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TRANSVERSALS TO LAMINATIONS

RUSSELL B. WALKER

The stable and unstable manifolds of an Anosov diffeo-
morphism are not leaves of C-foliation. Instead, their
unions comprise two laminations; that is, two C°-foliations
which have C'-smooth leaves and continuous nonsingular
tangent plane fields. Recently C. Ennis has shown that
laminations have transversals at every point. In this note,
the existence of transversals is shown to require plane
field continuity.

For these purposes, a C°-foliation with C^-smooth leaves will be
called an erratic lamination. These may contain infinite sequences
of points, {pk} —> p0 having tangent planes which do not limit on the
tangent plane through p0.

The example of Theorem 2 is of a l-dimensional erratic lamina-
tion of R2 containing a leaf having no differentiate transversals.
Though higher-dimensional, lower codimentional analogues most
certainly do exist, the discussion and definitions to follow will be
limitted to 1-dimensional foliations.

A C°-imbedd (n — l)-disk D contained in an ^-manifold is
topologically transverse to the leaf of a C°-foliation if at each point
of their intersection, the leaf crosses the disk in a single point.
The terms "strictly ingressing" or "strictly egressing" are used
similarly in flow theory [3]. D is topologically transverse to a C°-
foliation if it is topologically transverse to every leaf. A C1-
imbedded disk is differentially transverse to an erratic lamination
if it is differentiably transverse to every leaf. Erratic laminations
are the most general foliations for which differentiably transverse
disks may exist. A good reference for further definitions and
theorems is B. Lawson's survey article, [5].

The Existence of transversals.
The following two theorems distinguish laminations from erratic

laminations by the behavior of their topological transversals.

THEOREM 1 {Ennis [2], 1979): Any C°-imbedded (n — l)-disk, D,
topologically transverse to a l-dimensional lamination, J?f of Mn>
can be CQ-approximated by a C^imbedded, differentiably transverse
disk.

THEOREM 2. There exists a l-dimensional lamination Sf of R2
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containing a leaf, l0, with a point p0 e l0 such that all C1-imbedded
disks, differentiably transverse to Jϊf are disjoint from l0. Further-
more, all such disks topologically transverse to Jίf are disjoint from

In a sense, lQ is a "barrier" to differentiably transverse disks,
and p0 is the only "leak point" of topologically transverse disks
through l0.

The proof of Theorem 1 requires the following theorem.

THEOREM 3 (Wilson [6], 1969). Let f:Mn->R be continuous
and let X be a continuous nonsingular vector field on M with uni-
que trajectories. Assume Xf (the derivative of f along trajectories
of X) exists and is continuous. Then for all ε > 0, there exists a
G°°-function g:M-^R which ε-approximates f in its X-derivative;
that is, for all peM, \f(p) - g(p)\ < ε and \Xf(p) - Xg(p)\ < e.

Proof of Theorem 1. Denote by lp, the leaf of £f through p.
Let X be a normalized, nonsingular tangent vector field to J^f.
Designate ^f(D) = {I e ^f\ I Γ) D Φ 0}. Let N be a small C°-foliation
chart-neighborhood about D and denote by N — \Jie (2» (I Π N). For
peN, define f(p) to be the arc-length along lp from D to p, taken
positively in the X-direction and negatively, counter the X-direction.
It is assumed that N is sufficiently "box-like" that these arc-seg-
ments, lp, lie entirely within N. Thus f~\0) = D.

f is continuous along integral curves of X, the leaves of J5f',
however, there is some question as to the continuity of/as a whole.
This is a consequence of the continuity of X: Let peN with
f(p) > 0 and let {pk} -^p be an infinite sequence in N. Denote by
ΐh (resp. Tp) the leaf segment from D to pk (resp. p) within N. Tp

is contained within a thin C° chart-neighborhood, NpaN. For pk

sufficiently near p, TkaNp. Thus, as fc-^oo, Jk -> ϊp in the C°-
sense. For each x e Tp and k large enough, there are well-defined
xk e Tk such that xk —* x as k —» oo. X continuous then implies
X(%k) —> X(%). And since X is unit,

f(pk) = [xd8 >\_ Xds = f(p)
Jlk Jίp

as desired.
Again X unit implies that Xf(p) = 1 for all peN. f may be

extended to all of M maintaining that Xf = 1 in a neighborhood of
N and that f~\0) f] Nz> D.

Now Theorem 3 may be applied to this extended /: There exists
a C°-close, C°°-map g near / such that Xg > 1/2 on a neighborhood
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of D. Thus g
approximates D.
So the rank of Dg near D is 1 implying that 0 is a regular value
of g. Thus g~\0) is transverse to <2f as desired.

-1(0) Π N contains a C°°-imbedded disk which C°-
g being in fact Lipshitz assures that Όxg = Xg > 0.

Construction of the erratic lamination. In the discussion to
follow, all smooth unit-speed arcs differentiably (resp. topologically)
transverse to the lamination or erratic lamination in question will
be called pathways (resp. topological pathways).

Let S = {(x, y) e R2: 0 ^ x ^ 1}. A pathway 7: [0, 1] -» S such
that cc(7(0)) = 0 and X(Ύ(1)) = 1 is reversing if there exists t0 e (0, 1)
such that y'(t0) = -\y'(to)\(d/dx).' Such points, y(to)f are called

FIGURE 1
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I X-AXIS

- 2 -

FIGURE 2

reversing points.
S is to be C^-foliated by S ,̂ an isotope of the product foliation,

^ 0 = {x — const.}. Figures 1, 2, and 3 depict stages of this smooth
isotopy, ht which is symmetrical across the cc-axis and has support
off dS U {sc-axis}. Pathways through ht&0 are forced to bend. & —
h^Q is such that topological pathways are either reversing or meet
the rectangle B = [0, 1] x [1/10, 1/10].

In Figure 1, points designated plf p2, pB, and p4 have been pushed
by hu t G [0, 1/3], along arcs to new locations; plf p2, p3, and jp4. In
the process, ^ 0 has been distorted to contain two pairs of hooking
"tracer-protrusions"; if you will. These pairs are repeated down the
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-2

FIGURE 3

2/-axis and are evenly-spaced.
The arc y1 of Figure 1 is a nonreversing topological pathway

which is disjoint from B. In order to force 7i to bend, ht, t e
[1/2,2/3], pushes ^4 and its tracer-protrusion back on itself and
through 7i (Figure 2). However, the topological pathway τ2 of
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Figure 2 is disjoint from B and nonreversing. To bend such path-
ways, all pairs of tracer-protrusions, up and down the ?/-axis, are
folded back on themselves (Figure 3).

It is now claimed that g7 = h^0 and h — K1 have the following
properties:

LEMMA 1. ( i ) The x-axis is topologically transverse to &.
(ii) h carries & onto the product foliation, {x = const.}.
(iii) The C°-size of h is bounded and so proportionate to the

width of S.
(iv) Every nonreversing topological pathway through &

intersects B = [0, 1] x [1/10, 1/10].

In a sense, condition (iv) means that nonreversing pathways
through & are "funneled" to within 1/10 of the #-axis (in y-
coordinate). This distance will be referred to as the funnel width
of S.

J*f of Theorem 2 is now constructed by mapping an infinite
sequence of "replicas" of 5f into R2 in such a way that their
boundary leaves converge C1 onto the cubic leaf l0 — {x, xz). These
may be thought of as an infinite sequence of "gates" by which the
desired behavior of topological pathways is forced. The point p0

referred to in Theorem 2 is the origin.
For c ^ 0, the leaf of £f through (c, 0) has the form {{x, (x - c)3)}.

A sequence of smooth arcs, {lk: k e Z+} form the left-hand boundaries
of the replicas of 5 .̂ The {lk} are presumed to have the following
properties:

(1) lkf]{x - axis} - -l/2fc.
(2) Each lk is differentiably transverse to the #-axis.
( 3 ) lk —> lQ in the C^-sense.
( 4 ) lk = {(flrfc(0, y\ y)} where gk: {τ/-axis} -> R is smooth.
( 5 ) {lk} are pairwise disjoint. In fact, for all k e Z+,

inf {gk+1(0, y) - gk(0, y)} > l/2 fe+1 .
y

Ak:R
2^R2 is given by Ak(x, y) = {xβM, y). Bk: Rι -+ R* is a

diffeomorphism given by Bk(x, y) — (x, bk(y)) where bk{y) = y when
\y\ ^ 1 a n d bk(y) = ( l / 2 k + 2 ) e y w h e n \y\ £ 1/2. O n {1/2 < \ y \ < 1 } , bk

is the usual bump function. Bk will be applied to g? on S to assure
strong enough compression of the funnel widths as the replicas of
g? converge on l0.

Let

S k = {(x, y): g k ( 0 , y ) ^ x ^ Λ ( 0 , y) + l / 2 * + 2 } .
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Extend gk onto {0 ^ x ^ l/2*+2} by gk(x, y) = (^(0, j/) + &, y). Now,
g?t = ^ π Sk = gkAkBk&. Conditions (1) and (5) on {U assure that
{Sk} are pairwise disjoint; the bands in R2 between each Sk and Sk+1

is smoothly foliated by graphs of the y-axis each differentiably
transverse to the α>axis. The union of these leaves comprise Jΐf.

FIGURE 4

Proof of Theorem 2. £f is the union of (C1) smooth leaves and
is a smooth foliation off lQ. Let άf be the smooth foliation of JB2

which is identical to & except ^ = foA^ on each Sk. That ^
is smooth follows from condition (3) on {lk}. Because & is an isotope
of 5f0 on S, ^ n Sk is an isotope of / n ^ , Thus, there is an
isotopy, ht on J£2\{U> which carries £?\{l0} to ^^\{ϊ0} and fixes
(R2\{l0})\U Sk. As a fact, ht may not be smoothly extended onto l0

(Theorem 1), but may be continuously extended to the identity on
Zo if the C°-size of ht and hτι on each Sk approaches 0 as k —> oo.
This follows from the fact that h, Ak, and Bk have C°-sizes pro-
portionate to the strip widths. So Jίf is an erratic lamination.

The composition, gkAkBk carries reversing points to reversing
points since each of its Jacobian matrices has (1, 0) as an eigenvector.
Due to the cubic shearing of the Sk near (0, 0), the funnel widths
of gkAkSf on Sk enlarge proportionate to the strip widths as k —> oo.
Briefly, this cubic shearing is suppressed by the sextic compression
of the Bk. In fact, as k->oof these funnel widths decrease quad-
ratically relative to the strip widths: Consequently, every non-
reversing topological pathway through Sk contains a point, qk, such
that \y(qk)\ < l/10(2-2(*+2));

Let 7 be a topological pathway which crosses l0. For some
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N > 0, 7 crosses all strips Sk9 h > N. If eventually each such
crossing contains a reversing point, then 7 contains a sequence of
such points converging on ίo This contradicts that 7 is differentiable
and unit speed. Thus for some larger N > 0, 7 contains a sequence
{QJC 6 Sk} as above which limits on qQ e l0. Since y(qk) —> 0, &(g0) = 0.
So 7 must cross l0 at (0, 0). But further, since y(qk) —> 0 quadratically,
?'(?*) * (3/3#) —> 0, implying that 7 is tangent to l0. Since all smoothly
imbedded 1-disks in R2 may be parametrized by a unit speed arc,
the desired result is attained.
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