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FINITE HANKEL TRANSFORMS OF
DISTRIBUTIONS

R. S. PATHAK AND 0. P. SINGH

Finite Hankel transforms of the second and third kind
of distributions are defined and inversion theorems are
established in the distributional sense. Operational transform
formulae are obtained for the both transforms. These are
applied to solve certain partial differential equations with
distributional boundary conditions.

1* Introduction* Finite Hankel transforms of classical func-
tions were first introduced by Sneddon [8] who applied them in
solving boundary value problems for systems possessing axial
symmetry. There are three kinds of finite Hankel transforms
depending upon the nature of the kernel involved. These are as-
sociated to the three kinds of expansions of an arbitrary function,
viz. Fourier Bessel series [6], Dini series [6] and series involving
cross products of Bessel functions [4] respectively.

Finite Hankel transforms of distributions were given by Zemanian
[11], Pandey and Pathak [3] as special cases of their work on general
eigenfunction expansion of distributions. But, Dube [1] studied finite
Hankel transform of the first kind of distributions independently.
To get a deep insight it is necessary to study the other two trans-
forms also independently. In [12] and [3] the inversion theorems
are given without any consideration of the values of H + v occurring
in the definition of the transform (see (4.4)), where as the classical
Dini series involves a term depending upon it. This motivated us
to study independently the finite Hankel transforms of the second
and third kind of distributions.

The present paper is divided into two parts. In the first part
we extend the classical inversion theorem for finite Hankel transform
of the second kind [6, p. 601] to a class of distributions, which gives
rise to the Dini expansion of the distributions. The series converges
in the weak distributional sense. We derive an operational transform
formula which together with inversion formula is applied in solving
certain distributional differential equations. In the second part of
the paper we extend the inversion theorem for finite Hankel trans-
form of the third kind [4] to a class of distributions. Here also
the series converges in the weak distributional sense. Finally we
give an application of the finite Hankel transform of the third kind.

2* The notation and terminology• We follow the notation
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and terminology of Schwartz [7] and Zemanian [12, 11]. Here /
denotes the open interval (α, 6), 0 ^ a < 6 < <*>. The letters t, x
represent real variables in I. D(I) is the space of infinitely differ en-
tiable functions on I with compact support contained in /. The
topology of D(I) is that which makes its dual D\I) of Schwartz's
distributions. E(I) is the space of all infinitely differentiable functions
on I and E'(I) is the space of distributions with compact support.
ΩVyX denotes the differential operator Dl + (l/x)Dx — (v2/x2).

3* The testing function space UUtXI). For any (a, v) e R2, we
define

Ua>XI) = {φ:I >C\φ(x) is infinitely diff erentiable

and φ satisfies (3.1)}

(3.1) 7aΛφ) = sup \xaΩk

ViX[χ-ιφ{x)]\ < oo
a<x<b

for each k = 0, 1, 2, .

Clearly UatJJ) is a topological vector space. The topology of Uat£I)
is generated by the collection of seminorms {7fc'v}Γ=o Ua,v{I) is a
Frechet space. Its dual U'a>χi) is given the weak topology. Members
of U'a>χi) will be referred as distributions.

Note, (i) D(I)<zUatU(I) and topology of D(I) is stronger than
that induced on it by Ua,AI)=>fe U'a,χi) then f\DeD\I).

(ii) E\I) can be identified as a subspace of U'a,»(I).
(iii) Given / 6 Uά\χi) there exists r e N+ and a positive constant

Cs.t.

φ)\^Cmax7i'*(?>) V^6 Ua>XD

since / is bounded.

PART I

In this part we take I = (0,1) and study finite Hankel transform
of the second kind of distributions.

4* Dini series* The Dini expansion associated with f(t) is

(4.1) Bit) + Σ KJIXJ)
m=l

where Jv(t) is a Bessel function of first kind and λm, m = 1, 2, 3, ,
are the positive roots (arranged in ascending order of magnitude)
of the transcendental equation



(4.2)
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zJXz) + HJJtz) = 0

V = = ~~2

bm, m = 1, 2, 3, are given by

2Xll[tf(t)JXXJ)dt
JO
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(4.3)

and

(4.4) B0(t) =

6- =

Ό if H + v > 0

2(y + l ) f ί1£»ι'+1/(x)da; if H + v = 0
Jo

if J ϊ + v < 0 .

The condition of validity of (4.1) are given in the following theorem
[6, p. 601].

THEOREM 4.1. Let f(t) be a function defined over the interval

(0, 1), and let \ t1/2f(t)dt exist and (if it is improper integral) let it
Jo

be absolutely convergent. If fit) has limited total fluctuation in
(α, 6) where 0 ^ a < b ^ 1 then the series (4.1) converges to the sum
l/2[ f(t + 0) + f(t - 0)] at all points t s.t. a + Δ <*t <*b - Δ where
Δ is arbitrarily small; and the convergence is uniform if f(x) is
continuous in (a, b).

If, instead of the coefficients 6TO, we introduce the finite Hankel
transform of second kind of the function f(x), deonted by H2(m),
and defined by equation

(4.5) H2(m) = [tf(t)Jv(XJ)dtt m = 1, 2, 3, ,
Jo

the above theorem on Dini series yields the inversion formula

2λ2

mi?2(m)
(4.6) f(t) - B0(t) Σ-

The Theorem 4.1 will be extended to a class of generalized

functions.

5* T h e generalized finite Hankel transform of t h e second
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kind* Throughout this part we always have a ^ 1/2 and v >̂ —1/2.

DEFINITION. For / e Uά,XD we define its finite Hankel transform
J%f2,λf) of second kind as:

(5.1) (<$g?, J)(m) = F2(m) - (f(x), xJv(\mx)} m = 1, 2, 3, - .

(5.1) is well defined since xJu(Xmx) e UatXI), m = 1, 2, 3, , for a +
v ^ 0. Note that for a function f(x) defined on / such that

\x1~a\f(x)\dx exists for a ^ 1/2, we get a regular distribution Tf,
Jo

which we identify with /, defined as

<Tf, ψ) = [f(x)φ(x)dx , φ 6 l7βfV(/):.
Jo

Let us define

Tw(t, x\ H) = A0(x, t) ^

where

^ = ( λ 2

w -

and

A0(aj, ί) =

0 if H + v > 0

2(v + l ) ^ v if H + v = 0

if i ί + v < 0 .

Notice that xA,{x, t) e UatU(I) if α + v ^ 0. Therefore

ajΓ^ί, x; JET) e Ua,χi) when τy2

m Φ 0 .

6* The inversion of (5*1)* The following theorem provides an
inversion formula for the distributional transform (5.1) which in
turn gives a Dini series representation for / e U'a,JJ).

THEOREM 6.1. {Inversion). Let f e Uϊ,χi), α^l/2, v^ -1/2. Let
F2{m) be the finite Hankel transform of f Then

(6.1) f(t) = lim Σ ^-F2(m)JXXJ) + </(*), xA>{x, ί)>

m the sense of convergence in D\I).

Proof. We have to prove that
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(6.2) ( Σ ^ ί W J M <p(χ)) + <Bo(χ), φ{χy>

as

for any φeD(I), where B0(x) denotes (f(t), tA0(x,t)). Now <£>(#) e
D(I) if and only if xφ(x) e D(I). So that (6.2) is equivalent to showing
that

(6.3) ( Σ ^ W J . M a?φ(α?)\ + (B0(x), xφ(x))

><f(t),tφ(t)> as ΛΓ >oo.

Suppose that support (φ) c (α, δ) S [0, 1]. Now left hand side of (6.3)

Since £,(») - </(«), <Λ(a;, ί)> and (2λL/'?L)-P7

2(m)J,(λ)Ba;) are locally in-
tegrable over (0,1) and supp (φ)a[a, b]; (6.4) can be written as

(6.5) = Γ</(ί), tTN(t, x; H))xφ(x)dx

(6.6) = (/(£), ί jV*(ί, a?;

(6.7) ><f(ί),tφ(t)> as i\Γ >oo.

Once we prove the equality of (6.5), (6.6) and (6.7) our proof of the
theorem will be complete. We prove the above by the following
series of lemmas.

LEMMA 6.2. Let fe Uά,χi). Then for any NeN+ andφeD(I)
we have

(6.8)
\\f(t\ tTN(t, x; H))xφ(x)dx
Jo

= (fit), \tTN(t, x; H)xφ(x)dx^ .

Proof. Since tTN(t, x; H) e Ua>XI) for fixed x, the left hand side
of (6.8) makes sense. Also since
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tTN{t, x; H)xφ{x)dx = t\ Σ ^ Λ ( λ .
0 JθLm=i Ύfm

+ A0(x, t) \xφ(x)dx

and since I jχxmx)xφ(x)dx < oo and I A0(x, t)xφ(x)dx < oo, we have

S i Jo Jo

tTN(t, x; H)xφ(x)dx e Ua,χi); the right hand side of (6.8) makes sense.

Now left hand side of (6.8)

f ί2V(ί, x; H))xφ(x)dx

ί) + A0(x, t)Jjxφ(x)dx= Σ ^7=-</(*), tJXXJ)) jχ\mx)xφ(x)dx

= Σ

This proves the lemma.

LEMMA 6.3. Let a,beR such that 0 < a < 6 < 1.

lim ί TN(t, x; H)xdx = 1 , a <t <b .

iV->oo J α

Proof. We have

y ί , a?; JBΓ)a?da?

tΓ^ί , x) - SN(t, x; H)]dx .
Now for a < t < 6, Γa?2V(ί, «)da; -> 1 as N^ oo [i, p . 368]. And

S 6 Jα

S^(ί, a; H)xdx —> 0 as iSΓ—> oo by the analogue of Riemann Lebesgue
leαmma [6, p. 599].

TN(t, x) is defined as:
τ (f ^ __ v
i N\τ, x) — 2LΛ
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where j m , m = 1, 2, 3 , are the positive zeros of Jy(z) arranged in
ascending order. SN(t, x; H) is defined as TN(t, x) — TN(t, x; H).

LEMMA 6.4. Let ψ{x)eD{I). Then for a ^ 1/2 and v ^ -1/2

t°\ TN(t, x; H)[ψ(x)-ψ(t)]xdx -> 0 as N-^oo uniformly for all t e (0, 1)
Ja

where supp. (ψ) c [a, δ] g (0, 1).

Proof. We have (0, 1) = [(0, a) U (6, 1)] U [α, &]. For t e (0, a) U
(δ, 1); α/r(ί) = 0. Therefore

Γb Γb

I TN(t, x; H)[ψ(x) — ψ(t)]xdx — \ xTN(tf x; H)ψ(x)dx
J a Ja

S b Γb

xψ(x)TN(t, x)dx — \ x<ιlr(x)SN(t, x; H)dx .
a Ja

In view of the analogue of Riemann-Lebesgue lemma [6, p. 590 and
p. 600], given ε > 0 there exists No such that for N ^ No we have

8Cίε . SQe
t, x)dx

I J a

and
- t - h)VT πC\(l - b)V t

ί xψ(x)SN(tf x; H)dx
(2 - t - b)V t (1 - 6)1/ *

where Cu C2 and C3 are some constants. Thus

ta\ I Γ^(ΐ, a;; Ή)xf{x)dx < — ττta~1/2ε < TΛ ϊ^ε

I Jα (1 - 6) (1 - b)

since a ^ 1/2, where C is a constant . So t h a t

(6.9) ίβ Γ Γn(t, a?; £Γ)[ψ(α) - ψ(t)]»dα • 0 as JV > oo
Jα

uniformly for all t e (0, α) U (6, 1).
Next we have to deal with the case t e [a, b]. From [1] we know

that

(6.10) ta["TN(t, x)[ψ(x) - f(t)]xdx »0 as N * ^
Ja

uniformly for all t e [α, 6]. Hence we have merely to show that

ta \hSN(t, x; H)[ψ(x) - ψ(t)]xdx > 0 as N > oo
Jα

uniformly for all t e [a, b].
Let F(t, x) = x~v[f(x) - ψ(t)] for 0 < x < 1, 0 < t < 1. Clearly

F(t, x) is continuous for 0 < x < 1, 0 < t < 1. So that
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\"sN(t, x; H)[ψ(x) - f(t)]xdx = (V+\F(ί, x)SN(t, x; H)dx .
Ja Ja

Divide [α, b] into p equal parts by means of the points a — xOf

xu , xp — b. For ε > 0 arbitrary, choose p large enough so that

where Um and Lm are upper and lower bound of F(t, x) in («M_i, xm)
for a ̂  t 5Ξ 6.

Let F(t,x) = F(t,xm_1)+Wm(t,x). Then \Wm(t,x)\gUm-Lm.
Therefore for all N ̂  ^(depending on ε)

[bSN(t, x; H)[f(x) - ψ(t)]xdx
Ja

._,) \" x*+1SN(t, x; H)dx

V l ^V+1W it r W (t τ TJλrl^
s i 1 & VV m\of JU)ONy0f X, £1 )ilJϋ

m=l Jχm__ί

=ε [6, p. 600] .

Therefore

3N{t, x; H)[ψ(x) - ψ(t)]xdx
(1 — 0) (1 — 0)

This together with (6.9) and (6.10) proves the lemma.

LEMMA 6.5. Let φeD(I) with supp (<p)(z[a, &]. Tfeê  /or α ^
1/2 and v ̂  - 1/2

^(*, x; H)xφ(x)dx - ?)(«)] > 0

as N-+ oo uniformly for all t e (0, 1).

Proof. It is easily seen that

ΩPt,[TN(t, x; H)] = ΩvΛ[TN{t, x; H)] .

Therefore by integration by parts,

ΩΪ,ΛbTN(t, x; H)xφ(x)dx
Ja

= \bTN(t, x; H)ΩΪ,x[φ(x)]xdx .
J a

Using Lemma 6.3 we get, as N-> oo,
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V(ί, x; H)φ{x)xdx -

= \bTN(t, x; H)[ΩΪ,x[φ(x)] - Ωϊ,t[φ(t)]]xdx
J a

= \bTN(t, x; H)[ψ(x) -

where ψ(x) — Ωt>xφ{x) e D(I) and supp (ψ) c [α, 6]. Now an application
of Lemma 6.4 proves the Lemma 6.5.

THEOREM 6.6. (The uniqueness theorem.) Let f,ge Uά,»(I). If
F2(m) = G2(m) for each m — 1, 2, and

), xA0(x, ί)> .

Then

f — g in the sense of equality in D\I) .

The proof is trivial.

7* Illustration of the inversion theorem by means of a nu-
merical example. For 0 < k < 1, δ(t - k) e E\I) c Ϊ7ί,,(/). The finite
Hankel transform of δ(t — Λ) is

) m = 1, 2, ,

and

<δ(t - fc)f ίilo(aj, t)> - kA0(x, k) .

For any φ e D(J)

, k), xφ(x))

S IN OΛ2

Σ ^JXXmk)U

+ A? \ A0(x, k)xφ(x)dx
Jo

^ί, a;; H)xφ{x)dx > kφ(k) as N > oo .

But {δ(t — k), tφ(t)) = kφ(k). Therefore the inversion theorem is
illustrated.

This also yields Dini series expansion for δ(t — k) as
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δ(t -k) = lim Σ 2(\JrjmfkJχxMk)jχxmt) + kA0(k, t)
JV—o

in the sense of convergence in D\I).

8* Applications* Now we obtain an operation transform for-
mula which together with inversion theorem is useful in solving
certain distributional differential equations.

Now for φ e UatV(I) and / e ££,„(/)

(8.1) (ΩU(X\ φ(x)) = </(*), xΩ^X^φix)) .

(8.1) defines a generalized operator i2*y on Uά,» (I) adjoint of the
operator xΩx^x'1 on UatU(I).

φ{x) e Uatχi) = * xΩx,vχ-ιφ{x) e Ua,ΛI)

Therefore β*, is well defined by (8.1).
Now since <p(x) —> xQXtVx~^(x) is a linear continuous map on Ua>χi),

Ω*tU is linear and continuous on Uάti,(I). By induction on k we get

(8.2) <Ω**f(x), φ(x)) =

and β*t is linear and continuous on U'at»(I). So that

<Ω*ΐf(x),

Thus

- (-I)fcλ2

m

fc^t,,(/)(m) , m = 1, 2, .

For / a regular distribution in U'a,£I) generated by elements of D(I),
we get

Ω*tVf = ΩXiVf (integration by parts).

Also for / a regular distribution in U'a,XI), if we put some suitable
condition on it so that the limit terms in integration by parts in
(8.1) vanish, we get

ΩZJ = ΩX,J.

Now consider the operational equation

(8.4)

We wish to solve (8.4) for P a polynomial such that P(—X2

m) Φ 0,
m = 1, 2, and g e U'J,V(I) is given; u e U'a,JJ) is unknown to be
found.



FINITE HANKEL TRANSFORMS OF DISTRIBUTIONS 449

Apply generalized finite Hankel transform to (8.4) to get

Now left hand side = P(-λ2

m)ί/2(m) by (8.3), hence

(8.5) U2(m) =

Applying the inversion theorem to (8.5) we get

(8.6) u(x) = lim Σ - ^ φ^J»(Xmx) + <u(t), tA0(x, t
^co*=i γm P ( - λ 2

m )

We have to find (u(t\ tA0(x, ί>).

Case (1): When H + v > 0, A0(a, ί) = 0. Therefore

(u(f), tAQ{x, t)> = 0 .

Case (ii): When i ϊ + v = 0, A0(x, t) = 2(y + 1>T.
Now, let us assume that

P(x) = Σ arx
r , α0 ^ 0 .

r=0

Then

), xA0(x, t)> =

Thus

{u(t\ tA0(x, t) > = — <flr(ί),
α0

Case (iii) When if + v < 0,

4 , λ _ 2xliχxQx)i
J±Q\X, 0)

Vo

where

Vl = (λ5 + ^)Jί(λo) - λ2

0JJ2(λ0) .

Now using the fact that

β; f lA(a, 0 = λ!*Λ0(a?, ί) ,
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we have

(Ωtϊu(x), xA0(x, t)> = \lk(u(x), xA0(x, ί)> .

So that

(g(x), xAvix, ί)> = (P(ΩZ>(aθ, xAa(x, ί)>

= P(λ2

0)<w(x), a?A(a;, ί)> .

This gives

(u(t\ tA0(x, t)> = ^

provided that P(λ2

0) ^ 0.
Thus finally from (8.6) we have

(8.7) u(x) - lim Σ ^T- »;(W:]M^x), (H+V>0)
ΛΓ-I*=I )?2

m P ( - λ 2

m )

(8.8) ^ } = J™ S ^ p ^ ^ Λ C λ . g ) + j<g(ί), tA0(x, ί)>

(H + ̂  = 0, α0 Φ 0)

(£Γ + v < 0, P(λ2

0) ^ 0) .

u(x) given by (8.7)-(8.9) gives the solution of (8.4) with equality in
the sense of D\I). This solution is in fact a restriction of u e Uά,XI)
to .D(I), and is unique in view of Theorem 6.6.

It can easily be shown that u given by (8.7) — (8.9) is also a
solution of

(8.10) P(Ω^)u = g .

Now for

P(x) = ( α - α ϊ ) ••• (x-al)

where at'a are distinct real numbers, the general solution of (8.10)
in D\I) is given by

u(x) = lim Σ - ¥

Σ Λtet&iίc* Γ [tJl{aktϊ)Yιdt

where Ck, dk are arbitrary constants, when H + v > 0. Similarly
when Jϊ + v = 0 and Jϊ + v < 0, the solution in D\I) is obtained by
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adding

ft Γ~ CX rl-f "Ί

Σ JXakxi)\ CΛ —— — + dk

to the right hand sides of (8.8) and (8.9) respectively.

9* Application of the finite Hankel transform of the second
kind* (Heat flow in an infinite cylinder with a radiation condition.)

We wish to solve the heat equation in cylindrical coordinates inside
an infinitely long cylinder of radius unity, by using the theory of
the finite Hankel transform of second kind developed in the preceding
pages. We seek a conventional function u(r91); where r is radius
and t is time, (u does not depend on θ and z) satisfying the differen-
tial equation

(9.1) Bin + — Dru = Btu (0< r < 1, 0 < ί < «,)
γ

and the following initial and boundary conditions:
( i ) As t —>0+, u(r, t)->f(r) e Uά,v(I) in the sense of convergence

in D\I).
(ii) As r->l~, Bru + Hu->0 in B\I) for each fixed t > 0,

where H > 0.
When u denotes the temperature within the cylinder, H > 0 means
that the heat is being radiated away from the surface of the cylinder.

The differential equation for u can be written as

(9.2) ΩQfru - 4 r
at

Let us apply the generalized finite Hankel transform <%ff0 to (9.1)
to get

where

U2(m91) - <%?,o[w(r, ί)] =.<w(r, ί),

so that

U2(m, t) = A(m)e-4* .

The initial condition determines the constant A(m). Thus

- F2(m) = </(r), r J0(λwr)> .
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Hence

Ut(mf t) = F2(m)e-^ .

Therefore, by inversion Theorem 6.1 we have

(9.3)

in /)'(/), since H > 0. Here λ£ are the roots of the equation

λJJ(λ) + HJ0(X) = 0 .

We want to prove that u(r, t) given by (9.3) is truly a solution
of (9.1) that satisfies the given initial and boundary conditions. Using
the boundedness property of generalized functions we have

so that

F2(m) = 0(λίr1/2) as m > 00

for some nonnegative integer n. Also

T)j as m

J0

2(λJ + Jί(λJ - - | - as m > - .

Hence

[Λ2(λJ + Jί ίλJ]" 1 - 0(m) as m > 00 .

Using the above facts we see that the series (9.3) and series obtained
by applying Ω0>r and Dt separately under the summation sign of (9.3)
converges uniformly on 0 < r < 1 and t > 0. So by applying i20,r —
Dt and using the fact ΩQyt[J0(Xmr)] = —λ^Jo(λmr) we see that (9.3)
satisfies the differential equation (9.1).

Let us verify the boundary condition (ii). We have

lim [Dru + Hu] = li
1"

and since the convergence is uniform, we can take the limit r -* 1"
inside the summation sign and arrive at the conclusion.

Next we wish to verify the initial condition (i). For any φ e D(I),
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we have

(since the convergence is uniform on 0 < r < 1 and t > 0)

- </(*•), φ(r)} by Theorem 6.1.

PART II

10* Finite Hankel transform of the third kind* The finite
Hankel transform of the third kind of an arbitrary function /(x),
defined o n O < α < # < & i s defined by

(10.1) Him) = [btf(fi)C»(yJ, Ίmb)dt , m = 1, 2, 3, -

where

C£a9 β) = J£a)Y£β) -Yy(a)JAβ)

and τm is the mth positive root of the equation

CAaz, bz) = 0 .

The following theorem [4] provides an inversion formula for the
transform (10.1).

THEOREM 10.1. // f(t) is summable over (a, b) and of bounded
variation in the neighborhood of the point t = x, then the series

(10.2) Σ aJJXΎmx9 Ύmb) ,
m = l

where

(10.3) am - fΎlf(Ύ^

and v is any real number, converges to the sum l/2[f(x + 0) + f(x — 0)].
We extend the above theorem of Titchmarsh for /eZ70%(I),

where v is any real number, I — (α, 6), 0 < a < b < oo. For con-
venience we shall write Ul(I) in place U{tV(I).
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DEFINITION. For / e Ul(I), v eR, we define the distributional
finite Hankel transform of / of third kind by

(10.4) ( ^ / ) ( m ) - Fz(m) = </(ί), tCv(yJ9 7 J>)> m = 1, 2, . . .

Throughout the second part of the paper we always have v e R. Also
we set

f}2 == —v2 Jϊ(Ύ«a)
/m 2ϊmJ\7a)JΪ(7b)

and

(10.5) RN(t, x) = Σ

11* The inversion of (10*4)» We will now prove the following
inversion theorem for our generalized finite Hankel transform.

THEOREM 11.1. (Inversion). Let f be an arbitrary distribution
in the space Ul(I), v e R and let Fz(m) be the finite Hankel transform
of the third kind of f Then in the sense of convergence in D'(I),

(11.1) f(t) = lim Σ VΪFs(m)Cu(*γmt, Ύmb) .
2V-*oo w = l

Proof. Since φ(x) e D(I) <=> xφ(x) e D(I), it suffices to prove that

] Ύ]lF,(m)Cχymt9 yjb), xφ(x)) > </(t), tφ(t))

as N > co .

The proof is similar to the proof of the Theorem 6.1. To complete
the proof we have to prove similar lemmas as needed in the proof
of the Theorem 6.1. We do it next.

LEMMA 11.2. Let fe Ul{I). Then for any NeN+ and φeD(I)
we have

(11.2) \\f(t), tRN(t, x)\χφ(x)dx = (f(t), \htRN(ι

Proof is similar to that of Lemma 6.2.

LEMMA 11.3. For 0 < a <b < °o we have

(11.3) lim \bRN(t, x)xdx = 1 (0 < a < t < 6) .

Proof See [4, equation (7)].
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LEMMA 11.4. Let f(t) be a bounded function in (a, 6), 0 < a < b.
Then e > 0, there exists No e N+ such that for all N ^ No,

(11.4) \Btf(t)RN(t, x)dt
JA

2Kε

where a < A < B < b, and x lies out side the interval [A, B], K is
a constant, and

px = dist(ίc, [A, B\) > 0 .

Proof. Let F{t) = ί~"/(ί). Then following the same line of proof
as in Lemma 6.4, we get

(11.5) [Btf(t)RN(t, x)dt - Σ
JA m=l

ί, x)dt

Rs(t, x)wm(t)dt.

Let Af -
Choose the partition p so fine that

Let ifi be the upper bound of F(t) in [A, J5]. From [4], we know
that

\RN(t,x)\< k

t - x\
k k

ί, x)dt <

AN(b - x) AN(t - x)

k + k
AN(x - t) AN(x - a)

where

Using the above relations in (11.5) we get

\Btf(t)RN(t, x)dt S — Γ-ĵ > + εΊ < — ε .

This proves the lemma.

LEMMA 11.5. Let ψ(x)eD(I). Then

(11.6) ί i? v (ί, )̂[α/r(ίC) - ^(ί)]ί»dίC > 0

(x <t)

(x > t)
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as iSΓ —> oo uniformly for all t e (a, 6), where supp (ψ) c [A, B] c (α, b).

Proof. The proof can be given by using Lemma 11.4 and follow-
ing the pattern of proof of Lemma 6.4.

LEMMA 11.6.

Ωk

v,\^RN{t, x)xφ(x)dx - ?>(«)] > 0

as N —> oo, uniformly for t e (a, b) and for each k = 0, 1, 2,

The proof is similar to that of Lemma 6.5.

THEOREM 11.7. (The uniqueness theorem). Let f, geUXI). If
F3(m) = G3(m) for each m = 1, 2, , then f = g in the sense of
equality in D'(I).

The proof is trivial.

We verify our inversion Theorem 11.1 by means of an easy
example. δ(t - k) e UXI).

- k))){m) = kCχymk, yj>) m = 1, 2,

For φ 6 D(J),

*, 7.6),

as JV >

= < a « - &), «?>(«)>.

We also get
N

0\y — fv) — l i m s j 1 Imt\f\j^\tmrC9

12* Application of the finite Hankel transform of the third
kind* Consider again the operator equation

(12.1) P(fl?> = g .

By applying finite Hankel transform of the third kind we get

(12.2) Uz(m) = ^ \ , m = l ,2, . . • ; ( P ( - λ i ) * 0) .

Then using inversion Theorem 11.1, the solution can be written as

(12.3) u(t) = lim Σ VI ^l.CAyJ, 7.6) .
^ l P ( λ i )
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Now we solve diffusion equation in an infinitely long hollow
cylinder bounded by r = α, r = b(b > a) when these surfaces are kept
at zero temperature. Let us determine a function u(r, t) which
satisfies the differential equation

(12.4) ^u + l^L = ^L a^r^b,t>0
dr2 r dr dt

and the following boundary and initial conditions:
( i ) w(M) = o

u(b,t) = 0
(ii) l i π w u(χ, t) = fix) 6 UXa, b)

where equality is in the sense of D\a, 6).
Applying the finite Hankel transform of the third kind we can

reduce the above differential equation to

(12.5) -7i.ϋ,(m,ί) = Aϋ,(m,t),
ot

where

Uz{mf t) - SerUutXf *)) = <^(r, t), rC0(7»r, 7TO6)> .

The solution of (12.5) is given by

U3(m, t) = A(m)e-fo

where A(m) is an arbitrary constant. Applying initial condition we
find that

A{m) =

Hence

Uz{m) =

Therefore, by inversion theorem

u(χ, t) = lim Σ VlF3(m)e-^tC0(y7nrt 7mb) ,

equality in the sense of D'(a, 6).
Formally we take

(12.6) u(χ, ί) = Σ ViFz{m)e-rltCQ{ymτy 7mb) .
m=l

Various steps involved above and that (12.6) is a solution to (12.4)
can be justified as in §9.
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