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STRUCTURE SPACES FOR SANDWICH SEMIGROUPS

K. D. MAGILL, J R . , P. R. MISRA AND U. B. TEWARI

For a given semigroup, a structure space is associated
in a natural way with each left ideal of that semigroup.
In this paper, we determine this space when the semigroup
is a sandwich semigroup satisfying appropriate conditions
and the left ideal is the kernal of the semigroup.

Most of the attention in [5] and in subsequent papers [6], [7]
was focused on the case where the left ideal is the kernel of the
semigroup in which case the term ^"-structure space was used.
We recall briefly the definition. Let S be any semigroup with
kernel K. The requirement that S have a kernel (i.e., smallest
two-sided ideal) is, of course, a restriction since the intersection of
all two-sided ideals of a semigroup may well be empty. A bond on
S is any subset A of S x K such that for each finite subset
{(*i, fci)}?=i of A, the set of equations {stx = kt}Ui has a common
solution x in K. Maximal bonds are called ultrabonds and the
collection of all ultrabonds on S is denoted by ^(S). For each
(s, k)eS x K, define

H(8, k) = {Ae %r(S): (s, k) e A)

and topologize %f(S) by taking all sets of the form H(sy k) as a
subbasis for the closed subsets. ^ ( S ) , with this topology, is the
JίΓ-structure space of S. It was shown in [5] and [6] that for
many topological spaces X, the t5Γ'-structure space of S(X), the
semigroup of all continuous selfmaps of X turns out to be βX, the
Stone-Cech compactification of X.

In [5] a number of results were proved about the J^-structure
space of an abstract semigroup with certain conditions being placed
on that semigroup. One of the conditions was that the semigroup
contain a left identity. This didn't seem to be much of a restric-
tion at the time since we were primarily interested in applying
these results to S(X) which has a two-sided identity. But once
we became more interested in sandwich semigroups, the requirement
that the semigroup contain a left identity became a serious obstacle.
Let us recall the definition of a sandwich semigroup S(X, Y, a). X
and Y are topological spaces and a is a continuous function from
Y into X S(X, Y, a) is the semigroup of all continuous functions
from X into Y where the product fg of two elements / and g in
S(X, Y} a) is defined by fg — fiaog. The semigroup S(X, Y, a) is
referred to as a sandwich semigroup with sandwich function α.
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The problem is that S(X, Y, a) contains a left identity if and
only if a maps Y homeomorphically onto a retract of X and this is
far too restrictive for our purposes here. However, Anne Hudson
(private communication) and H. 0. Kim [2] observed independently
that the requirement that the semigroup contain a left identity is
not really necessary, at least, not in order to get a number of the
results we obtained in [5]. So this meant that it would not be
unreasonable to try to use these results (or more accurately, slightly
amended versions of these results) to determine just what the
structure space of S(X, Y, a) is. This problem is the main thrust
of this paper and we show that for certain spaces X and Y, if a
is any closed function from Y into X satisfying some rather mild
additional conditions, then the ^"-structure space S(X, Yy a) is the

v

Stone-Cech compactification of the range of a. The results in the
present paper generalize results in both [5] and [6] since by taking
X — Y and a to be the identity map we get results in the latter
as special cases.

In § 2, we state (without proof) revisions of results in [5] that
we need in order to prove the main theorem here. Section 3 contains
a brief discussion of sandwich semigroups and some of their elemen-
tary properties and it is there that the main theorem of the paper
is proved. In § 4, we discuss some applications of the main result
and some examples.

2* Revisions of some previous results* Although we are pri-
marily interested in J^-structure spaces, whose definition we have
recalled in the introduction, there are generally many structure
spaces for a semigruop, one for each left ideal. We now give the
more general definition so we can state the revision of the results
in [5] that we need in this paper. The proofs of these results
when T has no left identity are the same as in [5] or at worst are
obvious modifications thereof

DEFINITION 2.1. Let S be any semigroup and Z any left ideal
of S. A nonempty subset A of S x Z is called a bond if for each
finite subset {(sif zύ}ϊ=i of A the system of equations fax = z$=1 has
a common solution x in Z. A maximal bond is called an ultrabond.
The set of all ultrabonds is denoted by *%f(S, Z).

For any v e Z, the set Av = {(s, sv): s e S} is an ultrabond. In
[5] it was assumed that S has a left identity to prove this. Av is
an ultrabond regardless of whether or not S has a left identity.

DEFINITION 2.2. An ultrabond of the form Aυ is called a princi-
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pal ultrabond and the set of all principal ultrabonds is denoted by
, Z).

We topologize %f(S, Z) by taking the sets of the form

H(s, z) = {Ae <2f(S, Z): (s, z) e A}

as a subbasis for the closed subsets.

DEFINITION 2.3. %S(S, Z) with the topology just described is
called the structure space of the pair (S, Z). The subspace consist-
ing of all the principal ultrabonds will be denoted by &(S, Z).

Each element aeS iduces in a natural way a mapping λα from
, Z) into &(S, Z). Simply, define Xa{Aυ) - AΛ9.

THEOREM 2.4. Let S be a semigroup and let Z be a left ideal
of S. Then for each element a in S, the function Xa is a continu-
ous mapping from &(S, Z) into &(S, Z).

DEFINITION 2.5. The pair (S, Z) is said to be admissible if for
any ultrabond A e &H(su zx) ( ^ denotes complement), there exist
(82, zz) and (s3, z8) in S x Z such that

A e ΐf£Γ(82, z2) Q H(sB, zd)

The following will be crucial for the proof of our main result.

THEOREM 2.6. Suppose the pair (S, Z) is admissible. Then
Z) is a Hausdorff compactification of &(βf Z). Moreover,

for each aeS, the function λα in S{&(S, Z)) has a unique extension
to a function Xa in S(^(S, Z)).

3* The Jίί^structure space of a sandwich semigroup* Sandwich
semigroups were essentially introduced in [3]. For additional results
on sandwich semigroups as well as references to other related
papers, one may consult [4], [10], [11] and [13] through [15].
Actually in some of the latter papers, the domains of the functions
comprising the sandwich semigroup did not necessarily need to be
the entire space. In this paper, of course, they do so that what
we call a sandwich semigroup here is a special case of what is
studied in some of the latter papers. This section contains the
main theorem of the paper and the major portion of this section is
devoted to a proof of that theorem. However, before we begin
that task, we verify a few of the other remarks made about
sandwich semigroups in the introduction. The first is
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THEOREM 3.1. S(X, Y, a) has a left identity if and only if a
maps Y homeomorphically onto a retract of X.

Proof Let I be a left identity of S(X, Y, a). The function
aol is a continuous self map of X. Moreover, we see that

(a© I) o (ao I) = α o ( i o α o i) = a ©(II) = aol

so that aol is an idempotent (with respect to composition) continu-
ous selfmap of X. Thus, Ran(αoZ) (i.e., the range of aol)) is a
retract of X Evidently, Ran (aol) ς: Ran α. To verify the reverse
inclusion, take any x e Ran a. Then cc = a(y) for some ί/eΓ. Define
the function (y) by <#>(&) = y for all x e l and get

(a o l)(χ) — a o I o a(y) — a © Z o α o (y)(x) = a o (l(y})(x)

= ao(y)(χ) = a(y) = x .

We draw two conclusions from this. The first is that Ran (αoϊ) =
Ran α and the second is that a © ϊ is the identity on Ran α.

Now choose any xeX and ί / e 7 and we have

(loa)(y) = Zoαo^Xa?) - (Z<»»(») - <»>(») - y .

That is, Z o a is identity on Y. Thus, Ran α is, indeed, a retract
of -X" and a is a homeomorphism from Y onto Ran α.

Conversely suppose a is a homeomorphism from Y onto Ran a
which is a retract of X. Then Ran α = Ran v where v is some
idempotent continuous selfmap of X. Define l = a~λov. Then le
S(X, Y, a) and using the fact that v is the identity on Ranα, one
readily verifies that I is a left identity for S(X, Y9 a).

When we say that S(X, Y, a) separates points, we mean as
usual that if a and 6 are distinct points of X then f(a) Φ f(b) for
some feS(X, Y, a).

THEOREM 3.2. Suppose S(X, Y, a) separates points. Then
S(X, Y, a) has a right identity if and only if a maps some retract
of Y homeomorphically onto X.

Proof. Let r be a right identity of S(X, Y, a). Then roα is
a continuous selfmap of Y and moreover

(r © a) o (r © a) — (r © a © r) © a = (rr) © α = r o α .

That is, roα is idempotent. We wish to show next that
Ran (roα) = Ran r. We immediately have Ran (r°α) £ Ran r. On
the other hand, take any y e Ran r. Then # = r(x) for some as 6 X
and we have
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(roa)(y) = (roaor)(x) = (rr)(x) = r(x) = y .

This not only tells us that Ran (r ° a) = Ran r, in which case

Ran r is a retract of Y, but it also tells us that r o a is the identity
on R a n r . To complete the proof we need only show that a or is
the identity on X. So let any xeX and feS(X, Γ, a) be given.
Then

f(aor(x)) = (foaor)(x) - (/r)(a>) = f(x) .

Since £(X, F, a) separates points, it follows that α o φ ) = x.
Thus, a o r is the identity on X which means a maps Ran r homeo-
morphically onto X and the proof is complete.

REMARK. One cannot simply delete the requirement that
S(X, Y, a) separate points and hope to prove the theorem. Exam-
ples are abundant which illustrate this. Take X to be any connected
space, Y any totally disconnected space and a any continuous
function from Y into X. Then S(X, Yy a) is a left zero semigroup
which means that everything is a right identity.

COROLLARY 3.3. Suppose S(X, Y9 a) separates points. Then
S(X, Y, a) has a two-sided identity if and only if a is a homeomor-
phism from Y onto X.

Proof This follows immediately from the previous two theorems.

COROLLARY 3.4. Suppose S(X, Y, a) separates points and has
an identity. Then S(X, Y, a), S(X) and S(Y) are all mutually
isomorphic.

Proof According to the previous corollary, a is a homeomor-
phism from Y onto X. The mapping which carries / into a o / is
an isomorphism from S(X, Y, a) onto S(X) and the mapping which
carries / into /©α is an isomorphism from S(X, Y, a) onto S(Y).

REMARK. The previous results can all be proven in considerably
more generality. For example they all have analogues within the
framework of J-structures [9] and the proofs given here carry over
intact. In order to present the more general results, we would
have to devote considerable space to a discussion of definitions,
terminology, etc. and we feel that to be not appropriate here.

Before we can state the main theorem, we need to recall some
facts about incompact spaces. We use the terminology and notation
of [6]. Let E be a Hausdorff space. A space X is Incompletely
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regular if it is homeomorphic to a subspace of some cartesian pro-
duct of copies of E and it is ^-compact if it is homeomorphic to a
closed subspace of such a product. An jE-compact space Y which
contains X as a dense subspace is called an 2?-compactification of X.
An important fact about S-compactifications is that if E is compact
in the usual sense, then each ^-completely regular space X has a
largest l?-compactification βEX in the sense that any other E-com-
pactification of X is a continuous image of βEX under a map which
keeps the points of X fixed. This is an immediate consequence of
Theorem 4.14 of [12, p. 177]. Before stating our main theorem, we
recall another concept introduced in [6].

DEFINITION 3.5. Let E be Hausdorff. A space X is 2?-separated
if it is Hausdorff and for each pair H and K of disjoint closed
subsets of X, there exists a continuous function / from X into E
and two distinct points p and q of E such that f(x) — p for x e H
and f{x) = q for x e K.

It is clear that every ^-separated space is normal. It is also
easy to see that every closed subspace of an ^-separated space is
^/-separated. We are now in a position to state our main result
which concerns the .^-structure space of a sandwich semigroup.

MAIN THEOREM 3.6. Suppose E is compact, X is E-separated
and Y contains a copy of E on which a is injective. Suppose also
that a is a closed map of Y into X and every continuous function
on ct(Y) to E can be continuously extended to a function of X to E.
Then the ^-structure space of S(X} Y, a) is βE{®<{Y)), the largest
E-compactification of a(y).

Note that a(Y) is incompletely regular, being a closed subspace
of an ^-separated space X and [hence it is meaningful to talk of

We will prove the theorem after a series of lemmas. Let S
denote the semigroup S(X, Y, a) and K its kernel. K = {(y):yey}
where (y) denotes the constant map which maps every element of
X into y. Furthermore, it is easy to show that

(1) For any feS and (y), (z) in K, f-(y) = <» if and only
if /(«(»)) = z.

(2) A subset A of S x K is a bond if and only if {/ \z):
(f (z)) e A} U {Ran a} has the finite intersection property.

( 3) A is an ultrabond if and only if (/, <2» $ A implies f~\z) Π
ΰT\Vi) Π Π gήXVn) Γl Ran a = 0 for a finite subfamily {(gif

of A.
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We also need the following lemma which is easy to prove.

LEMMA 3.7. Suppose X is E-separated. For any pair H and
K of disjoint closed subsets of X, there exists an feS and two
distinct points a and b of Y such that f(x) = a for x e H and
f(x) = b for xeK.

Throughout the rest of this section, X, Y, a are supposed to
satisfy the hypothesis of the main theorem.

LEMMA 3.8. The pair (S, K) is admissible.

Proof. Suppose A is an ultrabond and A e ^H(f, (z)). Then
there exist {{giy (yt})}?=ι e A such that

( 4 ) f~\z) nW=0, where W = f\9T\Vi) IΊ Ran a .

Since W £ ^f~\z) and X is normal, there exists an open set
G and a closed set K such that WQG^K^ ^f~\z). By Lemma
3.7 there exists two functions h, keS and points α, 6, p, q in Y
such that a Φ b and p Φ q and

h(x) = a for xeX — G

h{x) = b for x e W

k(x) — p for x e K

and

k(x) = q for x e f~\z) .

Then WQ ^h~\a) £ k~\p) £ ^f~\z). To complete the proof
we show that A e ^£Γ(^, <α» £ JEΓ(fc, <p>) £ ^jff(/, <»».

Since PΓC^Λ^ία) it follows that Ae<tfH(h, <α». Suppose
now Be^H(h, <α». Then there exist {(feέ, (a^)}^! in J5 such that

( 5 ) /^(α) Π Π /̂ ΓX̂ ) Π Ran a = 0 .

If J5 ί £Γ(A;, <p» then there exist {(ki9 {b^)}^ in B such that

( 6) k~\p) n ή hτ\b%) n Ran α - 0 .

Since ^h-\a)Qk-\p)f (5) and (6) together imply that f|f=i ^(α*) Π

Πf=i AϊΓXδ,) Π Ran a = 0 .
This contradicts that 5 is a bond and hence BeH(k, (p)),

proving that <ίfH(h, <α» £ JΪ(A;, <j)».
To show that H(k, (p)) £ %fH(f, {z))} suppose B e H(k, (p)) and
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B e H(f, <z». Then (/, <z» and (fc, (p)) both belong to B but k~\p) n
f~\z) — 0 , which is a contradiction. This proves that H(k, (p)) £
^H(f, <z», and the lemma is proved.

The following lemma is easy to prove.

LEMMA 3.9. For y, ze Y, A(y} = A(z> if and only if a(y) = α(z).

Let <%s denote %S(S) and & denote the set {A<y>: y e y). By
Lemma 3.8 and Theorem 2.6 ^/ is a Hausdorff compactification of
&. Let e be the mapping of Y into ^ defined by e(y) = A{y>.

LEMMA 3.10. e is continuous and closed.

Proof. Since sets of the form H(f, (z)) Π & constitute a sub-
base of closed subsets of & and e~\H(f, (z)) Π ̂ ] = (focc)~\z), it
follows that e is continuous. Suppose now that K is a closed subset
of Y and A<y>$e[K]. Then α(s/) g α[2Γ| and αpΓ] is closed. By
Lemma 3.7, there exist feS and a,beY, aΦh such that f{a{y)) — a
and f(x) = b for every x e a[K].

Then r^H(f, <&>) is a neighborhood of A<y} which does not inter-
sect e[K] showing that e[K] is closed.

Lemma 3.10 shows that έ% has the quotient topology induced
by the map e on Y. Since a is by hypothesis a continuous closed
map of Y it follows that a[Y] also has the quotient topology. Now
there is a natural map g of a[Y] onto & defined by g(a(y)) = A<2/>.

Lemma 3.9 shows that this is well defined and injective and the
preceding discussion implies that g is a homeomorphism. Thus we
have proved

COROLLARY 3.11. a[Y] is homeomorphic to &.

Proof of the main theorem. We begin by proving that the
structure space ^ is jE-compact. We have already observed that
^ is a compact Hausdorff space. Thus, if an embedding into a
cartesian product of copies of E exists, <%s must necessarily be
embedded as a closed subset. Consequently, we need only prove the
existence of an embedding. According to Theorem 2.1 of [12, p.
165], it will be sufficient to show that for each closed subset W of
^/ and each A^^f with A& W, there exists a continuous function
/ from ^ into E and a point q in E such that f{B) = q for B e W
and f(A) Φ q. The proof which follows is a modification of the
corresponding proof in [6].

Now W is closed and Ag W. Therefore there exists a finite
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subfamily {(git (yty))?=ι of S x K such that

(7) AeW*, WQ W*

where W* = Uf^^ffXft))- Since A ί W*, there exist by (3), finite
subfamilies {(hiίt (^y))}^ of A such that s^1^) Π V{ = 0 where

V, = ή Λ« (v«) Π Ran α for 1 ^ i ^ JSΓ.

Now let F* - Uf=i Vi and let H - Uf=i Λ" 1^). Then F * and i ϊ are
two disjoint closed subsets of X and hence there exist a continuous
function s mapping X into i£* and two distinct points p and g of
E* such that

s(a?) = p for 35 e F* and s(x) = q for xeH, where E* is
(8) h being a homeomorphism of E into Y which results from

the hypothesis.

Now the mapping λs: & —> & defined by Xs(A(y>) = A<s(α{2/))> is
continuous by Theorem 2.4 and has a unique extension to a con-
tinuous selfmap λs of <%f by Lemma 3.8 and Theorem 2.6. Now
we assert that

( 9 )

and

(10) XS(A) = e(p) and X8(B) = e(ff) for S G TF* .

Now 8(X)QE*. Therefore Xa(A<y>) = A<8{a{y))>ee[E*] for every
y e Y. Since ^ is dense in ^ and J57* is compact, we have

λ,(^) = λ.(cl ^ ) £ cl (λ s (^)) S cl e[JS7*] - β[J5*] ,

where cl denotes the closure. This verifies (9). Now we shall show
that

(11) Aec\{A<y>:α(y)eV*}.

Let ^[[Jf^! H(kif (Ti))] be a basic neighborhood of A. Then by
(3), there exist finite subfamilies {(ί<y, <<&„•»}$*! of A such that fcr1^) Π
C7, = 0 where Z7, = flfA ί i i 1 ^ ) Π Ran α.

Now there exists y in Y such that α(j/) e F* Π ϋΊ Π Π UM.
But, then α(y) ί kτ\rύ, i = 1, 2, , Λf so that (^, (r*)) ί A<2,>. There-
fore, A<y> e ^[Uf=i H(kif <r<»], and this proves (11). Now for α(j/) e
F*, «(α(ί/)) = p and we have Xs(A(y>) = A<iif(l0)> = e(j>).

This, together with (11) implies that XS(A) = e(p), which is the
first half of (10). In the same way as we verified (11), we can
show that if BeW* then B e d {A<y}: α(y) e H} and since s(x) — q
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for x e H, it follows that Xs(A<y>) = e(q) for every y such that a(y) e
H. Therefore λs (β) — e(q) for each Be W* and this completes the
proof of the statement (10). Now, e is injective on E* and λ s ( ^ ) £
e[E*]. Therefore, (e © ft)"1 o xs — f is a continuous function from ^
to E and we have a point a{ — h~ι(q)) in E such that f{B) = α for
every i? e W and /(A) 9̂  α, which was to be shown in order to
conclude that *%s is JS'-compact.

Now we are in a position to show that ^/ is βE(a{y)). Actually,
we show that ^ is βE(&) but since the canonical map g (described
after Lemma 3.10) maps a(E) homeomorphically onto & we identify
the two spaces. In order to conclude that ^ is βE{&) it is suffici-
ent, according to Theorem 4.14 of [12, p. 177] to show that ^ is
^-compact and that every continuous function from & to E can be
continuously extended to a function which maps *& into E. We
have yet to verify the latter and this is what we shall do now.
Let / be a continuous function from <% to E. Then /° g is a con-
tinuous function on a(Y) to E. Let (f°g)* denote an extension of
fog to a continuous function on X to E. Now ^ ( / ° g ) = ί; belongs
to S and

^fc(^4.<i/>) — Ά<fc(«(i/))> — ^ - < ^ ° / o 0 ( α ( 2 / ) ) > — A < h n f u < y } ) > = eoh° f ( A < y y ) .

Therefore, λfc = eohof. Now λ^ has a unique continuous exten-
sion λfc to a self map of <%s. We then have λ f c (^) = λfc(cl ^ ) £
cl (λ f c (^)) = cl (e o ft o / ( ^ ) ) s cl (e ° ft(.E)) = β ° ft(J&).

The last equality is obtained because £7 is compact and e °h is
a homeomorphism on £?. The function (eoh)^1o\k is the desired
extension of / because (e o ft)"1 o λfc(A<lf>) = (e © ft)"1 o λfc(A<2/>) = (e o ft)"1 o

This completes the proof of the main theorem. If, in the main
theorem, we take E to be the closed unit interval, we immediately
get

COROLLARY 3.12. Suppose X is normal and Hausdorff, a a
continuous closed map of Y into X and Y contains an arc on which
a is injective. Then the 5%~-structure space of S(X> Y, a) is the
Stone-Cech compactification of a(Y).

COROLLARY 3.13. Let X be a normal ^-dimensional Hausdorff
space and let a be a continuous closed map of Y into X. Then the
J%"-structure space of S(X, Yy a) is the Stone-Cech compactification
ofa(Y).

Proof. Here again we apply the main theorem and in this case
we take E to be the two point discrete space 0&. First we assume
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that a is not constant, then Y contains a copy of 3ί on which a
is injective. One can show that X is ^-separated exactly as it is
done in the proof of Corollary 2 of [6]. Now we show that every
continuous function / on cc(Y) to £& can be continuously extended
to X. Let p and q be the distinct points of &f. Then f~\p) and
f~\q) are disjoint closed subsets of a(Y) and consequently that of
X as a(Y) is closed in X. Since X is ^-separated there exists a
continuous function / on X to £& such that f(x) = p for x e f~\p)
and f{x) = # for xef~\q). This / is the desired extension. Now
our main theorem implies that the J^-structure space of S(X, Y, a)
is β&(a(y)), the largest ^-compactification of a(y). Now one proves
exactly as in the proof of Corollary 2 of [6] that β(a(y) is a 3ί-
compactification of α(i/) which in turn implies that β&(a(Y)) =
β(a(Y)) and the ^-structure space of S(X, Γ, α) is β(a(Y)).

Suppose now that a is a constant map of Y into X, say «(#) =
x0 for every y e Y. Let A be an ultrabond for the pair (S, K)
where K is the kernel of S(X, Y, a). Suppose (/, (y))eA. Then by
definition there exists y' e Y such that / (y') = (y). But /• <#') =
<f(a(y'))> = </(a?o)>. Thus A £ {(/, </(α?0)»: /eS(X, Γ, α)} which it-
self is an ultrabond. Therefore A = {(/, </(^0)»:/eS} and ^ ( S )
consists of just one point and consequently is the Stone-Cech com-
pactification of cc(Y).

4. Examples, applications and concluding remarks* If one
takes X = Y and a to be the identity map, then S(X, Y, a) is just
S(X) the semigroup, under composition, of all continuous selfmaps
of X. It follows immediately from the results of the previous
section that for a number of spaces X, the Jϊ^ structure space of
S(X) is βXf the Stone-Cech compactification of X. This generalizes
results in both [5] and [6].

For further examples, take X to be any normal space, choose
any closed subspace Y which contains an arc and denote by S(X, Y)
the subsemigroup of S(X) consisting of all functions which map X
into Y. Then S(X, Y) is really a sandwich semigroup (the sandwich
map is the identity map on Y) which satisfies the hypothesis of the
main theorem and it follows that its ^"-structure space is βY. For
a specific example of this type, take X to be the space of real
numbers R and take Y to be union of the unit interval with the
subspace N of natural numbers. Then the Jg^structure space of
S(R, Y) is the free union of βN with an arc.

For any closed continuous function a from R into R which is
injective on some nondegenerate subinterval, there are precisely
three possibilities for the J ^ structure space of S(R, R, a). The
space ^ is either an arc, βR or βR+ where R+ is the space of
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nonnegative real numbers. One easily verifies that any continuous
selfmap of any Euclidean w-space which carries unbounded sets into
unbounded sets, is also a closed map. Thus all polynomial functions
P from R into R are closed and any polynomial function Q from C
into C is also closed where C denotes the field of complex numbers.
Of course, Q must actually mapC onto C since C is algebraically
closed. There are only two possibilities for the ^"-structure space
%f of S(R, R, P). The space <%s is βR if and only if P is of odd
degree and it is βR+ if and only if P is of even degree. The 3fΓ-
structure space of S(C9 C, Q) is always βR2 regardless of the degree
of Q. All these assertions follow immediately from the theorem.

Now let S and T be any two semigroups with kernels. If S
and T are isomorphic then certainly the two J ^ structure spaces
*f?(β) and ^ ( Γ ) are homeomorphic. The converse, of course, is
far from being true. For example if G is any group, then
has the cofinite topology [8, p. 266]. The cardinality of
agrees with that of G so if G and H are any two groups of the
same order (finite or infinite) then ^ ( G ) and <&{H) will be homeo-
morphic. For another type of example, S(R) and S(βR) are not
isomorphic [8, p. 256] but f/{S{R)) = %S(S(βR)) = βR, the Stone-
Cech compactification of the reals.

Nevertheless, with certain restrictions on X and Y, the exist-
ence of a homeomorphism between %f(S(X)) and <&(S(Y)) will imply
the existence of an isomorphism between S(X) and S(Y). This is
included in the following

THEOREM 4.1. Suppose that both X and Y are first countable
normal spaces and suppose that each of them either contains an
arc or is 0-dimensional. Then the following statements are equi-
valent

4.1.1 The two ^restructure spaces <%f(S(X)) and %f(S(Y)) are
homeomorphic.

4.1.2 The two semigroups S(X) and S(Y) are isomorphic.
4.1.3 The spaces X and Y are homeomorphic.

Proof. Suppose 4.1.1 holds. Then by the results of the previ-
ous section there is a homeomorphism h from βX onto βY. No
point in βX — X is a Gδ in βX while each point in X is a Gδ in
βX, in fact it has a countable base in βX [1, p. 132]. Of course,
the same thing is true of Y and βY so that the homeomorphism h
must carry X onto Y and we see that 4.1.1 implies 4.1.3. It is
immediate that 4.1.3 implies 4.1.2 and that 4.1.2 implies 4.1.1.

We conclude the paper with one more result of this type.
Recall that a subspace Y is tamely embedded in a space X if every
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homeomorphism from Y to some copy of Y in X can be extended
to a homeomorphism mapping X onto X.

THEOREM 4.2. Let X be normal space and let Y and Z be two
first countable closed subspaces which are tamely embedded in X.
Suppose further that X is either O-dimensional or that both Y and
Z contain arcs. Let S(X, Y) and S(X, Z) denote the semigroups,
under composition of all continuous functions mapping X into Y
and X into Z respectively. Then the following statements are
equivalent.

4.2.1 The two ST-structure spaces <%r{S(X, Y)) and %f(S(Xf Z))
are homeomorphic.

4.2.2 The two semigroups S(X, Y) and S(X, Z) are isomorphic.
4.2.3 The two subspaces Y and Z are homeomorphic.

Proof. Suppose 4.2.1 holds. By results in the previous section
β Y is homeomorphic to βZ and just as in the proof of the previous
theorem, this implies that Y and Z are homeomorphic. Thus 4.2.1
implies 4.2.3. If Y and Z are homeomorphic, then there exists a
homeomorphism h from X onto X carrying Y onto Z since the
latter are tamely embedded in X. The mapping which takes / into
h°f°h~ι is an isomorphism from S(X, Y) onto S(X, Z) so that 4.2.3
implies 4.2.2. It is evident that 4.2.2 implies 4.2.1 and the proof
is complete.
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