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AN APPLICATION OF ORTHOGONAL POLYNOMIALS
TO RANDOM WALKS

THOMAS WHITEHURST

If Xn is a simple random walk on the nonnegative in-
tegers with transition probabilities Pffi=Pr{Xn+k=j\Xn=i}9

then Pif has an integral representation in terms of a family
of orthogonal polynomials and the associated probability
distribution function F(x) for these polynomials. The rela-
tionship between the distribution F, the family of polyno-
mials and the random walk Xn is studied. Necessary and
sufficient conditions for the support of F to be contained in
[0, 1] are given.

1* Preliminaries* Throughout this paper Xn will be a random
walk on the integers with transition matrix P = (Piά) — (Pr{Xn+1 =
j I Xn = %}). We shall say that Xn is a "simple random walk" if
piβ = 0 whenever \ί — j \ > 1, and in this case we set qn = Pnn_l9 rn =
Pnn, and pn = Pnn+1. We shall concentrate on simple random walks,
Xnf whose state space is the non-negative integers which we shall
henceforth denote by No. Following Karlin and McGregor (1959) we
find an integral representation for the transition probabilities PJ*J.

Suppose then that Xn is a simple random walk on JV0. For each
state neN0, we associate a polynomial Qn(x), of degree n, defined
recursively by

Q-i(s) = 0, Q0(x) = 1 , and

xQn(x) = qnQn^(x) + rnQn(x) + pnQn+1(x) , n ^ 0 .

By the following theorem, due to Favard (1935), we see that
the family of polynomials {Qn(x)} defined by (1.1) is orthogonal with
respect to a probability distribution F(x).

THEOREM 1.1. Suppose that the family of polynomials {Rn(x)} is
defined recursively by

Ro(%) = 1, Ri(x) = x- c09 and

Rn+ί{x) = (x - cn)Rn{x) - λ A - i W , n ^ 1 ,

where en is real and λn+1 > 0 for n ^ 0. Then there is a (probability)
distribution function F(x)f such that the polynomials {Rn(x)} are

S CO

Rn(x)Rm(x)dF(x) — 0
whenever n Φ m.
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THEOREM 1.2. // {Rn(x)} is a family of orthogonal polynomials,
with Rn(x) having degree n, and normalized to be monic, then relation
(1.2) holds for any three consecutive polynomials, where cn is real
and λn+1 > 0, for n ^ 0.

Note that Theorem 1.2 is the converse to Favard's theorem
(Theorem 1.1). For a proof and related results see Szego (1939).

If we write Q(x) = [QQ(x)Qi(x)Qι(x)- •]*, then (1.1) is equivalent
to xQ(x) = PQ(x), so that xkQ{x) = PkQ(x). In other words, xkQn(x) =
ΣS=o PΆQm{χ)' Note that for a simple random walk Xn, only a
finite number of terms on the right side are non-zero. Multiplying
both sides of this equation by Qm(x), and exploiting the orthogonality
of the family we have

(1.3) PΆ = πm Γ xkQn(x)QΛx)dF(x) ,

J-oo

Q2

m(x)dF(x). It can easily be shown, from (1.1),

that 7Γ0 = 1 and πm = (p0Pi Pw-i)/(M2 9m)
The support of F, Supp F, is defined by Supp F = {x: (̂a? + Λ) ^

jP(ίc — h) for all fe ^ 0}. If we set n — m — 0 in (1.3) we see that
the support of F is contained in [ —1, 1] since PΆ is a probability.
Thus,
(1.4) P S - ττm j 1 xkQn(x)Qm(x)dF(x) .

Note that F(x) is uniquely determined since the support of F is
contained in a finite interval; hence, the moments uniquely determine
the measure.

Karlin and McGregor (1959) took an alternative approach to the
above development. That approach was to consider (1.4) as a spectral
representation of the linear operator P (our transition matrix) acting
on an appropriate Hubert space. For this reason Karlin and McGregor
refer to F(x) in (1.4) as the spectral measure function, SMF, for the
random walk Xn. Using this approach Karlin and McGregor (1959)
obtain a representation similar to (1.4) if our simple random walk Xn

is on {0,1, 2, N}9 or {• , -2 , - 1 , 0, 1, 2, •}. In the former case
(1.1) defines only a finite family of orthogonal polynomials, and the
SMF F, in (1.4), has only a finite number of support points. In the
latter case the representation takes on the form

(1.5) Pip - πά Γ xn Σ Qlia\x)Qn*)dF«p(x) ,
J_l a,β=l

where the Faβ(x) are distributions on [ — 1, 1], the polynomials Qla)(x)
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are defined by

Qί!ί(aO - 0, QP(χ) = 1, Q<l[(χ) = 1, Q?\x) = 0 , and

xQl«] = ί*Qίl}i(a?) + rtQΠx) + pA&ix) , (α = 1, 2) .

For n^O πn is the same as above and

Q-2 ' * * Q-n+l)/(P-lP-2 ' ' ' P-n) -

The following results contain some of the essential facts about
orthogonal polynomials; for proofs and related results, see Szegb
(1939).

Suppose that F(x) is a probability distribution on [a, 6] and that
Qn(x) is the corresponding family of orthogonal polynomials. Then

THEOREM 1.3. The zeros of Qn(x) are real and distinct, and are
located in the interior of the interval [a, &].

THEOREM 1.4. Let x1 < x2 < - < xn be the zeros of Qn(x); also
let x0 = a and xn+1 = b. Then each interval (xk, xk+1), 0 ̂  k ̂  n,
contains at least one zero of Qm(x), m > n.

THEOREM 1.5. In the open interval (xkf xk+1), between two con-
secutive zeros of Qn(x)9 the function F(x) cannot be constant.

If F(x) is a probability distribution on [ — 1, 1], then one can
easily show that there is a family of polynomials {Qn(x)}> satisfying
(1.1), which are orthogonal with respect to F(x). Furthermore, we
may assume that pn and qn+1 are positive for n ^ 0. We may also
assume that Qn(l) = 1. This follows from the fact that the zeros of
Qn(x) are in (-1 , 1) so Qn(l) > 0 for n ^ 0. Since Qn(l) = 1 we have
Qn + Tn + Pn = l Thus, it easily follows that if F(x) has an infinite
number of support points, then

THEOREM 1.6. F{x) is the SMF for some simple random walk
Xn on No iff

rjπn = Γ xQl{x)dF(x) ^ 0 for n ^ 0 .

If F(x) has only a finite number of support points, then the
simple random walk Xn above, is just on {0,1, 2, , JV}.

COROLLARY 1.7. // F(x) is a probability distribution of [0,1],
then F is the SMF for some simple random walk.
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2* The support of the SMF* A sequence of numbers u —
(un;n*z 0) is a renewal sequence if there exists a sequence / =
(Λ; n*zl) such that u0 — 1 and un = Σ?=i/*wn_fc (w ^ 1) where / n Ξ> 0
and Σn=iΛ ^ l An important characterization of renewal sequences
is: A sequence (un) is a renewal sequence iff un = Pr(Xn — i \ Xo — i)f

n ^ 0, for some Markov chain X and some state i. For a proof and
related results see Kingman (1972). A renewal sequence (un) has
period d if and only if d = G.C.D.{w: wn > 0}. If d = 1, ( u j is said
to be aperiodic. If w has period d, then du = (u0, ud, u2d, •) is an
aperiodic renewal sequence, see Kingman (1972). Thus, it is clear
that aperiodic renewal sequences play the major role in the theory
of renewal sequences.

EXAMPLE 2.1. Consider the simple random walk Yn on Z with
transition probabilities Pit+1 = pl9 Pii_ι = q% = 1 — pi9 and P^ = 0
otherwise (where 0 < pt < 1). Note that vn = Pr(Yn = Q\Y0 = 0)
defines a renewal sequence with period 2. If we start this random
walk at an even integer and then take two steps at a time (i.e., we
only consider YZn), then we have a "simple" random walk Xn on the
even integers. (To denote the dependence on the original random
walk we shall use the notation 2Yn). In this case un = Pr(Xn —
0|X0 = 0) = Pv(Y2n — 0\Y0 = 0) defines an aperiodic renewal sequence,
and in fact u — 2v.

An important type of renewal sequence is the Kaluza sequence,
which is defined to be any sequence u = (un; n Ξ> 0) such that 0 <̂
un <; u0 = 1 and u% ^ un_1un+1 for n ^ l . Kingman (1972) shows that
any Kaluza sequence is always a renewal sequence. By the Schwarz
inequality it is clear that

(2.1) un = [xndG(x)

is a Kaluza sequence for any probability distribution G(%) on [0, 1].

In the above example, if pi == p, qt = q, then un — ( ){pq)n is a

Kaluza sequence. Kingman (1972) raises the question of whether this
renewal sequence is of the form (2.1). Letac (1977) notes that in
the case oί p — q — 1/2

f2n
un —

n
122n = \\cos πt)2ndt = [xndG(x)

Jo Jo

where dG(x) is the measure carried from Lebesque measure on [0, 1]
by the map ίh->eos2τrί.

We shall show that the renewal sequence generated in Example
2.1 is always of the form (2.1), even when p^p. Furthermore, any
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renewal sequence of the form (2.1) corresponds to a random walk of
the form 2Yn. Following Karlin and McGregor (1959) we shall say
that a simple random walk is symmetric if rn ΞΞ 0. The reason for
this terminology is that rn == 0 iff the SMF F(x) is symmetric about
x - 0.

THEOREM 2.1. Suppose that F is the SMF of the simple random
walk Xn (on No). Then, SuppFc[0, 1] iff Xn is probabilistically
the same as 2Ynt where Yn is a symmetric random walk on {n/2: n e No)
which starts at an integer, i.e., Yo = k, keN0.

Proof. Suppose that SuppFcfO, 1]. Exploiting Theorem 1.6,
we define the (symmetric) probability distribution G(x) on [ — 1,1] by

= (1/2 [1 + F(x2)] if x ^ 0
W (1/2 [1 - F(x2)] if x < 0 .

G is the SMF of a symmetric random walk, Yn, which we may assume
to be on {n/2: neN0} taking steps of size +1/2 and —1/2. Exploiting
(1.4) and the symmetry of G we obtain Pr{Ύn = 0 | 2 Γ 0 = 0} =
21 x2ndG(x) — I yndF(y). Now 2Yn is a simple random walk on No;
hence, Ύn has a SMF H(x). Thus, Pr{Ύn = 0|2Γ0 = 0} = [ xndH(x) =

S I J - l

xndF(x). However, the moments uniquely determine the measure
0

in this case, so H(x) = F(%). Furthermore, the orthogonal polynomials
corresponding to JSΓ(α?) and Fix) are the same. Hence, the repre-
sentations given by (1.4) are the same; that is Xn is probabilistically
the same as 2Yn.

On the other hand, suppose that Xn is probabilistically the same
as 2Yn, where Yn is as given in the statement of the theorem and
with Yn having SMF G(x). Since G(x) is symmetric about x — 0 we
have

Pr{Ύn+m - 0\Ύm - 0} - Γ x2ndG(x) = 2Ϋx2ndG(x) .
J-i Jo

If F{x) is the SMF for Xnf then

Pr{Xn+m - 01 Xm = 0} = Γ x«dF(x) = 2 (W^G(x) .
J - l JO

Setting y = x2 and .EΓ(#) = 2G(λ/ y) — 1, for y ^ 0, we obtain

Again, however, the moments uniquely determine the measure, so
that F(x) = H(x), and hence SuppFc[0, 1].
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As a consequence of Theorem 2.1 we have

COROLLARY 2.2. A renewal sequence u = (un) is of the form (2.1)
iff un = w2n, where w = (wn} is the renewal sequence associated with
some symmetric random walk on No.

In the case of a simple random walk on Z we obtain from (1.5)

Poo° = \ xndFu(x). Hence, the argument of Theorem 2.1 can be

extended to this case. Thus, in Corollary 2.2 we may replace No by
Z so that the question raised by Kingman (1972) and answered by
Letac (1977) is a special case of this result.

Exploiting Theorem 2.1 we now develop necessary and sufficient
conditions for SuppFc[0, 1], in terms of the coefficients qn, rn, and
pn in (1.1). In theory one could compute the zeroes of Qn(x) and
calculate the support of the SMF, F, from them. This procedure is
rarely practical because of the complexity of the polynomials, although
in some special case dF(x) can actually be calculated (see for example
Maki (1967), Karlin and McGregor (1958) or (1959)). In theory one
could also use Hausdorff's criteria, in terms of the moments, to test

for SuppFc[0, 1]. Using the fact that mn = Γ xndF{x) = Pfc\ we
J - l

can compute the moments by calculating the probabilities of the
various paths. For example m3 = r] + 2r0p0q1 + j)0^iϊi It is clear,
however, that this procedure is also not practical. We now give a
tractable procedure for determining whether Supp Fa[0, 1].

We shall use the following notation for finite continued fractions:

p^-l = ajbo, and recursively, for n ^ 2
(2.2) I δ°

I δ.-i |δ»-. |δo L*-1 \\bn_2 ' " | 6 0 / J '

To avoid notational difficulties, in the next theorem, we shall
assume that our original random walk is on the non-negative even
integers, EQ = {2n: neN0}. We shall use pn = P2n2n+2, rn = P2n2n, and

Q.n = -L2n2n-2

THEOREM 2.3. Suppose that F(x) is the SMF for the simple random
walk Xn, on EQ9 corresponding to the family of orthogonal poly-
nomials, {Qn(x)}, defined by (1.1). Suppose also that pn + rn + qn = 1
with pn,qn+1>0 for n^O (qQ = 0). Then, Supp F c [0, 1] iff for

(2.3) 0 < K = M -
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where a2n — pn and and a2n_1 = qn.

[Note: We could drop the left inequality since hn < 1 and an+1 >
0 imply that hn+1 - αn+1/(l - hn) > 0.]

Proof. We define pn and qn for w ^ 0 by

(2.4) q0 = 0, px = p0, g2n = fe2n^lf p 2 n + 1 = ft27i , and pn + gn = 1 .

If (2.3) is satisfied, then 0<pn, qn<l fov n^l. Thus, we may define a
symmetric random walk Xn9 on No with transition probabilities Pnn+i =
p n and P n n _! = g«. If we start at an even integer, then 2Xn is a
random walk on EQ with transition probabilities P2n2n+2 = ί^nίWu
-P2n2n-2 = ξfen&n-i, and P 2 n 2 π = 1 - P2 n 2 n_2 - P 2 n 2 n + 2 . From the definition
of hn and continued fractions we have p2np2n+1 = (1 — ?2n)iP2n+i =
(1 - Q2n)pJ(X ~ Q2n) = Pn- Thus, P2w2?ι+2 = j>Λ. Similarly, JP2w2π_2 = gw

and P 2 n 2 n = r n . Thus, 2Xn is probabilistically the same as our original
random walk Xn. By Theorem 2.1 S u p p F c [ 0 , 1].

On the other hand, if Suppi^c[0, 1], then there is a symmetric
random walk Yn, on No, such that 2Yn, on EOf is probabilistically
the same as Xn. Let pn and gTO represent the transition probabilities
of Yn. Note that rn — 0, q0 = 0 and pra + gn = 1 since Yn is symmetric
and 2 F W is probabilistically the same as Xn.

By induction we shall show that pn — pn and qn — qn, where pn

and qn are given by (2.4). From above we know that pQ = 1 — pQ

and q0 = 1 = go Assume then that pn = ^ra and gn = gw for w :g m.
If m is even, then

pm/2 = Pr{Xfc+1 = m + 2 | X , = m} - P r f F f c + 1 - m + 2\2Yk - m}

Thus, j5w+1 = pm / 2 ^ p m = pm / 2 -f- (1 - g j = p m + 1 from (2.3) and (2.4).
Similarly, if m is odd, then qm+1 = g(m+1}/2 -f gm = gm+1. Since gn + pn =
1 = <Zn + jp», we have in either case pm+1 = p m + 1 and gm+1 = gm+1.
Thus, pn = p n and £n = gn. It is clear that 0 < pn, qn < 1 for w ^ 1,
so from (2.4) we see that 0 < hn < 1 for w 2> 1.

In many cases the continued fractions in (2.3) will not be difficult
to compute since hn+1 = αn+1/(l + hn).

EXAMPLE 2.2. Suppose that p0 = 1/2 = r 0 and for ί i M r B = 1/2
and pn = qn = 1/4. From (2.3) we see that λn = 1/2 for n ^ l . Thus,
by Theorem 2.3, we see that the SMF corresponding to this random
walk is supported by [0,1].

EXAMPLE 2.3. Suppose that p0 = 1/3 and r0 = 2/3, and for n ^
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1, r n = p n = gB = 1/3. From (2.3) hx - 1/2, h2 = 2/3, but hz = 1. Thus,
the SMF corresponding to this random walk is not supported by
[0, 1].

3* Some special cases* Consider a family of polynomials {Rn(x)}9

defined by (1.2), which are orthogonal with respect to F(x). Let X
be the set of zeros; i.e., X = {x: Rn(x) = 0 for some n ^ 1}. From
Blumenthal (1898) we have

THEOREM 3.1. Suppose that cn and Xn converge to c and λ (finite)
respectively. Then the set X is dense in [σ, τ] where σ = c — 2λ1/2

and τ = c + 2λ1/2; hence, the Supp i*7 is dense in [σ, τ]. Furthermore,
dF consists only of a countable number of atoms outside of [σ, τ].

For a proof and related results see Chihara (1968).

COROLLARY 3.2. // Xn is a simple random walk on NQ with
SMF F, then dF is purely atomic if rn —> 1.

Proof. The corresponding family of orthogonal polynomials {QJx)}
is defined by (1.1). If we normalize Qn(x) to be monic, then the
normalized polynomials satisfy (1.2) with cn — rn and Xn — Pn-iQn-
Since qn + rn + pn = 1, we see that Xn -> 0. so σ = τ — 1.

Still assuming that Xn has SMF .F we have

THEOREM 3.3. If SuppJPc[0, 1] and rn-^0, then dF is purely
atomic.

Proof We may assume that qn + rn + pn = 1 since normalizing
Qn(x) so that Qn(l) = 1 does not affect rn. For n ^ i\Γ(ε) r n < ε. By
Theorem 2.3 we have h2n = pn/(l — λ2n-i) < 1 s o ^π + ^2n-i < 1 and

fc2»-l = ?n/(l ~ hn-2) > ϊ».
Thus, for w ̂  jV(e), 1 - ε < pn + qn < pn + h2n_, < 1. Hence,

0 < Kn-i - Qn < e; but Λ^.i - gn = qn[h2n_J(l - Λ2n_2)]. Also p ^ ! =
Λ2»-2(l - ^2n_3) < h2n_2 < [h2nj(l - Λ2n_2)]. Therefore, 0 < λn = qnpn-ι <
Qnίhn-i/Q- — hn-2)] < ε ίor n^ N(ε). Hence Xn —> 0 and dF is purely
atomic.

For general families of orthogonal polynomials {Rn(x)} defined
by (1.2) with S u p p F c f α , b] we have

COROLLARY 3.4. If cn—>a or cn —> 6, then dF is purely atomic.

Proof. Starting with (1.2) we set Qn(x) = Rn(y)/Rn(b) where x =
(y — a)j(b — a). This new family of polynomials {Qn(x)} is orthogonal
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on [0, 1] with SMF F translated to [0,1]. The family {Qn(x)} satisfies
(1.1) with qn = XJnJ(b - α)ίn, τn = (cn - α)/(6 - α), and pn - tn+1/(6 - α)ίn

where tn = -B«(&) which is positive by Theorem 1.3. Since Qn(l) = 1
we have qn + rn + pn = 1 so we may apply the previous two results
to this family. If cn —> a or cn —> 6 then r B - > 0 o r rB-> 1. Thus, the
original measure d F is purely atomic.

Note that if Supp F — [0, 1] and pn, qn and rn converge to p, q
and r respectively, then a necessary condition for F to be absolutely
continuous is that r = 1/2 and p = q = 1/4. This follows immediately
from Theorem 3.1.
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