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A GEOMETRIC CHARACTERIZATION OF »TH
ORDER CONVEX FUNCTIONS

ANTONIO GRANATA

A new geometric characterization is presented for a
function convex of order n on an open interval, distinct
from the whole of R. We shall prove that if /: (a, b)~^R
with b < + oo, if a is an arbitrarily fixed number, a ^ 6,
and if F(x) denotes the ordinate of the point of intersection
in the x, y-plsme between the vertical line x = a and the
osculating parabola of order n to the graph of / at the
point (x, /(#)), then / is convex of order n on {a, b) iff F is
increasing thereon.

l Introduction* Let / be a real-valued convex function <yi
the interval (α, 6) where a ^ o: it is stated in [1; p. I. 51, Exercise
7], and is indeed elementary to prove, that the function F(x) = f(x) —
xfuix) is decreasing on (α, 6), fή denoting the right derivative of /.
F(x) is none other than the "ordinate at the origin" of the right
tangent line to the graph of / at the point (x, f(x)). Besides proving
the converse of this proposition in this paper we shall extend the
result to nth order convex functions, the role of the tangent line
being played by the osculating parabola of order n. The result we
present provides a meaningful geometric characterization of such a
class of functions (Theorem 2.1 below).

The notion of higher-order convexity is classical: its systematic
study essentially began with a paper by Popoviciu [4] and was con-
tinued in many other works by the same author. The entire theory
is surveyed in his monograph [5]. Other properties can be found in
books [2; Chp. 4 §3 and Chp. 3 §2] and [3; Chp. XI] in the context
of generalized convex functions.

Many characterizations of nth order convex functions can be
obtained from these references; in order to establish our main result
we shall only need a few of such characterizations and shall state
them here for the sake of convenience.

DEFINITION. A function / : (α, b)-*R, — <̂  ^ α < 6 ^ + °°, is said
to be convex of order n(neN) on the open interval (a, b) if for
all choices of {x^tio satisfying a<xo<xλ< <xn+1 < b the inequality
below holds if in (1.1) the strict sign always prevails then / is
said to be strictly convex. For n = 1 we have the usual convex
functions.
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THEOREM 1.1. For f: (a,b) -> R the following are equivalent
properties:

( 1 ) f is [strictly] convex of order n on (a, b);
( 2 ) feCn~~\a, b) and there exists a denumerable set Na(a,b)

such that f[n)(x) exists and is [strictly] increasing on (a, b)\N;
( 3) f e Cn~\a, b) and f{n~ι\x) has a right derivative f^] which

is right-continuous and [strictly] increasing on (a, b).

Proof. This theorem easily follows from some known char-
acterizations of nth order convex functions but, since the present
version is not explicitly stated in the literature, we give a sketch
of its proof. The whole proof is based on the fact that / is
[strictly] convex of order n on (α, b) iff / e Cn~\a, b) and f{n~ι) is
[strictly] convex of order 1 on (a, b): see [4; p. 41] or [3; Th. 2.1,
p. 386].

(1) <=> (2). This is explicitly stated for n = 1 in [1; Prop. 8, p.
I. 38] and follows for n ^ 2 from the case n = 1 and the above
remark.

(1)«(3). This is a particular case of Th. 2.1 in [3; p. 386] for
nonstrict convexity when the condition that f{n~ι\x) has a left-
continuous left derivative on (α, 6) is added.

Now let n = 1 and let / be a usual [strict] convex function on
(α, b): the implication (1) => (3) is classical: see [1; Prop. 6 and Cor. 2,
pp. I. 36-1. 37]. For the converse notice that if feC°(a,b) and
f'R is merely supposed to exist and to be increasing on (a, b) then
there exists a denumerable set N c (a, b) such that fR is continuous
on (α, b)\N. Hence / ' exists on (a, b)\N and is obviously [strictly]
increasing thereon: i.e., (3)=>(2). For n ^ 2 one combines the case
n = 1 and the initial remark.

2* The main result* Let / be (n — 1) times differentiate on
(α, b) and let there exist the right derivative of f{n~ι) at some point

f , / ί
The right osculating parabola of order n to the graph of / at

the point (£, /(£)) is defined as the curve whose equation in the plane
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referred to rectangular cartesian coordinates x, y is

y = /(£) + -Qfhx - ξ) + + Λ~"if,
(a?
 ~ ̂^

1 (n — 1)
( 2 Λ )

If a is a fixed number, the quantity

+
(2.2)

represents the ordinate of the point of intersection between the
vertical line x = a and the curve (2.1). We shall prove the following
result which stresses the connection between the convexity character
of a function / and the monotonicity character of the associated
function F.

THEOREM 2.1. Let (α, b) be an open interval distinct from the
whole of R, n an integer (n ;> 1) and a an arbitrarily fixed number
outside (α, 6). Let f e Cn~\af b) and suppose that f{n~is> is absolutely
continuous on every compact subinterval of (a, b) and that it has a
right derivative /iw) which is right-continuous on (a, 6). Then the
following are equivalent properties:

(1) f is [strictly] convex of order n on (a, b);
(2) ( — l)nF is [strictly] increasing on {a, b) {in the case a ^ a);
(3) F is [strictly] increasing on (α, δ) (in the case a ^ 6).

Proof. If / is assumed to be (n + 1) times differentiable on
(a, b) the assertion follows trivially from Th. 1.1 and the identity

(2.3) F'fa) - ( α ~ χϊnfn+ί)(x) = ( ~ 1 ) W (3; - a)nfn+ι\x) , x e (α, b) .
n\ n\

For the general case we shall present two entirely different
proofs: the first uses arguments from classical analysis (some integra-
tion formulas and the second mean value theorem of integral calculus)
while the second, briefer than the first, is based on distribution
theory and patterned after the above-mentioned trivial proof.

First proof. In order to use Th. 1.1 we need a connection
between fin) and F and we shall in fact prove a kind of mean value
formula, namely that for each couple of points x1 < x2 in (α, b) there
exists a £ e (xlf x2) such that
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(2.4) /i ) (x2) - /i^(^) = ^ " ' ^ J

Hence it follows

sign [/^fe) - / r (a?x)] - (-1) sign [F(z2) - i ^ ) ] if a ^ a ,

- sign [Ffe) - i ^ ) ] if a ^ 6 .

We shall show that (2.4) holds when any one of the two func-
tions fίtn) and F is supposed to be monotonic: the assertion of Th.
2.1 will then follow immediately from (2.5) and Th. 1.1.

Suppose firstly that f^ is monotonic on (α, b) and let xlf x2 e
{a, 6), xx < x2. From the assumptions made for / it follows that fin)

exists and is continuous on (α, b)\N, where N is a suitable denumerable
set, hence a classical result of the Riemann-Stieltjes integration
theory ensures the equality between the two measures df{n-1](x) and
fκn)(x)dx. Now, using repeated integration by parts for Riemann-
Stieltjes integrals, we may at once verify the validity of the formula

(2.6) I \ (α-ί)-yi-'

(2.7)

From (2.2) and (2.6) we derive

F(x2) - F(Xl) =
 X [\a
( » - D l J *

n\

Applying the second mean value theorem of the integral calculus
to the integral at the righthand side of (2.7) we obtain for a suitable
ζ 6 (xu x2):

(n — 1)1
,) Γ (α -

_ Λ. ϊ( J

that is (2.4). Notice that when w = 1 an elementary proof, which
does not invoke the second mean value theorem, is derived by
substituting the classical inequality f(x^) ̂ > f(x2) + fk(x2)(Xi — a?2) i n

the explicit expression of the difference i*7^) — -P(ίc2). But the same
kind of argument does not work for n ^ 2.

Suppose now that F is monotonic; we will express / in terms
of F. The starting point is the following identity
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(2.8) F(x) =

valid at each point x where / is n times diίFerentiable. This identity
is checked by applying the Leibniz rule to the product (a — x)-1f(x).
By the assumptions the function dn~1/dxn-1(f(x)/(a — x)) is absolutely
continuous hence relation (2.8) is valid almost everywhere and we
can invert it by applying a familiar integration formula thus inferring
that, given any Te(a, b), there exist n constants cu , cn such that

f{x) = c1(α-a?)+ +cn(a-x)* + n{a-x)\\x - tγ~\ F®χdt,
(2.9) ]τ (a-t)n+ί

x 6 (α, b) .

As F is right-continuous we derive from (2.9)

fP(x) - ( - l ) \ > . n ! + n\f

 F ( x \ n - n n\
(2.10) (a-x)n

x G (α, b) .

If now xlf x2 are arbitrary points in (α, 6), α̂  < ίc2, we have

+
(α - x

2
)

n
 (a - x

ι
)

n

Since F is monotonic we may appeal to the second mean value
theorem in estimating the integral in (2.11) and we find that the
righthand side of (2.11) equals

( α - ί ) » + 1

( 2 ) ( l )

that is (2.4). The proof is then complete.

Second proof. The reader is now supposed familiar with the
definitions and results in [6; Chps. I and II] or in [7; Ghps. 21 and
24]; from now on equalities and inequalities are to be understood in
the sense of distributions. We shall prove two preliminary lemmas.
It is known—[6; Chp. I, p. 54]—that a distribution on (α, b) is an
increasing function iff its derivative is a positive distribution on
(α, 6); the next lemma is analogous, in the framework of distribution
theory, to the elementary characterization of strict monotonicity of
differentible functions.
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LEMMA A. If T e £3?\a, b) then T is a strictly increasing function
on (a, b) iff its derivative DT is a positive distribution on (α, b) and
(α, b)\sn^DT has no interior points.

Proof of Lemma A. If T is a strictly increasing function on
(α, b) then DT is a positive distribution on (α, 6); if then there existed
a nonvoid open interval (a, β) c(α, 6)\suppDT we would have, by
the very definition of suppDT, that DT vanishes on (a, β), i.e., the
restriction of DT to (α, α) is the zero distribution; hence T, as a
primitive of DΓ on (a, β), is a constant function thereon which
contradicts the assumption. Vice versa if DT is a positive distribution
on (α, 6) then T is an increasing function, say /, on (α, 6). If we
now suppose that / is not strictly increasing then it is constant on
some nonvoid open interval (α, β) c (α, 6). Let now φ be a test
function, φeC™(a, b), such that supp0c(α, β). We have

(2.12)

(7 ίV = 0
where integration by parts for Riemann-Stieltjes integrals has been
used. Relation (2.12) simply means that Df vanishes on (a, β) and
hence (a, β) cz(a, δ)\supp/)Γ: a contradiction.

The second lemma is a trivial consequence of the definition of
the product of a distribution and an infinitely differentiable function,
see [6; Chp. V and Th. I, p. 118].

LEMMA B. Let Te&\a,b) and let φ be some function strictly
positive and infinitely differentiable on (a, b). Then we have T ^ 0
on (α, 6) iff φT ^ 0 on (α, 6); further supp φT = supp T.

Turning back to the proof of our theorem we see that our
assumptions on / ensure that f[n\x) = f^(x) almost everywhere on
(a, b) and, since /(n~1) is absolutely continuous, we may appeal to Th.
Ill in [6; p. 54] and infer from (2.2) that

(2.13) DF = ( α χΫ
n\

From (2.13) and Lemma B we infer that the following equival-
ences hold on (α, b) (to fix ideas let a ^ b):

F increasing « DF ^ 0 <=> (α - x)*DfP' ^ 0 *=> DfR

n) έ 0 <=> /^Λ)

increasing.
For strict monotonicity we must also take into account Lemma
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A and that suppiλF = supp[(α — x)nDf^n)]. The second proof is so
complete by appealing to Th. 1.1.

3* Some remarks* 1. The difference in the monotonicity
character of the function F according as a <̂  a or a ^ b parallels
another characterization of an nth order convex function / based
on the relative positions of the graph of / and that of its osculat-
ing parabola, namely that f(x) — F(x) ^ 0 Vx e {a, b), x ^ a and
(~l)*[/(aθ ~ F(x)] ̂  0 Vx e (α, 6), x ^ a. See [3; Chp. XI, Lemma 2.4]
and [2; Chp. 4, pp. 173-176].

2. There is no analogous result if a < a < b: indeed if / is
convex of order n then F is increasing on (a, a] while ( — ΐ)*F is
increasing on [α, 6); but generally speaking the converse is not true
because a function which is convex on two adjacent intervals is not
necessarily convex on their union. Hence we cannot give a charac-
terization analogous to that of Th. 2.1 for functions convex on

3. Formula (2.9) can be used to give a characterization of nth
order convex functions via an integral representation. For example
we have the following

THEOREM 3.1. If f: (α, b)-+R with b < + °o then f is [strictly]
convex of order n on (a, b) iff there exist a [strictly] increasing
function F on {a, 6), a point T e (a, b), a point a >̂ b and n constants
cly , cn such that

(3.1) f(x) = cλ(a _ a;) + + cn(a - a?)*

+ n(a - x)

Obviously the function F agrees with the function F given by
(2.2) except possibly on a denumerable set. Formula (3.1) parallels
the standard characterization through the relation

f(x) - c0 + c,x + • . + cn_xx
n~ι + X \\x - t)*~

(n — 1)1 IT

with a suitable increasing φ, namely φ = fhn).
4. In a further paper we shall highlight the meaning and

usefulness of F (viewed as an operator in /) in studying the
asymptotic behavior of / with application to asymptotic expansions.
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