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AN ERROR ESTIMATE UNIFORM IN TIME FOR SPECTRAL
GALERKIN APPROXIMATIONS OF THE
NAVIER-STOKES PROBLEM

JOHN G. HEYWOOD

1. Introduction. The existence theory for the nonstationary
Navier-Stokes equations can be developed, by the method of Galerkin
approximation, using any of a wide variety of possible systems of
basis functions. The basis functions used in the papers of Hopf [8]
and of Kiselev and Ladyzhenskaya [10] are merely assumed to belong
to and be complete in certain function spaces. However, to obtain
refinements in the theory by the Galerkin method, particularly re-
garding the regularity and decay of solutions, it often appears
essential to choose as basis functions the eigenfunctions of the Stokes
operator; see Ito [9], Lions [12], Prodi [14], Foias [3], Ladyzhenskaya
[11], Temam [17], and Heywood [4, 5, 6].

In these and other works, the convergence of the Galerkin ap-
proximations is generally proved by a compactness argument, based
on a-priori bounds for the approximations. A notable exception is
the paper [3] of Foias, where (on page 324) the approximations
are shown to converge, uniformly over a time interval, in the
Dirichlet norm. Recently, Rautmann [15, 16] has drawn attention
to this type of result, and gone further, giving a systematic de-
velopment of error estimates, for the Galerkin approximations and
their time derivatives.

Rautmann’s error estimates (and also Foias’ convergence theorem)
are presented locally, valid on a finite interval determined by certain
norms of the data. At best, if one assumes the solution to be approxi-
mated is uniformly 7regular, for t €[0, o), the method yields an error
estimate which grows exponentially with time. And, without further
assumptions, this is the best that can be expected. However, if one
assumes, additionally, the solution to be approximated is stable, then
it is reasonable to expect an error estimate which is uniform in
time. This is what is done in the present paper. It is hoped the
result may prove suggestive for future developments in the Navier-
Stokes theory. It should be mentioned, however, the original reason
for undertaking this work arose in the author’s joint study [7] with
Rolf Rannacher, of finite element Galerkin approximations, a context
in which error estimates uniform in time have important implica-
tions for computations. While the present work served to fix some
ideas, in a simpler, purely theoretical context, it has turned out our
arguments in the finite element context are substantially different.
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We present here only the most basic result of its type. How-
ever, a number of elaborations seem possible, some of which are
being investigated with Rannacher in the numerical context. We
mention, the stability condition (A3) is formulated here in terms of
the Dirichlet norm, could be formulated in terms of the L*norm.
Also, our error estimate is given in the Dirichlet norm; it should be
possible to obtain an improved rate of convergence in the L’norm.
Finally, in some situations, there exist ‘“stable” solutions which do
not possess all the spatial symmetry of the domain and external
forces. Of course, in such situations, there is only stability modulo
shifts in the spatial symmetry. The definition of stability we work
with, here, is too strict to allow for this possibility. We think it is
possible to weaken our definition of stability, to be neutral relative
to drifts with respect to the spatial symmetry, resulting in error
estimates modulo shifts in the symmetry. Similarly, if the boundary
values and forces are time independent, stability and error estimates
may be considered modulo drifts and shifts in time.

After a short preliminary §2, our result is stated in §3, and
proved in §§4 through 7.

2. Preliminaries. Let 2 C R*, n = 2 or 3, be a bounded domain
with smooth boundary 02. The function spaces customarily denoted
by LP(Q), H™(Q), C3(2) are defined as usual, though we will not
distinguish in our notation between spaces of R and of R*-valued
functions, the distinction always being clear from the context.
The L* inner-product and norm are denoted by (-, -) and |-|| respec-
tively, and the L” norm by ||-||,- The following spaces of solenoidal
functions are, of course, R"-valued:

D(Q) = {¢: 6 C5(2) and V-¢ = 0},
J(2) is the completion of D(2) in L*Q),
J.(2) is the completion of D(Q) in HY(2) .
We let P denote the orthogonal projection L*(Q) — J(Q), and let

4 = P4, where 4 is the Laplacean operator. We list, as lemmas,
some results which will be needed later.

LEMMAl. For we HY(Q), |Pully < cfllulln.

LEMMA 2. For every weJ(2)N HXQ), there exists a function
€ H¥(Q) such that curl p = u, rl,, = 0, and ||y {lp = ¢||w|lp.

LeMMA 3. For g€ L¥(Q2), the unique solution v € J,(2), q€ L*(Q)/R
of the Stokes problem
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—4,+V, =g and V-v=01in 2, v,,=0,

satisfies |v]lme + |¢lluve = ¢llgll. Hence, also, |v]2 < ¢||dv] holds
for all ve J,(2)N H(Q).

For proofs of Lemmas 1 and 3, see [17, p. 18] and [1], respec-
tively. In Lemma 2, if 2 is two-dimensional, it should be understood
that + is scalar valued and that curl = (9+/0x,, —d+/ox,). The
proof in the more difficult three-dimensional case is as follows. By
a well-known construction [11, p. 25], u can be continued to all R’
as a solenoidal function w e H'(R® with compact support. Hence it
can be expressed as u = curl¢, in terms of the vector potential

o(x) = (4n)*1§(curl w)/r dy. Since (curlg)-n=0 on 92, a scalar function
p can be defined on component 92, of 02 by setting p(x) = S é-ds,
where C is any curve lying in 02 joining x to a fixed point ofa 02,.
Since ¢ e H*Q), we have pe W*(Q20) and ¢-nc W;*(02). It follows
that » can be continued into 2 as a function pec H*(Q) satisfying
op/on = ¢-n on 08; see [13, p. 104]. Clearly /p = ¢ on 62, and thus
4 = ¢ — FVp is a function with all the desired properties.

We denote by {a*(z)} and {\,} the eigenfunctions and eigenvalues
of the Stokes operator 4 defined in J,(2)N H*Q), i.e., of the problem
—dv +Vg=wandV-v =0in 2, v|;, = 0. Thus —Ja* = \a*. Some
well known results and elementary observations are collected in the
following lemma.

LEMMA 4. The eigenfunctions {a*} are orthogonal in the imner
products (u, v), (Fu, Vv), and (du, 4v), and complete in the spaces
J(2), J(2) and J(2)N HYQ). If Siica*eJ,(Q), then

2
k

k

o e
Z cka/h{ é )\,~1

\k=n

If 30 e J(Q) N HY(Q), then

7 &t 2w o

12
|§;

We list, in the following lemma, some Poincaré and Sobolev
inequalities that will be needed, sometimes combined with the results
of Lemmas 8 and 4. We will use only the three-dimensional versions
of Sobolev’s inequalities, these being, of course, also valid in bounded
two-dimensional domains.

LEMMA 5. IfweJ.(@) N HYQ), then |u| < M2 |[Fu] < bl dull,
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lullb S clFull,  suplu| Scllduf, [lull S clluf™|ru),

and ||Full, < ¢ dul.

3. Statement of the result. Let u(z, t), p(x, t) be a solution
of the Navier-Stokes problem:

U, — du + u-du +Vp = f and
(1) V-u=0 in 2 x (0, ),

Ul = @, Ulo = 0.
We assume the data for problem (1) satisfies

(A) el NHNQ), swllfl <, sup|fil <o,

and that the solution satisfies
(A2) IFu@®)| < M, forall t=0.

We further assume w is conditionally exponentially stable, in the
sense of condition (A8), below. The stability condition concerns the
behaviour of perturbations of 4. A function {(z, t), defined on some
interval ¢ = t,, is called a perturbation of w, if { + u is a solution
of the Navier-Stokes equations, and if {[,, = 0. Thus, setting {, =
¢(-, t)), € is a solution of the initial-boundary value problem:

G — A +uVl+CVu+ P +Vqg=0 and
(2) F-&=0 in QX (&, «),
Clt=to =&, CIaJ) =0.
Our assumption, then, is:
(A8) There exist positive numbers a, A, 6 such that for every
t, =0, and every (,€J,(2) N HX) with |[F{| < &, the perturbation
problem (2) is uniquely solvable and its solution satisfies ||F(t)] <
AP |le =, for all t = t,.
The nth spectral Galerkin approximation

Wz, ) = 3, en(t)a(@)

to the solution of problem (1) is uniquely determined by the conditions

(ut, %) + Fur, Vg™) + (u"-Fu, ¢") = (f, "), for t=0, and

3
) ) —a, =0,

for all ¢” of the form ¢"(x) = >, d,a*(x).

THEOREM. There exist constants N and K depending only on
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the domain 2, the norms of the data referred to im (Al), and the
constants intrduced in (A2) and (A3), such that

(4) 17w —un@®[ = KniE

for all t = 0, provided n» = N.

4. Comparison of error with perturbations. Let u =
S e (t)a*(x) be the eigenfunction expansion of the solution u of
problem (1). Let v™ = 32, ¢,(f)a*(x) be the nth partial sum of the
series for . Let ¢ = u — v, and let 7" = u™ — v, were u" is the
nth Galerkin approximation. Then w — " = " — 3".

LEMMA 6. The assumptions (Al), (A2) imply ||du(®)|, ||u.t)|,
t
and e“‘g e ||Fu,|’dc  are wuniformly bounded, for t=0. Thus,
0
Zem(@) || < enyi? and ||e"(t)|| < engiy, for t = 0.

These a-priori estimates for u are proved in [7]; most of the
argument is repeated, in a slightly different context, in Lemma 8
below. The estimates for e" follow, using Lemma 4.

It remains to estimate 7»”. Observe that v satisfies the linearized
equations

(5) (1)?, ¢n> + (any V¢n) + (uVu, ¢n) = (f; ¢n) ’ for ¢ = 0 ’

for all ¢" of the form ¢"(x) = )7, d.a*(x). This is easily seen start-
ing with the weak Navier-Stokes equations for % and using the
orthogonality relations for the {a*}. Subtracting (5) from (8) gives

(n, ¢") + (", Vo") = (u-Vu, ¢") — (uw"-ru*, ¢")
= —(u-ry", ¢*) — ("-ru”, ¢")
+ (u-Ve, ¢") + (e"-Vu", ¢")
= —(w-Fy", ¢") — (9*-Fu, ¢") — -V 9", ¢")
+ (p"-Fer, ¢") + (e*- 7", ¢")
+ (w-Ve", ¢") + (e"-Vv", ¢") .

(6)

This identity will be used, in §5, to get an a-priori estimate for
| 49*(#)]|. In order to compare 7" with a perturbation ¢, we must
rewrite (6) in a form valid for all test functions ¢(x) € J,(2) N H¥RQ).

Let P, and @, be the orthogonal projections of L*2) onto
Span {a,, ---, @,} and Span{a,., @,., ---}, respectively. Clearly P,
P, and Q, all commute, P = P, + Q,, ete. For ¢eJ(Q), let us write
¢ =P+ Q.6 =¢" + Q.6. Then, for any w e L¥Q),

(w’ ¢n) = (iny ¢) = ,(w’ ¢) - (an’ ¢> .
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Also, for ¢ € J,(2),
T, 7o) = —(dy, 67 = ~ (1", ¢) = F7", Vg) -
Using such obvious identities, we rewrite (6) as
¢, 8) + (P, Vo) + (w-Vy*, ) + (9"-Fu, ¢) + "V, 6)
= (@uu-r7"], ¢) + @u.[7"-7ul, ¢) + (Q.[7"-F7"], )

+ (Pln-Fe], ¢) + (Pale™-7n], ¢)
+ (Pa[u-Ver], ) + (Pule”- /v, ¢) ,

(7)

which is valid for all ¢€J(2), and £ = 0. This is to be compared
with the weak form of (2), which is

(8) (Cuo)+ L Te) + (u-Fg, ¢) + (C-Fu, ¢) + LV, ¢) =0.

Let us denote the right side of (7) by (g7, ¢), and let w =" — (.
Then, subtracting (8) from (7) gives

(wt; ¢) + (wa V¢) + (u‘Vw, ¢) + (W'V’u/, ¢)

(9) . n
+(77 'VW,¢)+('U)'VC,¢):(Q,¢),

for all ¢ J(2), and ¢ = t,. The regularity of %" and {, which is
implicitely assumed here and in Lemma 7 below, will be verified
later. Setting ¢ = —Jdw, we obtain

1d
2 dt
(10) + (-Fw, dw) + (w-7¢, dw) — (g°, dw)
< el dull-|Fwl-|| dwl| + ¢|| dg*||-[|[Fw]|- | dw |
+ el AL\ (rwll- || dw | + [lg"[I-]| dw]| ,

WFw|® + || dwl|]® = (w-Vw, dw) + (w-Fu, dw)

or
;—tHVWIlz + | dwl* < e dul® + || dp*||* + || ACIPIFwlf + [lg]?®,
and hence:

LEMMA 7. Let t, = 0 and CNbe as ianroblem ~(2). Then, for w
and g" as above, and B(t) = c(||du|* + || 4™ ||* + || 4L||*), there holds

(1) 1P < oS {irwe | + | 1o IFde}
for all t = t,.

ReMARK. It is well to point out, here, why we don’t assume
el < AlLE) ||le =" in (A3), in place of the condition for the
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Dirichlet norm, and then try to use a continuous dependence theorem
in the L* norm, in place of (11). The difficulty is that we would
still need to estimate ||g"|| and hence || 47", and this does not seem
possible, in three-dimensions, starting with an estimate for ||w(¢)|.
But we can, starting with an estimate for |[Fw(t)||, because this
implies an estimate for |77 ||, which leads to an estimate for || 47" ]].

5. A-priori estimate of || 49"(t)]].

LeMMA 8. Suppose ||[F"(t)|| < holds on some interval 0 <t < t*,
for some number v < 6. Then there also holds || 49"(t) ||* < R(v* + Nzty),
for 0=t t*, with a constant R dependent only om 2, 0,

~ t .
SUD,=o || du(t) ||, sup.s, || u.(t) ]|, and sup@oe“tgoez-|]l7ut||2dr, i.e., quantities

all bounded via Lemma 6 in terms of the assumptions (Al), (A2),
(A3).

Proof. What follows is based on the identity (6). Since the
Galerkin approximation " does not appear, there will be no ambiguity
in setting » =%", e=e¢", v =v", ¢ =¢". Setting ¢ = —47 in (6),
we obtain

%%HVWI2 + P < el| dul- | Ppll-Il Al + el rplf2| Ay
+oel du Nt | dull- | g

and hence

d ~ ~ _ ~
(12) gilléﬂill2 + [y < elldu[P- |7 + c|[Fp[° + engia || du || .
Multiplying (12) by e’ and integrating gives

ot Stef | dp|Pde < e Stefw Yool Aulr + et + enit|] dulldde
(13) y
< ot S ee(vt + \it)de .
0
Setting ¢ = 7, in (6), we obtain

Il = 140Nl + ell dull- 17 |-l + ell ]l 17 - [17.
+ el dell- 17170l + ell dull-[[7ell- |71,

and hence
A4 (. lF = ol | + cl| du|P- 17| + el dp |- | 77| + enada |l dul* .

Multiplying by e and integrating, and using (13), we get
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(15) et | elnlrar = et [ et + ntie

Now differentiating (6) with respect to ¢ and setting ¢ = 7,, we
obtain

é‘%“mltz + 17| = =P, 9 — Py 70) — (-F ke, 70)

- (77t'l777y 77t) + (Ut~76, %) + (77’173” 77t)
+ (e, V', m) + (w,-Ve, ) + (w-Vey, 9,)
+ (e,-Vv, ) + (e-Vv, 1,
< ¢l ||| A ||- |77, + el dwll- |71l 177
+ 7l 72 1170 P2 + e lls-[lello- 177
+ el dull-le -1,

and hence

Ly, < ol | gl + of Jul-[nelf + e 7yl
an i i
x| 7P| et enzhl Ju |17

Multiplying by e' and integrating, using (13), and (15), we get
t t
9. |F < et 7,0) ] + e7* So ee(y? + Npr)dt + enghe? So e || Fu, |de .

From (14), it is clear |[7,(0)|* < en;%, || da|*. Using this and the a-
priori estimates of Lemma 6, we get

(18) 17,07 < e(v* + Nat) -

Since
—L\ry|r = 207, ) = 2Fp, 1) < V2| B + 2|70,

(12) implies

19) 1Al = 9 + el Ju |- [177]P + e 177 ]° + engyl| du .
Clearly (18), (19) and the assumption ||[F/7|| < v < 0 imply

(20) @) [P < e(r* + Nt -

6. A-priori estimate of ||g"]|. The forcing term on the right
side of (7) is

9" = Qu[u-ry"] + Q.- rul + Q. -rp°]
+ P,[n"-Ver] + P,le*-Fy"] + P,Ju-Ve"] + P,[e"-Fv"].
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LEMMA 9. Whenever ||d7(t)|* < R(* + \,), there holds
(21) lg"@) [P = 0(n) | 41" [|* + va3ds

with 6(n) a function satisfying 6(n) —0 as m— . The function
0 and constant v depend only on 6, R, 2 and sup,., | du].

To prove Lemma 9, we need:

LEMMA 10. For any vector field we H'(Q), there holds
(22) [Quw|* = b(n) w3,

with 0(n) a function satisfying 6(n) —0 as n— oo. The function
O(n) depends only on Q.

To prove Lemma 10, we need:

LEMMA 11. For every 0 <e <1, there exists a continuously
differentiable, piecewise twice differentiable “cut-off” function \(s),
defined for s = 0, such that N (0) =1, M(0) =0, N(s) =0 for s=c¢,
and such that everywhere |\.(s)| = min {¢/s, 1}, |\(s)| = min {¢/s, C},
and |N(8)] = C., with constants C, dependent only on e.

The construction of A\.(s) is well-known; see [2]. We only remark,
it is probably easiest to start with the function

Ne(8) = V%(l — —Z—)da =¢(loge — logs) + (s — ¢),

oS

defined for 0 < s < e. Observing that |X.(s)| < ¢/s, |N.(s)| < ¢/s, and
N(s) = ¢fs?, it is clear how to proceed to construct X\.(s).

Proof of Lemma 10. Let \.(x) = \.(s), where \(s) is as in
Lemma 11 and s = distance (x, 02). For sufficiently small ¢, this is
well-defined and the estimates for the derivatives of \.(s) are valid
for (@), i.e., [Ph()] = [N(s)| and [ DAn(@)] = e(IN'(8)] + [N(S)D-

Choose a vector field 4, in accordance with Lemmas 1 and 2,
such that curly = Pw, ;0 =0, and |4z = ¢||Pwllm = el|w ||
Clearly,

(23) Pw — curl (\op) € J1(2) , curl (\.qp) € LH(9Q) .
We have the following estimates:

||Pw — curl ()"E"/f)HHl = HP’W - 7\:5P’W - (V)'e) X "S["HH-'l
(24) = CllPwllm + 7 X gl + [P || + [P ]
= CllPwllm = Collwllm ,
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leurl Qup) | = 78 3 4 l| + [ h curl o |
(25) = (I, teist-lypan)” + (| 17ppan)”

= cellypllm + cellyplwe = cefwlm

In (25) we have set Q.= {xe:dist (%, 0Q) <e¢} and wused the
inequality

| #@istds < 4| @)yds,

valid if ¢(0) = 0, and also the inequality ||¢|2e., = ce|ld|lmiw, valid
for ¢ € H*(Q). Finally, using Lemma 4 and (23), (24), (25), we have

Quwll = [[Q.P, |
= [[@[Pw — curl v)] || + [| Q. curl (v |
= M| Pw — curl () || + [[eurl (ue) |
= MECHw [ + cellw]|p,

which clearly implies the result.

Proof of Lemma 9. Using Lemmas 4,5 and 10 we dotain:

1Qu[w-Fy ] |[F = O(n) || w-Fy" i
< On)(lunz |F + w2 |+ w9
< Om)(Junz |+ | Pw |2 7y [+ fwoge. |
< ch(n) || du ||| g |,

1Qu" Ful [ = 00) |77 s
< D7+ 7 P+ (7 )
< im) | Ju | B,

1QuIn 7y 1P < 0) || -7 |3
< A\l + el + g |9
< cf(n) || I ||*,

[P verl | < |lpm-Fe | < el dy* |- | Per |* = ongda || du ||| 27
[P rnl|F < llem-r | = eller [ 7y (s < enzhal| Jul- | 27
[ PJu-rel|F < lu-Per | < el du - [P |F < ezl Jull*

[PJer- 7ol = ller-For | < clle” s [[Fo P = enals || Jull* .

7. Proof of Main Result. An a-priori estimate, similar to
Lemma 6, will be needed for solutions { of (2). If ||[FL(t,) |l < o, (A3)
ensures that ||[F{(t)|| < A5, for all t = ¢,. So v =wu + { is a solution
of the Navier-Stokes equations with [[Fv(t)|| < M + Ad, for ¢ = ¢,.
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Also, in view of Lemma 6, ||dv(t,)| < || du(t,)|| + || 4(t,)|| is bounded
if ||4Z(t,) || is bounded. Hence the a-priori estimates for solutions
of the Navier-Stokes equations, already appealed to in Lemma 6,
imply || 4Z(t)|| is bounded, for all t > t,, in terms of || 4L(t,)|| and the
constants and norms of assumptions (Al), (A2), (A3). In summary:

LEMMA 12. For perturbations { (i.e., solutions of (2)) which
satisfy wnatially [|[FC(ty) | < 0 and HATC(to)H2 < R(6* + \;Y), there holds
14C@t)|| < ¢, for all t = t, where ¢ is a constant dependent only on
R, 6, 2 and the bounds assumed for various norms in conditions
(Al), (A2), (A3).

Now consider the expression 8(t) = ¢(|| Ju(t)||* + || 47~ |I* + || L&) |IP)
appearing in Lemma 7. In view of Lemmas 6, 8 and 12, there
exists a constant B bounding all possible values of B(¢f) in any
interval ¢, < t < t* for which it is known

(26) @l <d,
provided we restrict our considerations to perturbations { satisfying
27) I7Ct) || <8 and [[AL(t)|* < R + N7 .

Consider, also, the forcing term g” appearing in Lemma 7. Together,
Lemmas 8 and 9 imply

(28) lg"®) " = 0)R(Y* + Nidy) + YNk

on any interval 0 < ¢t £ ¢* for which it is known

(29) 17y @) <v, with v=39d.
We now chosse T sufficiently large that

(30) Ao < -;- ,

with « and A as in (A3), and then choose N sufficiently large that

31) e TO()R < _é_
and
(32) v, = V& (T TOMR + v)\its < &

hold for » = N. Here, we have defined v, in such a way that, in
the presence of (31), there holds

(33) T TIOMR(E + Aty + vach] < —}1-7 ,
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as may be easily checked.
For n = N, we claim

(34) o)l < v, , for all ¢=0.

If not, that is, if (34) fails for some n = N, let t* be the first value
of ¢ for which [|[F7"(t*)|| = v,. To show it is impossible that ¢* < T,
consider Lemma 7 with ¢, =0 and { = 0. The implication, in view
of (28) and (33), and remembering 7»"(0) = 0, is that

@ = (17w |

= e"T[O)R(7, + Mity) + on0] < ‘}[73‘ ’

which contradicts our supposition about ¢*. On the other hand, if
t* > T, then |[Fy"(t* — T)|| <~,. and of course [ dn"(t* — T)| <
R(3* + \'), by Lemma 8. So, considering Lemma 7 again, but with
ty=1t"—Tand {t* — T) =7"(t* — T), we find

(35) @) — L@ [P = e T{On)R(vs + Nby) + vhaki]
1
< 3‘ .
= 4’7

In addition, in view of (30), the assumption (A3) implies

(36) TN S HIPLE = D) < 2

Together, (35) and (36) imply [[F7"(t*)]] < 7., again contradicting our
supposition about t*. So (34) must hold, and combined with Lemma
6, it implies the theorem of §3.
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