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ON PRODUCT BASES

JOHN C. MORGAN II

Starting with the notion of a category base, which is a
generalization of a topological space, we investigate cartesian
products of category bases. Extension are obtained of
several classical topological theorems concerning Baire
category in product spaces.

In § 1 we formulate the basic concepts and state relevant theorems
which were established earlier. In §2 we give conditions under which
the cartesian product of two category bases is also a category base.
General properties of product bases are then presented in §3. Utiliz-
ing the notion of a separable category base, discussed in §4, we
establish generalizations of results of Kuratowski and Ulam, Sikorski,
and Oxtoby on cartesian products (cf. [2], [10], [11]). Even in the
context of topological spaces the theorems given are more general
than the previous results.

1* Preliminaries* In this section we review the basic concepts
and result which are pertinent to this article. We have also added
several examples to clarify the ideas. For proofs of the main
theorems see [4], [5], [8]. For other related results see [6], [7], [9].

DEFINITION. A pair (X, ^ ) , where ^ is a family of subsets of
a nonempty set X, is called a category base if the nonempty sets
in ^ called regions, satisfy the following axioms:

1. Every point of X belongs to some region; i.e., X—\J^.
2. Let A be a region and let £& be any nonempty family of

disjoint regions which has power less than the power of ^ .
(a) If A Π (U &) contains a region then there is a region D e

3f such that Af)D contains a region.
(b) If A Π (U &) contains no region then there is a region

BdA which is disjoint from every region in 3ίm

Among the examples of category bases are the following.

EXAMPLE lA. The family of all complements of finite subsets of
an uncountable set.

EXAMPLE IB. Every topology.

EXAMPLE lC. The family of all measurable sets of positive
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measure in a σ-finite measure space.

EXAMPLE ID. The family of all perfect sets in a complete
separable metric space with no isolated points. It is the inclusion
of this example which led to the cardinality restriction in Axiom 2.

With respect to a given category base (X, ^) we define the
generalized Baire category concepts for subsets of X.

DEFINITION. A set S is singular if every region contains a
subregion which is disjoint from S. A countable union of singular
sets is called meager set. A set which is not a meager set is called
an abundant set. An abundant set whose complement is a meager
set is called a comeager set.

NOTATION. The family of all sets which are meager with respect
to a given category base (X, ^) will be denoted by

THEOREM 1.1. The intersection of any two regions either contains
a region or it is a singular set.

EXAMPLE IE. If ^ is the family of all complements of finite
subsets of an uncountable set then the singular sets, meager sets,
and abundant sets coincide with the finite, countable, and uncountable
sets, respectively.

EXAMPLE IF. If (X, ^ ) is a topology then the singular, meager,
and abundant sets are the nowhere dense sets, sets of the first
category, and the sets of the second category, respectively.

EXAMPLE lG. Let ^ denote the family of all measurable sets
of positive measure in a σ-finite measure space (X, Szf, μ) and let μ
denote the completion of μ. The families of singular sets and meager
sets with respect to ^ are identical and coincide with the sets of
/^-measure zero. The abundant sets coincide with the sets of positive
μ-outer measure.

EXAMPLE lH. If ^ is the family of all perfect sets in a complete
separable metric space with no isolated points then the families of
singular sets and of meager sets are identical and coincide with the
sets having Marczewski's property (s°2) (see [12]).

THEOREM 1.2. The family of all singular sets forms an ideal
and the family of all meager sets forms a σ-ideal.
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DEFINITION. A set S is meager (abundant) in a region A if
S Π A is meager (abundant). A set is abundant everywhere in a
region A if it is abundant in every subregion of 4 . A set is
abundant everywhere if it is abundant in every region.

THEOREM 1.3. If S is abundant everywhere in a region A and
A is abundant everywhere in a region B then S is abundant every-
where in B,

The most important theorem is the following generalization of
the Banach Category Theorem.

FUNDAMENTAL THEOREM. Every abundant set is abundant every-
where in some region.

COROLLARY 1.4. If a set is abundant in a region A then it is
abundant everywhere in some subregion of A.

In topology, a set S is defined to be locally of the first category
at a point x if there is an open set G containing x such that S f)G
is of the first category. This suggests the general definition that a
set S be locally meager at a point x if there is a region A containing
x such that S Π A is a meager set. This definition however is not
satisfactory.

For example, if & is the family of all bounded, closed intervals
on the real line then, according to this general definition, the closed
unit interval [0,1] would be locally ^-meager at the number 1, while
the same set would not be locally ^-meager at the number 1 for
the category base 3f consisting of all bounded, open intervals.

The definition which we have adopted is, in fact, equivalent to
the above topological definition.

DEFINITION. A set S is locally meager at a point x e X if in
every region A containing x there is a subregion B containing x
such that S Γ) B is a meager set.

THEOREM 1.5. A necessary and sufficient condition that a set
be meager is that it be locally meager at every point of X.

DEFINITION. A set S has the Baire property if every region A
has a subregion B in which either S or X — S is a meager set.
Restated, S has the Baire property if there is no region in which
both S and its complement are abundant everywhere.
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NOTATION. The family of sets which have the Baire property
with respect to (X, <&) will be denoted by

EXAMPLE II. If (X, <af) is a topology then SS(^) is the family
of sets which have the Baire property in the classical sense.

EXAMPLE 1J. If (X, ^/, μ) is a ^-finite measure space and ^ is
the family of all sets in j%f of positive measure then ^d(<^) is the
family of all sets measurable with respect to the completion μ of the
measure μ.

EXAMPLE IK. If X is a complete separable metric space with
no isolated points and <& is the family of all perfect sets then S5(^)
is the family of all Marczewski sets (i.e., the sets having the prop-
erty (s) of Marczewski [12]).

THEOREM 1.6. The sets which have the Baire property form a
σ-field which contains all regions and all meager sets.

THEOREM 1.7. If S has the Baire property and is abundant
every-where in a region A then A — S is a meager set.

THEOREM 1.8. // (X, <£*) satisfies CCC (the countable chain
condition) then a set S has the Baire property if and only if S is
representable as the union of two sets P, R, where P is a ^oδ-set
and R is a meager set.

COROLLARY 1.9. //(X, ^ ) satisfies CCC then 23(^) is the smallest
σ-field containing all regions and all meager sets.

DEFINITION. TWO category bases (X, if) and (X, &) are called
equivalent if 2TC(<£f) = SK(^) and 35(<if) =

THEOREM 1.10. // (X, <&) and (X, Sf) are category bases such
that each ^-region contains a ^-region and, conversely, each £&-
region contains a ^-region, then (X, ^ ) is equivalent to (X,

EXAMPLE lL. If X is the real line then the following families
of subsets of X are all equivalent category bases: all open sets in
the usual topology, all open intervals, all closed intervals, and all
open sets in the lower-limit topology (i.e., all sets which are unions
of intervals of the form [α, 6)).

EXAMPLE lM. If X is an uncountable set then the cofinite
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topology consisting of φ, X, and all complements of finite subsets of
X is equivalent to the cocountable topology consisting of φ, X, and
all complements of countable subsets of X. By means of Corollary
1.9 it is seen that the sets having the Baire property are the sets
S such that either S or X — S is countable.

EXAMPLE IN. Let (X, ^ ) be a topology. A subfamily & of <&
is called a topological base for & if every set in & is a union of
members of &. If ^ is a topological base for ^ then (X, &) is
a category base which is equivalent to (X,

EXAMPLE 10. Let (X, <g*) be a topology. Oxtoby has defined in
[10] a family έ% of nonempty sets in ^ to be a pseudo-base if every
nonempty set in ^ contains at least one member of ^ . If ^ is a
pseudo-base for & then (X, ^ U {X}) is a category base which is
equivalent to (X, < ^ ) .

We shall say a topology (X, ^ ) has an equivalent pseudo-base
& if there is a topology (X, ϋ?0 such that ^ is a pseudo-base for
(X, 3ί) and (X, ^ ) is equivalent to (X, <£f). Alternatively, (X, if)
has an equivalent pseudo-base & if the category base (X, & U {X})
is equivalent to (X,

EXAMPLE IP. In ^-dimensional Euclidean space the category
base of all Lebesgue measurable sets of positive measure is equivalent
to the category base of all closed sets of positive measure and is
also equivalent to the category base of all perfect sets which have
positive Lebesgue measure in every neighborhood of each of their
points.

EXAMPLE lQ. In a complete separable metric space with no
isolated points the category base of all perfect sets is equivalent to
the category base of all uncountable Borel sets.

THEOREM 1.11. Let (X, <&) be a category base, let A be a region
in &, and let

Then (A, <^A) is a category base, called the relativization of <& to
A. Moreover, for every set SdA we have

( i ) S is ^A-singular if and only if S is ^-singular.
(ii) S is <^A-meager if and only if S is ^-meager.
(iii) S has the Baire property with respect to (A, ^A) if and

only if S has the Baire property with respect to (X,
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DEFINITION. Let X denote a complete separable metric space
with no isolated points. A category base (X, ^) consisting of
perfect sets is called a perfect base if it satisfies the condition

( t ) for every region A and every point x e A there is a descending
sequence (An)^i of regions such that x e An, An c A, and
diam(An) <; 1/n for each n.

THEOREM 1.12. If (X, <&) is a perfect category base then every
abundant set contains a set which does not have the Baire property.

COROLLARY 1.13. // (X, ^) and (X, &) are non-equivalent
perfect category bases and ^ c ^ then there exists a set which has
the Baire property with respect to ^ but which does not have the
Baire property with respect to &. In fact, there exists a ^-singular
set which does not have the Baire property with respect to &.

2. Definition and examples* We first show that if (X, ^) and
(Y, 3?) are category bases then ( I x 7, ^ x &) is not necessarily
a category base.

EXAMPLE 2A. Let X denote the closed unit interval [0, 1], let
Q denote the set of all rational numbers, let C denote the Cantor
set, and let

^ = {[0, 1], [0, 1/3], [2/3, 1], [0, 1/9], [2/9, 1/3] ,

[2/3, 7/9], [8/9,1],...}

be the family of closed intervals used in the construction of C. Note
that any two intervals in ^ are either disjoint or one interval is
contained in the other. We shall show the countable family

<gf = {[a9 b]: 0 ^ a < b ^ 1 and α, 6 e Q} U {C f] I: Ie ^ }

is a category base.
Axiom 1 is obviously satisfied. Suppose then that i e ^ 7 and

{A, •••, Dn) is a nonempty, finite family of disjoint sets in ^ .
If A Π (U?=i A) contains a set in ^ then there is an index i

such that A n A is uncountable. If A and Dt are either both closed
intervals with rational endpoints or both sets of the form C Π I
where / 6 J?, then their intersection will also be of the same common
form and hence will be a set in ^ . On the other hand, if A = [a, b]
and Di ~ C Π I for some 1 e ^ or vice versa, then A Π A will contain
a set of the form C Π J for some J e ^ Thus Axiom 2a is verified.

Suppose now that A n (UΓ=i A) contains no set in ^ . For each
i, the set i n A will then be countable. This implies that each of
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the sets A Π A contains at most two points. There will therefore
be a set B e & which is contained in A and is disjoint from each of
the sets D*. Thus Axiom 2b is also verified.

Let Y = [0, 1] and let

& = ίl>, δ]: 0 ^ α < & ^ 1} .

As is easily verified, £& is a category base satisfying CCC. The
product family ^ x 3F also satisfies CCC, but it is not a category
base.

For, let Ao = C, let A, - [1/3, 2/3], Λ - [1/9, 2/9], Az = [7/9, 8/9], - -
be the sequence of intervals both of whose endpoints alone belong
to C, and let Bn = [0, 1] for each n = 0,1, 2, . The family
{Aw x J3n: w = 1, 2, •} is nonempty, disjoint subfamily of ^ x £&
which has power less than the power of <& x 3f, the set (Ao x Bo) Π
[Un=i (An x i?n)] contains no set in ^ x ϋ^, and there is no set in
<^ x £& which is contained in (A> x J50) — [U?=i(-^n x -Bn)] Axiom
2b is therefore not satisfied.

DEFINITION. If (X, <g*) and (Γ, ^ ) are category bases such that
( I x 7 , ^ x ^ 0 is a category base, then ( I x Γ , ? x ^ ) is called
a product base.

In order to formulate a general theorem concerning the existence
of product bases, we introduce the following property.

DEFINITION. Let (X, <g*) be a category base. For each cardinal
number m we define the property

P(trt): If Λ€ is a family of ^-regions which has power < m and
C is a ^-region such that C f] M contains no ^-region for
every Mε^f, then there exists a ^-region EaC which is
disjoint from every region in

Note that in the case that ^ has power rrt, Axiom 2b is a conse-
quence of the property P(m).

THEOREM 2.1. If (X, <£*) and (Y, £&) are category bases, & x £&
has power m, and both <& and 2$ have the property P(tn), then
(X x Y, <& x i^) is a category base.

Proof. Axiom 1 being obviously true, we have only to verify
Axiom 2.

Let {Aa x Ba: ae 1} be a nonempty family of disjoint ( ^ x
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regions which has power less than the power of & x £gf (hence the
index set I has power <m) and let A x B be any ( ^ x £^>region.
DefineDefine

J = {a e I: A f] Aa contains no

K — {a e I: B n Ba contains no

Suppose

( A x B)f] Γ u (Aa x Ba)~\ = U P f l A a ) x ( B n Ba)]
\_ael J ael

contains a ( ^ x £^)-region C x D. Since C is a subset of A, we
have CΠ Aa = CΠ (A Π Aα) for every ael. Hence, for every index
a 6 J, the set C Π Aα contains no ^-region. Because & has property
P(τn), there exists a ^-region EaC — \JaejAa. Similarly, there is
a ^-region FaD - \Ja&κBa. The set # x F is a (<if x ^)-region
and we have

Ex FdCx Dei U(Aα x Ba) .U

Since j& x F Φ 0 , there is an index aoel such that (E x F) Π
(Aαo x #αo) ̂  0 . In particular, Ef)AaQΦ0 and JPΠ ^α o ^ 0 . In view
of the definition of E and F, these relationships imply α0 g J and
<x0 ί -Ŝ  Consequently A Π Aαo contains a ̂ -region and β n -Bαo contains
a ^-region. We then conclude ( i x δ ) ί l (Aαo x BaQ) contains a
( ^ x ^)-region and Axiom 2a is thereby verified.

Suppose (A x B)f] [\Jaei(Aa x Ba)] contains no ( ^ x ^)-region.
Then, for every index ael, either A n Aa contains no ^-region or
B(λBa contains no ^-region. Choose a ^-region C aA — \JaeJ Aa

and a ^-region DaB — Uae*S«. Because I = J [J K, we have

C x J D C ( A x JS) - U (Aα x Ba) .
α e Z

Therefore, Axiom 2b is also verified.

( I x Γ , ^ x £&) is thus a product base .

THEOREM 2.2. If (X, ̂ ) αwd (F, ̂ ) are category bases, <& x
2? satisfies CCC, and both & and 2$ have the property P(fc$i), then
(X x Γ , ? x ϋ^) is α category base.

Proof. One need only repeat the proof of Theorem 2.1 with rrt
replaced by Ki

EXAMPLE 2B. In Example 2A, the family ^ has the property
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but does not have the property P(K0> the family 3f has the
property P(m) for every cardinal number m, and <& x 3f has power
2*°. The family

gf = {[α, 6]: 0 ^ α < b ^ 1 and α, 6 6 Q}

is a category base which is equivalent to Ξf and has the property
P(fc$0) Since ^ x if has power Ko, it follows from Theorem 2.1
that (X x F, <g> x if) is a category base.

EXAMPLE 2C. If (X, &) and (F, &) are topologies then both
^ and ^ are category bases which have the property P(m) for
every cardinal number m. By Theorem 2.1, (X x Y, ^ x £^0 is a
category base. In general, this product base is not itself a topology,
but it is equivalent to Tychonoff's product topology.

EXAMPLE 2D. If & is a pseudo-base for a topology (F, ̂ ) , J50

is a fixed set in &, and

then (F, c£) is a category base which is equivalent to (F, Z&) and
has the property P(m) for every cardinal number m. Hence, if
(X, ^ ) is any topology then ( I x F, ^ x ? ) is a product base.

EXAMPLE 2E. If ^ and ί& are the families of all measurable
sets of positive measure in σ-finite measure spaces (X, J ^ μ) and
(F, &, v), respectively, then (X, ^) and (F, ̂ ) are category bases
each of which has the property P(Ki) a n ( i ^ x ^ satisfies CCC. By
Theorem 2.2, ( I x 7 , ? x 3!) is a product base.

EXAMPLE 2F. Let (X, if) and (F, ̂ ) both denote the perfect
category base of all perfect linear sets which have positive Lebesgue
measure in every neighborhood of each of their points. Using Theorem
2.2, we see that ( I x ί, g 7 x 3f) is also a perfect, category base.
However, although S3(^) and S3(^) both coincide with the family
of all linear Lebesgue measurable sets, the family SS(^ x &) is
not the same as the family of all sets measurable with respect to
planar Lebesgue measure (i.e., all sets having the Baire property
with respect to the perfect, category base if of all perfect, planar
sets which have positive planar Lebesgue measure in every neighbor-
hood of each of their points).

For, assume to the contrary that S3(<if x Ξf) = SS^). It then
follows from Theorem 1.12 that the ( ^ x ^)-meager sets coincide
with the sets of planar Lebesgue measure zero. Now, one can establish
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the existence of a planar Lebesgue measurable set E such that both
E and its complement intersect every ( ^ x Sr)-region in a set of
positive, planar Lebesgue measure (cf. [1]). Such a set E does not
have the Baire property with respect to ^ x Si, since both E and
its complement would be everywhere {fέ? x ^)-abundant. Therefore,
< β ( ^ x si) Φ as(gr).

We conclude from Corollary 1.13 that there exists a set which
is ( ^ x iS^)-meager, but which is not Lebesgue measurable.

EXAMPLE 2G. If X, Y are complete, separable metric spaces
with no isolated points and £?(X), &(Y) are the families of all
perfect sets in X, Y, respectively, then both &(X) and ^(Y)have
the property P(2*°). Since 0>{X) x &*(Y) has power 2Ho, ( 1 x 7 ,
&{X) x .^{Y)) is a product base. Although the sets having the
Baire property with respect to &{X) and ^{Y) are the Marczewski
sets in X and Y, respectively, if X x Y is metrized with the usual
Euclidean product metric, the sets which have the Baire property
with respect to &*(X) x &(Y) do not coincide with the Marczewski
sets in X xY.

For example, suppose xQe X and L = {xQ} x Y. Being a planar
perfect set, L is a Marczewski abundant set with respect to the
family of all perfect sets in X xY. By Theorem 1.12, L contains
a set S which is not a planar Marczewski set. However, S is obviously
a (,^{X) x .£^(F))-singular set and hence has the Baire property
with respect to &(X) x

The proof of the following theorem is straight-forward.

THEOREM 2.3. J / ( I x 7 , ? x &) is a product base and E is
any ^-region then (X x E, r<^ x 2$E) is also a product base. More-
over for every set S c X x E we have

( i ) S is ( ^ x £&Eysingular if and only if S is {fέ? x &)-
singular.

(ii) S is ( ^ x 2$E)-meager if and only if S is ( ^ x ^ ) -
meager.

(iii) S has the Baire property with respect to rέ? X 3ϊE if and
only if S has the Baire property with respect to & X 2$.

3* General properties* We assume throughout this section that
( I x 7, r ^ x Si) is a given product base.

THEOREM 3.1. If SaX and TczY then S x T is (<g* x Si)-
singular if and only if S is ^-singular or T is ^-singular.
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Proof. Suppose S x T is ( ^ x ^)-singular and Γ is not ^ r -
singular. Then there is a ^-region D such that for every £^-
region EaD we have finϊ1 Φ 0 . If A is any ^-region then 4 x ΰ
is a ( ^ x £^)-region and, by hypothesis, there is a ( ^ x ^)-region
BxEaAxD such that

(Bx E)n(Sx T) = CB n S) x (J5 n Γ) = 0 .

Since B x E is a nonempty subset of i x f l , we have BaA and
£ c ΰ . Because J5ΊΊ Γ ̂  0 we have BΓ)S = 0 . Therefore, S in <£f-
singular.

Assume now that S is ^-singular. If A x D is any ( ^ x £&y
region then there is a ^-region 5 c A such that ΰ f l S = 0 and
consequently B x D is a ( ^ x ^)-region contained in i x ΰ with
( B x ΰ ) n ( S x Γ ) = 0 , Thus, if S is ^-singular then S x Γ is

x ^)-singular. Similarly, if T is ^-singular then S x T is
x ϋ^)-singular.

THEOREM 3.2. If S is a ^-meager set then S x T is ( ^ x
meager for any set T aY.

Proof. Use Theorem 3.1 and the equality

U Sn) x T - U 0S» x Γ) .

THEOREM 3.3. // S has the Baire property with respect to <&
and T has the Baire property with respect to &, then S x T has
the Baire property with repect to cέ? x 2ϊ.

Proof. We first show S x Γ has the Baire property with respect
to ^ x £gr.

Suppose AxD is any ( ^ x ̂ )-region. Then there is a
BaA such that S Π B or (X - S) Π B is if-meager. The (<af x
region B x D is contained in A x D and, by Theorem 3.2, either

(S r\ B) x D = (S xY) n (B x D)

or

[ d - S ) n s ] χ ΰ = [(X -S)xY]n(BxD)

= [(X xY)-(Sx Y)] n(BxD)

is ( ^ x ^)-meager. Hence, S x Γ has the Baire property with
respect to ̂  x £?.

Similarly, XxT has the Baire property with respect to ^x&.
The conclusion now follows from the equality
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S x T = (Sx7)n(Ix T) .

THEOREM 3.4. // ( I x 7 , ? x &) and ( I x 7 , ? x ^ ) are
'product bases and (Y, 3f) is equivalent to (Y,&) then the ( ^ x
meager sets coincide with the ( ^ x &)-meager sets.

Proof. Suppose first of all that S is a subset of I x Γ which
is ( ^ x ^-singular. We will show every ( ^ x g>region Ax E
contains a (<if x g>region C x D such that (C x D) Π S is (<if x g >
meager.

If i? is gVmeager then it follows, upon interchanging coordinates
in Theorem 3.2, that A x E is ( ^ x g^-meager and hence so also
is (A x E) n S. Thus, we have only to consider the case where E
is gf-abundant.

The ^-region E being g^-abundant, it follows from our hypothesis
that E is ^-abundant. By the Fundamental Theorem, E is £&-
abundant everywhere in some ^-region B. Since S is ( ^ x ^ ) -
singular, there is a ( ^ x <£^>region C x Fa Ax B such that
(Cx jF)ns= 0.

Because i? is ^-abundant everywhere in 5, the ^-region F,
which is contained in 5, is a ^-abundant set which has the Baire
property with respect to £&. Our hypothesis implies F is an g7-
abundant set which has the Baire property with respect to g7. Hence
there is an ^-region D such that D — F is g^-meager. From the
inclusion

we obtain

Cxflc(Cxf)U[Cx(ΰ-F)]

which implies

(Cxΰ)nS(z[(Cx F)nS]u{[C x (D- F)]nS}

- [C x (D - F)] Π S .

The set 15 - F being g'-meager, C x (D - F) is (<if x g")-meager
by Theorem 3.2. Consequently (C x D) f] S is ( ^ x if )-meager, as
we wished to show.

From the property established and the Fundamental Theorem we
see that, if S is ( ^ x ^)-singular then S is ( ^ x g")-meager.
Therefore, if S is ( ^ x ^)-meager then S is a ( ^ x g^-meager set.

Similarly, every ( ^ x g>meager set is ( ^ x ^)-meager. Thus,
the ( ^ x ^)-meager sets are the same as the ( ^ x g")-meager sets.
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COROLLARY 3.5. // (X, &) and (Y, &) are topologies, & is a
pseudo-base for £&, BQ is a fixed set in &, and

then the ( ^ x 2&)-meager sets coincide with the (^x^)-meager sets.

THEOREM 3.6. If ( I x Γ , ? x &f) and ( I x Γ ^ x g 7 ) are
product bases satisfying CCC and (Y, Ξ$) is equivalent to (F, 8*),
then ( I x 7, ̂  x 2$) is equivalent to ( I x Γ, ? x §?).

Proof. Using the equivalence of (Y, &) and (F, g7), together
with Theorem 3.3, we see that every ( ^ x ^)-region has the Baire
property with respect to i f x g7 and every ( ^ x if )-region has the
Baire property with respect to <& x 3ί. The conclusion now follows
from Theorems 1.6, 1.8, and 3.4.

4* Separable bases*

DEFINITION. Let (X, ^ ) be a category base. A family & of
^-regions with the property that each abundant set is abundant
everywhere in at least one region in & is called a quasi-base. A
category base is called separable if it has a countable quasi-base.

A particular instance of a quasi-base is the topological notion of
a pseudo-base.

EXAMPLE 4A. Let X denote the real line with the usual topology
i f and let

& = {G - N: G e <£f and N is countable} .

The family Sf is a topology which is equivalent to & and ̂  has
a countable pseudo-base consisting of all open intervals with rational
endpoints. However, 3ί does not itself have a countable pseudo-base.
For, suppose

& = {Gk - Nk: kel)

is any nonempty, countable subfamily of ^-regions. If we choose
a point pkeGk — Nk for each he I, then the nonempty i^-open set
X — {pΛ: & e /} contains none of the sets in &m

Although the family of all open intervals with rational endpoints
is not a pseudo-base for (X, i5^), it is a countable quasi-base for
(X,

EXAMPLE 4B. Let m denote an uncountable cardinal number,
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let θ be the smallest ordinal number of power m, and let X denote
the set of all ordinal numbers a < θ. The family & consisting of
ψ, X, and all open rays {β e X: β > a}, where a e X, is a topology
in which the singular sets coincide with the sets S of power < m.
In the case that m is a regular cardinal number, every meager set
is a singular set and, although (X, ^ ) has no countable pseudo-base,
&§ = {X} is a countable quasi-base for &*.

EXAMPLY 4C. Let X be an uncountable set and let ^ be the
cofinite topology consisting of φ, X, and all complements of finite
subsets of X. In the case that X is the set of all countable ordinal
numbers, the cofinite topology is equivalent to the topology in
Example 4B.

As is easily seen, & = {X} is a countable quasi-base for {X, <&).
However, not only does {X, <£*) have no countable pseudo-base, but
it also has no equivalent, countable pseudo-base.

For, suppose

& = {Bk:kel}

is any nonempty, countable family of subsets of X such that <S$ is
a pseudo-base which is equivalent to (X, ̂ ) . Setting g7 = & U {X},
we have (X, g7) is equivalent to (X, ̂ ) . This equivalence, in con-
junction with Corollary 1.9, implies every set in & is either countable
or its complement is countable. In addition, the g^-meager sets
coincide with the countable subsets of X.

Let

^ o — {Be&: X — B is countable} .

The family ^ is clearly nonempty and Π &* is the complement of
a countable set. Choose a point x0 e f] &0. The singleton set {x0} is
obviously an gf-singular set. Consequently, for each ^-region Bk e ^
there is an g'-region Cke& such that CkaBk and x0 £ Ck. Each of the
sets Ck does not belong to ^ and accordingly must be countable.

Now, the set S = X — {x0} is g^-abundant. Applying the Funda-
mental Theorem, S is g^-abundant everywhere in some g^-region
BkQe^. As Bko is thus g'-abundant, we have Bkoe^?0. The g7-
region Cko being a subregion of BkQ, the set S f] Cko is g"-abundant.
But this is impossible, since Cko is an g'-meager set.

REMARK. It is clear from these examples that, even in the
setting of topological spaces, the theorems in the next section are
proper extensions of results obtained by Kuratowski, Ulam, Sikorski,
and Oxtoby.
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THEOREM 4.1. // (X, ̂ ) is separable then the family of all
abundant regions satisfies CCC.

Proof. Let & be a countable quasi-base for (X, <&) and assume
to the contrary that there are uncountably many disjoint abundant
regions. Then there exists a region ΰ e ^ and two disjoint abundant
regions A and C each of which is abundant everywhere in B. Ac-
cording to Theorem 1.1, there is a region DaAf]B. Since C is
abundant everywhere in B and D is a subregion of B, the set C Π -D
must be abundant. But CΓ\D = 0 is a meager set. Thus, we have
reached a contradiction.

DEFINITION. A category base (X, <&) is locally separable if for
every point xeX, every region A containing x has a subregion I?
containining a? such that (B, <g*B) is a separable category base.

Oxtoby has defined a pseudo-base ^ to be locally countable if
each member of & contains only countably many members of έ%.
If (Y, 3f) is a topology which has a locally countable pseudo-base
& then (Y, & U { £ 0 U ( Γ - \J&)})> where Bo is a fixed element
of .^9 is a locally separable category base which is equivalent to

THEOREM 4.2. Every separable category base is locally separable:

Proof. Let (X, &*) be a category base which has a countable
quasi-base &. It will suffice to show that for any ^-region A, the
category base (A, ̂ A) is separable.

If A is ^-meager then every subset of A is ^-meager and the
empty family is a countable quasi-base for C^A. Assume therefore
that A is ^-abundant.

The family

j r = {Be<^:Af)B is ^-abundant}

is a nonempty, countable family of ^-regions. Applying Theorem
1.1, for each Be J^ we choose a ̂ -region Ccifl B. The countable
family tj%? of ^-regions C thus chosen will be a quasi-base for <g*Λ.

For, if S is any '^-abundant subset of A then S is ^-abundant.
Since ^ is a quasi-base for (X, ̂ ) , there is a ^-region Be& such
that S is ^-abundant everwhere in JS. The set Af]B is then <g:7-
abundant and consequently there is a ^-region C e j / such that
C c i f l 5 . The set S being ^-abundant everywhere in B, it is also
^-abundant everywhere in C. Hence, S is ^-abundant everywhere
in C.
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REMARK. The discrete topology on an uncountable set X is an
example of a locally separable category base which is not separable,
as is also the equivalent category base ^ = {{x}:xeX}.

5* Properties involving separability* We assume throughout
this section that (X xY,('^x &) is a given product base.

NOTATION. If SaX xY and xeX then the section of S deter-
mined by x, denoted by Sx, is defined by

Sx = {yeY:(x,y)eS}.

THEOREM 5.1. Assume (Y, S$) is separable. If S is a ( ^ x
meager set then there is a %p-meager set M such that Sx is ^-meager
for all x e X — M. Restated, almost every section of a meager set
is meager.

Proof. Let £$ be a countable quasi-base for £§̂ . We shall first
consider the special case that S is (<ĝ  x .^-singular.

Let

M = {xeX: Sx is ^-abundant}

and assume to the contrary that M is ^-abundant. Since & is
countable, there is a set ΰ e . ^ and a ^-abundant set NczM such
that, for every x e N, the set Sx is ^-abundant everywhere in B.
By the Fundamental Theorem, N is ^-abundant everywhere in some
^-region A. The set A x B is then a ( ^ x £^)-region.

Suppose now that C x D is any ( ^ x i^)-region contained in
A x B. Since N is ^-abundant everywhere in A, the set N Γ) C is
^-abundant. Choose a point xeNπC Then Sx is ^-abundant in
D. Choose a point y e Sx π D. We then have (x, y)e(C x D) Π S.
Thus, for every ( ^ x ^)-region CxDaAxBwe have (C x £&) Π
S =5̂  0 . But this implies S is not ( ^ x ^0-singular. Therefore, M
must be a ^-meager set and the theorem is verified in the case that
S is ( ^ x £^0-singular.

The validity of the theorem in the general case that S is ( ^ x ^ ) -
meager is a simple consequence of this specical case and the equality

where <SW> =̂1 is a sequence of ( ^ x ^)-singular sets.

REMARK. Using Theorem 3.4, one sees that Theorem 5.1 remains
true if the assumption that (Y, 3?) is separable is replaced by the
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assumption that (Y, £&) is equivalent to a category base (F, if)
which is separable.

As a partial converse of Theorem 5.1 we have the following
generalization of a theorem proved by Kuratowski and Sierpiήski in
[2].

THEOREM 5.2. Assume (Y, £&) is separable. If S has the Baire
property with respect to & x & and there is a ^-meager set P
such that Sx is ^-meager for all x e X — P then S is (<ĝ  x 3ty
meager.

Proof Suppose S has the Baire property with respect to <& x &f
and assume to the contrary that S is (<g* x ^)-abundant. By the
Fundamental Theorem, S is ( ^ x £^)-abundant everywhere in a
( ^ x ϋ^)-region 4 x 5 . Since Ax B is (<ĝ x ^)-abundant, it follows
from Theorem 3.2 that A is ^-abundant and B is ϋ^-abundant.

According to Theorem 1.7, the set T = (A x B) - S is (<gf x &)-
meager. Applying Theorem 5.1, there is a ^-meager set M such
that Ts is ϋ^-meager for all x e X—M. The set A being ^-abundant,
JP* is ^-meager for all x belonging to the ^-abundant set A — M.
From the inclusion (Ax B) - TaS we obtain B - TxaSx for all
xeA — M. As JS is ^-abundant, the set Sx is ^-abundant for all
xeA — M. This however contradicts the hypothesized existence of
the ^-meager set P.

REMARK. This theorem is not valid for arbitrary sets S. For
example, let X denote the set of all countable ordinal numbers with
the usual well-ordering and let ^ be the topology consisting of φ, X,
and all open rays {βeX: β > a}, where a e X. Then (X x X, & x
is a product base in which every ( ^ x ^)-meager set is ( ^ x
singular. If

S = {(α, a):aeX}

is the diagonal in X x X then every section of S is ^-singular, but
S is not ( ^ x ^-meager.

THEOREM 5.3. Assume at least one of the bases (X, ^ ) and
(Y, &) is locally separable. If SdX and TaY then S x T is

x 3t)-meager if and only if S is ^-meager or T is ^-meager.

Proof. Suppose (Γ, &) is locally separable, S x T is ( ^ x
meager, and S is ^-abundant.
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Let y be any point in Y and let D be any ^-region containing
y. Then there is a ^-region EczD such that yeE and (E, 2fE) is
separable. The set S x (Tf)E) is ( ^ x ^)-meager and, as is easily
verified, it is also ( ^ x i^)-meager. By Theorem 5.1, there is a
point xeS such that

[ S x (Tf]E)]x = T n E

is a .^-meager set. Consequently, T Π E is ^-meager. From
Theorem 1.5 we see that T is ^-meager. Thus, if S x T is (if x ^ >
meager then either £ is ^-meager or T is ϋ^-meager.

As established in Theorem 3.2, the converse is also true.

Using Corollary 3.5 we obtain the following consequence of
Theorem 5.3 which was established by Oxtoby.

COROLLARY 5.4. If (X, i f) and (Y, &f) are topologies, at least
one of which has a locally countable pseudo-base, and S c X, T c Γ ,
then S x T is of the first category in X xY if and only if S is of
the first category in X or T is of the first category in Y.

THEOREM 5.5. // both (X, if) and (Y, 2P) are separable then
{X x Y, cέ? x &) is also separable.

Proof. Let Stf and & be countable quasi-bases for c<^ and ^ ,
respectively. We will show the countable family if = j y x £§ is
a quasi-base for i f x Sf.

Suppose S is a {$f x ^)-abundant set. By the Fundamental
Theorem, S is ( ^ x ^)-abundant everywhere in some ( ^ x ^ ) -
region C x D. From Theorem 3.2 we see that C is ^-abundant and
D is ^-abundant. Let C be ^-abundant everywhere in a region
A e j / and let JD be ^-abundant everywhere in a region B e ^ .
Using Theorems 4.2 and 5.3 we see that C x D is ( ^ x £^)-abundant
everywhere in the region A x B e if. By Theorem 1.3, S is ( ^ x £^)-
abundant everywhere in A x B.

From this theorem it is a simple matter to derive the following.

THEOREM 5.6. If both (X, <£*) and (Y, £&) are locally separable
then (X x 7 , ^ x J2?) is locally separable.

THEOREM 5.7. Assume at least one of the bases (X, ^) and
(Y, &) is locally separable. If SaX and TczY then S x T has
the Baire property with respect to ^x £2ϊ if and only if either both
S and T have the Baire property or one of them is meager.
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Proof. Assume S x T has the Baire property with respect to
^ x &, S is ^-abundant, and T is ^-abundant. We have to show
S has the Baire property with respect to <£* and T has the Baire
property with respect to &f.

Let A be any ̂ -region in which S is ^-abundant everywhere
and let B be any ^-region in which T is ^-abundant everywhere.
By means of Theorem 5.3 we see that S x T is ( ^ x ϋ?>abundant
everywhere in the ( ^ x ^)-region A x J3. Since S x T has the
Baire property, the set

[(X x Γ) - (S x Γ)] n ( 4 x δ )

is ( ^ x ^O-meager. The two subsets

[(X -S)x T]f)(Ax B) = [(X - S) n A] x (Γ n B)

and

[ S x ( r - r ) ]n(A χ £ ) = ( S n i ) χ [ ( 7 - r ) n s ]

of this set are then also ( ^ x ^)-meager. Since T Π B is ^ r -
abundant and Sn A is ^-abundant, it follows from Theorem 5.3 that
(X ~ S)ΠA is ^-meager and (Y - T)Γ\B is ^-meager. Therefore,
S has the Baire property with respect to ^ and T has the Baire
property with respect to 3ϊ.

We thus see that if S x T has the Baire property with respect
to c^ x 2? then either both S and T have the Baire property or
one of the sets S and T is meager. The converse of this is a con-
sequence of Theorems 3.2 and 3.3.

THEOREM 5.8. Assume (Y, £&) is separable. If S has the Baire
property with respect to ^ x 2$ then there is a ^-meager set M
such that Sx has the Baire property with respect to & for all
x e X — M. Restated, almost every section of a set having the Baire
property has the Baire property.

Proof. Let & be a countable quasi-base for 2$. Assume to
the contrary that the set

is a ^-abundant set. For each xeM, the sets Sx and Y — Sx are
then ^"-abundant everywhere in some ^-region. From the definition
of a quasi-base and Theorem 1.3, both Sx and Y — Sz are ̂ "-abundant
everywhere in some ^-region B e &. Since & is countable, there
is a ^-region J 5 e ^ and a ^-abundant set NaM such that, for
every xeN, both Sx and Y — Sx are ^-abundant everywhere in JS.
According to the Fundamental Theorem, N is ^-abundant everywhere
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in some ^-region A. We shall show both S and (X x Y) — S are
( ^ x ^O-abundant everywhere in the ( ^ x ^)-region Ax B, which
contradicts our assumption that S has the Baire property with respect
to i f x &.

Suppose C x D is any ( ^ x ^)-region contained in A x B, then
C c i and DaB. Hence C Π iV is ^-abundant and for every x e
CΠ-ΛΓ both fln-S, and D Γl (Y — Sx) are ^-abundant sets. By
Theorem 5.1, the sets (C x D) f] S and ( C x ΰ ) n [(X x Y) - S] are
both ( ^ x i^)-abundant. Thus we have reached the desired con-
tradiction.

DEFINITION. A category base (X, r^) is called a Baire base if
every region is an abundant set.

From Theorem 5.3 we easily derive the following.

THEOREM 5.9. If (X, &) and (Y, 3ί) are Baire bases, at least
one of which is locally separable, then (X x Y, ^ x &) is a Baire
base.

NOTATION. If f:X—>Y is a function then the graph of / will
be denoted by Γ(/); i.e.

Γ{f) = {(x, y)eXxY:y = f(x)} .

THEOREM 5.10, Assume (X, ^ 7 ) is a Baire base and (Y, 2$) is a
locally separable Baire base such that each singleton subset of Y is
^-meager. If f: X —> Y is any function then the complement of the
graph of f is ( ^ x &)-abundant at each of its points.

Proof. Let T = (X x Y) — Γ(f) and assume to the contrary
that there is a point z e T at which T is ( ^ x <SQ-meager. Then
there exists a ( ^ x ϋ^)-region C x D such that zeC x D and the
set T f](C x D) is (if7 x ^)-meager. From the definition of local
separability, there is a ^-region EczD such that zeCx E and
(2?, £̂ z?) is separable. According to Theorem 2.3, (X x Ey & x £&E)
is a product base.

The set S = T d (C x E) being a ( i f x ^)-meager subset of
C x S, it is also ( ^ x ^ ) - m e a g e r . Applying Theorem 5.1, there
is a ^-meager set Λf such that Sx is i^-meager for all x e X — M.
Since C is ^-abundant, there is a point x eC — M and

is ϋ^-meager. Now, T being the complement of the graph of /,
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the set Tx differs from Y by only a single point; namely, the point
(x, f(x)). Consequently, Tx is a ^-comeager set. As Txf]E is £&E-
meager, hence also ^-meager, and Tx is ϋ^-comeager, E must be a
^-meager set. But this contradicts the hypothesis that (Y, 2$) is
a Baire base.

THEOREM 5.11. Assume (Y9 Sf) is a locally separable base such
that each singleton subset of Y is £2?-meager. If f:X-+Y is a
function whose graph Γ(f) has the Baire property with respect to
^ x 2$ then Γ{f) is a ( ^ x &)-meager set.

Proof. Let z be any point of 1 x 7 and let A x B be any
x £^>region containing z. Then there is a ϋ^-region EdB such

that z e A x E and (E9 &E) is separable. According to Theorem 2.3,
(X x E, <& x &fE) is a product base.

Since Γ(f) has the Baire property with respect to ^ x &, the set

S - Γ(/) Π (A x £7)

has the Baire property with respect to ̂  x ̂  Hence, S has the

Baire property with respect to ̂  x ̂ .. For every point x e X,

S
x
 = [Γ(F)]

X
 n (A x #),

consists of at most one point and hence is i^-meager. Applying
Theorem 5.2, we see that S is ( ^ x ϋ^)-meager. Consequently, S
is ( ^ x ^)-meager.

We have thus shown that if z is any point of 1 x 7 then every
( ^ x ^)-region containing 3 has a ( ^ x ^O-subregion containing
z in which Γ(/) is ( ^ x ^)-meager. We conclude from Theorem
1.5 that Γ(f) is a ( ^ x ^)-meager set.
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