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CONTINUITY OF MONOTONE FUNCTIONS

MARK MANDELKERN

Two refractory problems in modern constructive analysis
concern real-valued functions on the closed unit interval:
Is every function pointwise continuous? Is every pointwise
continuous function uniformly continuous? For monotone
functions, some answers are given here. Functions which
satisfy a certain strong monotonicity condition, and ap-
proximate intermediate values, are pointwise continuous.
Any monotone pointwise continuous function is uniformly
continuous. Continuous inverse functions are also obtained.
The methods used are in accord with the principles of
Bishop's Foundations of Constructive Analysis, 1967.

Introduction. Consider two statements concerning real-valued
functions on the closed unit interval:

( i ) Every function is pointwise continuous.
(ii) Every pointwise continuous function is uniformly con-

tinuous.
Classically (that is, nonconstructively, with the aid of the

principle of excluded middle), the first statement is of course false,
and the second true. However, since Brouwer's critique of classi-
cal mathematics, both have been open problems in constructive
analysis. Here we consider these problems for the class of monotone
functions, following the constructive approach to analysis developed
in [4].

Brouwer [5] has proposed intuitionistic proofs for both state-
ments; an exposition may be found in [7]. However, the proofs
are based on methods not constructive in the sense adopted here.

Recursive analysis offers a proof for the first statement [11] [6]
[8], and a counterexample to the second [9]; expositions appear in
[1]. However, the first result is based on a nonconstructive hy-
pothesis, and both results are based on an interpretation of real
numbers as recursive real numbers, an interpretation more restric-
tive than is appropriate for constructive analysis.

Metamathematical results concerning the consistency and in-
dependence of the continuity statements, in intuitionistic formal
systems, are found in [2] and [3].

Here we follow a direct mathematical, rather than meta-
mathematical, approach, using no formal system, under no special
hypotheses, and with no preconceived notions about the nature of
the continuum, other than that it consists of constructively defined
Cauchy sequences of rational numbers.

413



414 MARK MANDELKERN

1* Preliminaries* Throughout the paper, function will mean
a real-valued function on the closed unit interval [0, 1]; and x9 y, z
will denote points of the interval. Only constructive properties of
the real numbers, such as are found in [4], will be admitted.

A function / is said to be increasing if x < y implies fix) < f(y),
while / is nondecreasing if x ^ y implies f(x) <: f(y). While classi-
cally one has but these two main notions of monotonicity, under
constructive scrutiny other distinctions come into view.

We say that / is antidecreasing if f(x) < f(y) implies x < y.
Classically, this is equivalent to nondecreasing. Constructively,
however, while an antidecreasing function is always nondecreasing,
the converse has not been proved. Neither is a counterexample re-
adily at hand, because the converse is true for pointwise continuous
functions. Thus a counterexample would entail the construction of
a function not pointwise continuous.

A function / attains intermediate values if whenever f(x) <̂  λ ^
f(y), there exists z such that f(z) = λ, while / approximates inter-
mediate values if whenever f(x) <̂  λ <̂  f(y) and ε > 0, there exists z
such that |/(2) — λ| < ε. It is noted in [4] that a uniformly con-
tinuous function approximates intermediate values. If we construct
a function / and numbers x, y, λ and ε > 0 such that f(x) ^ λ ^ f(y),
and prove that there does not exist z such that \f(z) — λ| < ε, then
we will have partitioned the real line into two nonvoid disjoint
subsets; as yet such a partition has never been constructed.

A crucial step in the proof that a monotone pointwise continuous
function is uniformly continuous requires the following theorem [12],
which is of interest not merely for monotone functions. The author
is grateful for the communication of this result.

THEOREM (Mines-Richman). A pointwise continuous function
approximates intermediate values.

Proof. Let f(x) ^ λ ^ f(y) and ε > 0. Since / is pointwise
continuous, the sets U = {z: f(z) < λ + ε} and V = {z: f(z) > λ — ε}
are open. They are also nonvoid and cover the interval. Theorem
2 in [10] shows that any two nonvoid open sets which cover the
interval have a common point. For any point z common to U and
V, clearly \f{z) - λ | < ε. •

2* Pointwise and uniform continuity* It is a simple exercise
to show that an increasing function is nondecreasing; thus the
following applies also to increasing functions.

THEOREM 1. For any nondecreasing function /, the following
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are equivalent.
(a) / is antidecreasing and approximates intermediate values.
(b) / is pointwise continuous.
(c) / is uniformly continuous.

Proof, (a) implies (b). Consider any x and any e > 0. If f{x) <
/(0) + ε then f{y) > f{x) — ε for all y. Thus we may assume f{x) >
/(0) and similarly /(a?) < /(I). Construct y and 2 so that f(x) — ε <
/(#) < /(&) and fix) < f(z) < f(x) + ε; thus y < x < z. The open
interval (y, z) is the required neighborhood of x.

(b) implies (a). It sufficies to show that / is antidecreasing.
Let f{x) < f(y). Put ε = f(y) - f(x) and δ = ω(x9 ε), where ω is a
modulus of continuity for /. Since \x — y\ < δ involves a contra-
diction, we have \x — y\> 0 and thus x < y.

(b) implies (c). Let ε > 0 and construct a finite ε/6 approxima-
tion A to the interval [/(0), /(I)]. For each a in A, construct za

such that I /(sβ) - a \ < ε/6. Put

§ ΞΞ min {ω(2α, ε/2): α e i } .

Let I a? — y\ < δ. In the case \f(x) — /(^/)| < ε there is nothing more
to prove; thus we need consider only the case \f{x) — f(y) \ > 2ε/3.
We may assume f(x) < f(y). Let μ be the midpoint of f{x) and f(y)
and construct a in A such that \a — μ\ < ε/6. Then |/(sβ) — μ\ <
ε/3 and thus f(x) < f(za) < f(y). It follows that x <; za ^ 2/ and thus
I a? - sβ | < δ. Hence \f(x) - /fe) | < ε/2 and similarly for/(#). Thus

6. D

Furthermore, it is easily seen that if a function / is non-
decreasing and sequentially continuous (i.e., xn—>x implies f(xn) ~>
/(a?)), then / is pointwise (and hence uniformly) continuous. In
general, it is not known whether every sequentially continuous
function is pointwise continuous.

3* Totally bounded sections* For any real number a, the α-
section of a function / is

In order to construct inverse functions, we first show that an in-
creasing function has totally bounded sections.

A general lemma on totally bounded sets is required. For any
set F i n a metric space X, and any ε > 0, put

" = U S(a, ε)
aeF
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where S(a, ε) is the open sphere in X with center a and radius ε.
For any subset S of X, put

S* = {aeX aeS}

where a$S means that a e S involves a contradiction.

LEMMA. Let X be a totally bounded metric space and F a non-
void subset of X. Then F is totally bounded if and only if for any
ε > 0 there exists δ > 0 such that

Proof. First let F be totally bounded. Let ε > 0 and put
δ = e/2. For any point a in X, the distance p(a, F) exists. If
p(a, F) < ε then a e F% while if p(a, F) > δ then a ί Fδ.

Conversely, for any ε > 0 we will construct a subfinite 2ε ap-
proximation to F. Choose δ > 0 so that X = Fε U F δ * and δ < ε.
Construct a finite <5 approximation A to X. Partition A into two
sets At and A> so that A1 £ F e and A2 Q Fδ*. For each α in Ax

construct α' in ί7 such that p(a, a') < ε, and put A' == {a': a e AJ.
To show that A! is the required approximation to F, consider a
point 6 in JP and construct a in A such that p(b, a) < δ. Then
α eFδ; it follows that α e ^ and hence p(b, a') < 2ε. •

THEOREM 2. 7/ a function f is increasing, then its sections
Xa are totally bounded for all a ^ /(0).

Proof. Let ε > 0 and put δ = e/2. Consider any point a?. When
x < ε we have # e Xί because 0 6 Xa. Thus we may assume x > δ
and construct /̂ so that x — ε < y < x — δ. Thus \x — y\ < ε. Also,
ΛvXΛx-δ); it follows that either α </(»-§) or a>f(y). In the
first case α; g Xά, while in the second case y eXa and hence a? 6 JSL£. Π

EXAMPLE. It is not constructively true that every non-
decreasing function has all its sections totally bounded. For,
suppose it were true and let a ^ 0. Put f{x) == ax for all x. Then
/ is nondecreasing; put y = sup Xo. In the case y > 0 it follows
that a = 0, while in the case 7/ < 1 it follows that not a = 0. Thus
under our hypothesis it follows that for any a ^ 0, either α = 0
or not a = 0. This last statement, a form of the weak limited
principle of omniscience, is not constructively true. This type of
counterexample is discussed further in [4].

4* Inverse functions* An inverse of an increasing function /
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will mean an inverse defined on the interval [/(0), /(I)].

THEOREM 3. For any increasing function f, the following are
equivalent.

(a) / approximates intermediate values.
(b) / attains intermediate values.
(c) / has an inverse.

Proof, (a) implies (b). Let /(0) ̂  a <, /(I). By Theorem 2, Xa

is totally bounded; put x = sup Xa. First suppose f{x) > α and
construct y such that α < f(y) < /(#); then y = x. lί y < x then
7/ < 2 for some z e Xat a contradiction; thus y — x and this is a
contradiction. Now suppose f(x) < α and construct y such that
/(#) < Ay) < at; then x ^ y. Also 7/ e Xα, so that y ^ x; hence x — y,
a contradiction. It follows that f(x) = a.

(b) implies (c). Put X = [0, 1] and F Ξ= [/(O), /(I)]. For any α
in Y construct xa in X such that f(xa) = α. If α = /3 then #α — α̂
because / increases. Thus g{ά) = xa defines a function g: Y —> X
such that f(g(a)) = a for all α e 7 . Since / increases, it follows that
9(f(x)) = a? for all a j e l Hence βr is the inverse of /. •

THEOREM 4. An increasing pointwise (hence uniformly) con-
tinuous function has an increasing uniformly continuous inverse.

Proof. The given function / is antidecreasing by Theorem 1;
thus the inverse g is increasing. Clearly g is antidecreasing and
attains intermediate values; it follows from Theorem 1 that g is
uniformly continuous. •
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