HOMOMORPHISMS OF MONO-UNARY ALGEBRAS

EVELYN NELSON

Novotny has presented what amounts to a necessary and sufficient condition for the existence of certain homomorphisms between mono-unary algebras. In this paper, an example is presented to show that Novotny's condition is not sufficient, and a slightly stronger condition is shown to be both necessary and sufficient. The techniques of the proof are essentially the same as those used by Novotny.

Before proceeding, a brief summary is given of the relevant definitions.

A mono-unary algebra ("algebra" for short) is a pair (M, f) where f is any self-map of the set M; a homomorphism from (M, f) to (N, g) is a map $F: M \to N$ such that $F \circ f = g \circ F$.

Given such an algebra (M, f), let $f^{0}(x) = x$ for all $x \in M$, and $f^{n+1}(x) = f(f^{n}(x))$ for all $n \in \omega$; then $[x] = \{f^{n}(x) \mid n \in \omega\}$ is the subalgebra generated by x. For $x, y \in M$, define $x \rho y$ iff $[x] \cap [y] \neq \emptyset$ (equivalently, $x \rho y$ iff $f^{m}(x) = f^{n}(y)$ for some $m, n \in \omega$). This defines a congruence ρ on the algebra (M, f), the blocks of which are called the connected components of (M, f); if there is only one such component then the algebra is called connected. The connected components of M are each subalgebras of M, and a map from M into any algebra is a homomorphism iff its restriction to each connected component of M is a homomorphism. For this reason we need only consider homomorphisms from connected algebras M.

For each $x \in M$, either $f^m(x) = f^n(x)$ for some $m \neq n$, in which case [x] is finite, or [x] is infinite. If [x] is finite, let L(x) be the smallest natural number m with $f^m(x) = f^{m+k}(x)$ for some $k \neq 0$, and let R(x) be the smallest natural number $k \neq 0$ with $f^{L(x)}(x) = f^{L(x)+k}(x)$. (R(x) is the "rank" as defined by Novotny.) Then $f^m(x) = f^n(x)$ for m < n implies $L(x) \leq m$ and $R(x) \mid n - m$. If [x] is infinite, define $L(x) = \infty$ and R(x) = 0. (Here, and in the remainder of the paper, ∞ is defined to be greater than every ordinal number, and we will use the convention that 0 is divisible by *every* natural number.)

Now (as in Novotny) define sets $M_{\alpha} \subseteq M$ for ordinals α inductively as follows:

$$egin{aligned} M_{\scriptscriptstyle 0} &= \{x \in M \mid f^{\scriptscriptstyle -1}(x) \,= \, arnothing \} \ M_{\scriptscriptstyle lpha} &= \left\{x \in M - igcup_{\scriptscriptstyle \lambda < lpha} M_{\scriptscriptstyle \lambda}
ight| f^{\scriptscriptstyle -1}(x) \subseteq igcup_{\scriptscriptstyle \lambda < lpha} M_{\scriptscriptstyle \lambda}
ight\} \,. \end{aligned}$$

Then the M_{α} are all pairwise disjoint, and for all $x \in M$, either

 $x \in M_{\alpha}$ for some α , or there exist elements $x_n \in M$ for $n \in w$ with $x_0 = x$ and $f(x_{n+1}) = x_n$ for all $x \in \omega$.

Define

$$S(x) = egin{cases} lpha & ext{if} & x \in M_lpha \ & & ext{if} & x
otin \cup M_lpha \ & & ext{.} \end{cases}$$

Note that $S(f(x)) \ge S(x) + 1$ (provided we define $\infty + 1 = \infty$).

Now suppose (N, g) is also a mono-unary algebra, and that the sets $N_{\alpha} \subseteq N$ have been defined analogously to the M_{α} , along with the corresponding function S.

THEOREM. For any $a \in M$, $b \in N$, if M is connected then there is a homomorphism $F: M \to N$ with F(a) = b iff $L(b) \leq L(a)$, R(b) | R(a), and $S(f^n(a)) \leq S(g^n(b))$ for all $n \in \omega$.

Proof. If F is a homomorphism from (M, f) to (N, g) with F(a) = b, and if $f^m(a) = f^n(a)$ then $g^m(b) = g^m(F(a)) = F(f^m(a)) = F(f^n(a)) = g^n(F(a)) = g^n(b)$, and hence $L(b) \leq L(a)$ and R(b) | R(a). A straightforward induction on α shows that for all $x \in M$, if $F(x) \in \bigcup_{\lambda < \alpha} N_{\lambda}$ then $x \in \bigcup_{\lambda < \alpha} M_{\lambda}$, and hence $S(x) \leq S(F(x))$ for all $x \in M$, which yields $S(f^n(a)) \leq S(g^n(b))$ for all n.

Conversely, suppose $L(b) \leq L(a)$, R(b) | R(a) and $S(f^n(a)) \leq S(g^n(b))$ for all $n \in \omega$. Define sets $X_n \subseteq M$ for $n \in \omega$ as follows:

$$egin{aligned} X_{\scriptscriptstyle 0} &= [a] \ X_{\scriptscriptstyle n+1} &= \left\{ x \in M - igcup_{i < n} X_i \ \Big| \ f(x) \in X_n
ight\} \ . \end{aligned}$$

Then the X_n are pairwise disjoint, and since M is connected, $\bigcup_{n \in \omega} X_n = M$. We define F(x) for $x \in X_n$ by induction on n, in such a way that $S(x) \leq S(F(x))$.

If $x \in X_0$ then $x = f^m(a)$ for some $m \in \omega$. If in addition $x = f^n(a)$ for n > m then $L(a) \leq m$ and $R(a) \mid n - m$, and so by hypothesis $L(b) \leq m$ and $R(b) \mid n - m$, which implies $g^m(b) = g^n(b)$. Define $F(x) = g^m(b)$; the preceding sentence shows that this is well-defined. Moreover, $S(x) = S(f^m(a)) \leq S(g^m(b)) = S(F(x))$, as required.

If $x \in X_{n+1}$ then $f(x) \in X_n$ and so by inductive hypothesis, F(f(x))is defined and $S(F(f(x))) \ge S(f(x))$. Since $S(f(x)) \ge S(x) + 1$, this implies that $F(f(x)) \notin N_{\lambda}$ for any $\lambda \le S(x)$, and hence $g^{-1}(F(f(x))) \not\subseteq$ $\bigcup_{\lambda < S(x)} N_{\lambda}$. For each $x \in X_{n+1}$, let F(x) be any element of $g^{-1}(F(f(x))) -$ $\bigcup_{\lambda < S(x)} N_{\lambda}$; then g(F(x)) = F(f(x)) and $S(F(x)) \ge S(x)$.

Thus this yields a homomorphism $F: (M, f) \rightarrow (N, g)$ with F(a) = b, as required.

COROLLARY. If M is connected and $a \in M$, $b \in N$ such that

428

R(b)|R(a) and $S(f^n(a)) \leq S(g^n(b))$ for all $u \in \omega$ then there is a homomorphism $F: M \to N$ with $F(a) \in [b]$.

Proof. Let m = L(b); then $L(g^m(b)) = 0$ and $R(g^m(b)) = R(b)$ and for all $n \in \omega$, $S(g^n(b)) \leq S(g^{n+m}(b)) = S(g^n(g^m(b)))$, and so by the theorem there is a homomorphism $F: (M, f) \to (Ng)$ with $F(a) = g^m(b)$.

Novotny's Hauptsatz 2.14 claims that the above theorem is true without the restriction $L(b) \leq L(a)$, but the following example shows that this is not the case. Let $M = \{a\}$ (so f(a) = a) and let $N = \omega$, g(0) = 0, g(n + 1) = n for all n; then R(a) = 1 and $S(f^n(a)) = \infty$ for all n. Also, for $b = 1 \in N$, we have R(b) = 1, and $S(g^n(b) = \infty$ for each n. Clearly the map $F: M \to N$ with F(a) = b is not a homomorphism, since $F(f(a)) = b \neq 0 = g(F(a))$.

Reference

M. Novotny, Uber Abbildungen von Mengen, Pacific J. Math., 13 (1963), 1359-1369.
 Received December 2, 1980 and in revised form May 21, 1981.

MCMASTER UNIVERSITY HAMILTON, ONTARIO CANADA L8S 4K1