a, b,). We can
thus apply the Cartan-Kahler theorem to the integral element

{(e,, Y)), (e, Y)), (€5, Yo), (€, Y1)}

once we show it is ordinary. The least trivial step is to show that

the matrix
0 1 0 ag.

— Q& 0 0 Uy
—0; —ula, 0 ay

has maximal rank. But this is equivalent to
00y, + Q0 — Aty # 0
which is equivalent to the hypothesis
QN2+ 0. ]

8. The quaternionic Grassmanian. We only discuss global
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results. In [2], Narasimhan and Ramanan show that the canonical
connection on the cannonical bundle over the real and complex
Grassman manifolds is universal. The following theorem shows that
their argument extends to the gquaternionic case.

THEOREM 8.1. If
N = n(m + 1)(dmn® + 2mn + 1)

then every commnection on a principal Sp(n)-bundle over M™ is induced
by some map

fi: M™— Sp(N)/Sp(n) X Sp(N — n) .

Proof. As in [2], a device using partitions of unity reduces the
theorem to the following lemma. O

LEMMA 8.2. Let a be a one-form on B™ = {x € R™: |z| £ 1} with
values in sp(n). Then ther exist n-by-n quaternionic matrixz valued

Sunctions ¢, -, Gunniomnss 00 B™ such that
an g = 1
and
ZL ¢?‘d¢l = .

Proof. Let {f,} and {f.} be sets of complex n-by-n matrices such
that:

(a) Each f, and £, is positive definite.

(b) Each f, and f, has norm one under the usual operator norm.

(e) {f.} is a basis over R for the real self-adjoint matrices.

(d) {f,} together with {f.} form a basis over R for the complex
n-by-n self-adjoint matrices.
Let g, (resp. §,) be the unique positive square root of f, (resp. f.).
We imbed C into H in the usual way, i.e., C=R + tR and H =
R + iR + jR + ER. «a can be written in the form

a =i a.fdz, + i 38, dv, + 50, A, + k3 ¢, f,de,

where the functions a,,, @, b,, ¢,, are real. Let A be a constant
larger than the absolute values of these functions. Let T be the
square root of Amn(2n + 1).

One can check that

B n(Zn +1) 2 'n(2n + 1) YRR

is a nonnegative self-adjoint matrix over C, so we can let & be its
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nonnegative square root. Let {4} be the functions:

1 JA + a”e“wsg , 1 \/A ra —‘LT:&ng ,

;\/ g ; \/A g e
1A by,

1JA+b
1\/A+crselc7fc,ggr’ 1\/A 'rse—/‘r-"’sg h.

rseszsgr

-

raeﬂxsg

-

It is easily checked that these functions have the required prop-
ertise. |
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