BMO FROM DYADIC BMO

John B. Garnett and Peter W. Jones

Abstract

We give new proofs of four decomposition theorems for functions of bounded mean oscillation by first obtaining each theorem in the easier dyadic case and then averaging the results of the dyadic decomposition over translations in $\boldsymbol{R}_{\boldsymbol{m}}$.

1. Introduction. Let φ be a locally integrable real function on \boldsymbol{R}^{m}, let Q be a bounded cube in \boldsymbol{R}^{m}, with sides parallel to the axes, and let $|Q|$ be the Lebesgue measure of Q. Then

$$
\varphi_{Q}=\frac{1}{|Q|} \int_{Q} \varphi d x
$$

is the average of φ over Q. We say φ has bounded mean oscillation, $\varphi \in \mathrm{BMO}$, if

$$
\|\varphi\|=\sup _{Q} \frac{1}{|Q|} \int_{Q}\left|\varphi-\varphi_{Q}\right| d x<\infty
$$

A dyadic cube is a cube of the special form

$$
Q=\left\{k_{j} 2^{-n}<x_{j}<\left(k_{j}+1\right) 2^{-n} ; 1 \leqq j \leqq m\right\}
$$

where n and $k_{j}, 1 \leqq j \leqq m$, are integers, and φ has bounded dyadic mean oscillation, $\varphi \in \mathrm{BMO}_{d}$, if

$$
\|\varphi\|_{d}=\sup _{Q \text { dyadic }} \frac{1}{|Q|} \int_{Q}\left|\varphi-\varphi_{Q}\right| d x<\infty .
$$

Then clearly $\mathrm{BMO} \subset \mathrm{BMO}_{d}$ with $\|\varphi\|_{d} \leqq\|\varphi\|$, but BMO and BMO_{d} are not the same space; the function $\log \left|x_{j}\right| \chi_{\left\{x_{j}>0\right\}}$ is in BMO_{d} but not in BMO. In analysis BMO is more important than BMO_{d} because BMO is translation invariant, but BMO_{d} is not. On the other hand, BMO_{d} is very much the easier space to work with because dyadic cubes are nested (if two open daydic cubes intersect then one of them is contained in the other). For example, for BMO the original proofs [1], [6], [8], [11] of the four theorems stated below were rather technical, while for BMO_{d} the analogous results are comparatively trivial. In this paper we derive the four theorems from their dyadic counterparts.

Here is the idea. Let $T_{\alpha} \varphi(x)=\varphi(x-\alpha)$. Then

$$
\varphi(x)=\lim _{N \rightarrow \infty} \frac{1}{(2 N)^{m}} \int_{\left|\alpha_{j}\right| \leqq N} T_{\alpha} \varphi(x+\alpha) d \alpha .
$$

Each of the theorems amounts to showing $\varphi \in$ BMO has the form $\varphi=F_{1}+F_{2}$ where F_{1} and F_{2} are BMO functions satisfying certain additional growth conditions. By the BMO_{d} result we have

$$
T_{\alpha} \varphi=F_{1}^{(\alpha)}+F_{2}^{(\alpha)}
$$

where $F_{1}^{(\alpha)}, F_{2}^{(\alpha)} \in \mathrm{BMO}_{d}$ satisfy the extra growth conditions on dyadic cubes. To prove each theorem we show the averages

$$
F_{j}(x)=\lim _{N \rightarrow \infty} \frac{1}{(2 N)^{m}} \int_{\left|\alpha_{j}\right| \leqq N} F_{j}^{(\alpha)}(x+\alpha) d \alpha
$$

are in BMO and have the correct growth. The method yields this general result.

TheOrem. Suppose that $\alpha \rightarrow \Phi^{(\alpha)}$ is a measurable mapping from \boldsymbol{R}^{m} to BMO_{d} such that all $\varphi^{(\alpha)}(x)$ have support a fixed dyadic cube, such that $\left\|\varphi^{(\alpha)}\right\|_{d} \leqq 1$ and such that

$$
\int \varphi^{(\alpha)}(x) d x=0
$$

Then

$$
\varphi_{N}(x)=\frac{1}{(2 N)^{m}} \int_{\left|\alpha_{j}\right| \leqslant N} \varphi^{(\alpha)}(x+\alpha) d \alpha
$$

is in BMO and $\left\|\varphi_{N}\right\| \leqq C$.
By duality, this theorem implies Davis's result connecting H^{1} and $H_{\text {dyadic }}^{1}$ on the unit circle. The proof of theorem is implicit in the arguments below. In §4 we show

$$
\varphi_{N}=g+\sum_{n=1}^{\infty} f_{n}
$$

where $g \in L^{\infty}$ and where $f_{n}(x)$ satisfies the Lipschitz condition (3.3) and the thinness condition (4.2). From these $\left\|\varphi_{N}\right\| \leqq C$ follows easily. This general result is not explicitly used in the proofs of Theorem 1 to 4.

Let $\ell(Q)$ denote the sidelength of the cube Q. A Carleson measure is a signed measure on the upper half space $\boldsymbol{R}_{+}^{m+1}=\boldsymbol{R}^{m} \times$ $(0, \infty)$ such that for some constant $N(\sigma)$,

$$
|\sigma|(Q \times(0, \iota(Q)]) \leqq N(\sigma)|Q|
$$

for all cubes $Q \subset \boldsymbol{R}^{m}$. Here $|\sigma|$ is the total variation of σ. Let $K(x)$ be a positive function for which

$$
\begin{equation*}
K(x)=O\left((1+|x|)^{-m-1}\right) \tag{1.1}
\end{equation*}
$$

and

$$
\int K(x) d x=1
$$

Write $\dot{K}_{y}(x)=y^{-m} K(x / y), y>0$.
Theorem 1 (Carleson [1]). If $\rho \in$ BMO has compact support, then there is $g \in L^{\infty}$ and there is a Carleson measure σ such that

$$
\begin{equation*}
\varphi(x)=g(x)+\int_{R_{+}^{m+1}} K_{y}(x-t) d \sigma(t, y) \tag{1.2}
\end{equation*}
$$

where

$$
\|g\|_{\infty} \leqq C\|\rho\|
$$

and

$$
N(\sigma) \leqq C\|\rho\|,
$$

where the constant C depends only on $K(x)$.
Theorem 1 implies Fefferman's Theorem [5] that $H^{1}\left(\boldsymbol{R}^{m}\right)$ has dual space BMO. Under the additional hypotheses

$$
|\nabla K(x)|=O\left((1+|x|)^{-m-1}\right)
$$

the converse of Theorem 1 is true (and not difficult). It then follows that $H^{1}\left(\boldsymbol{R}^{m}\right)=\left\{f \in L^{1}: f_{K}^{*} \in L^{1}\right\}$ where f_{K}^{*} is the maximal function $\sup _{|t-x|<y}\left|f * K^{y}(t)\right|$. See [5].

By the theorem of John and Nirenberg [7], $\varphi \in$ BMO if and only if there is $A>0$ such that

$$
\begin{equation*}
\sup _{Q} \frac{1}{|Q|} \int_{Q} e^{A\left|\varphi-\varphi_{Q}\right|} d x<\infty \tag{1.3}
\end{equation*}
$$

In fact, (1.3) holds with $A=c\|\varphi\|^{-1}, c$ depending only on the dimension. Set

$$
A(\mathscr{\varphi})=\sup \{A:(1.3) \text { holds }\}
$$

ThEOREM 2 ([6]). There are constants $c_{1}(m)$ and $c_{2}(m)$ such that if $\varphi \in \mathrm{BMO}$ then

$$
\frac{c_{1}(m)}{A(\varphi)} \leqq \inf _{g \in L^{\infty}}\|\varphi-g\| \leqq \frac{c_{2}(m)}{A(\varphi)}
$$

The left inequality is immediate since $A(\varphi-g) \geqq c\|\varphi-g\|^{-1}$, $g \in L^{\infty}$. We prove the other inequality.

Let $w(x)>0$ be a locally integrable function on \boldsymbol{R}^{m}, and let $1<$ $p<\infty$. We say $w \in A_{p}$ if

$$
\|w\|_{A_{p}}=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w d x\right)\left(\frac{1}{|Q|} \int_{Q}\left(\frac{1}{w}\right)^{1 /(p-1)} d x\right)^{p-1}<\infty:
$$

The Riesz transforms and the Hardy-Littlewood maximal functions are bounded on $L^{p}(w d x)$ if and only if $w \in A_{p}$ [2]. As $p \rightarrow 1$ the limiting form of A_{p} is

$$
\|w\|_{A_{1}}=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w d x\right)\left(\left\|\frac{1}{w}\right\|_{L^{\infty}(Q)}\right),
$$

and we say $w \in A_{1}$ if $\|w\|_{A_{1}}<\infty$.
Theorem 3 ([8]). If $1<p<\infty$, then $w \in A_{p}$ if and only if

$$
\begin{equation*}
w=w_{1}\left(w_{2}\right)^{1-p} \tag{1.4}
\end{equation*}
$$

where $w_{1}, w_{2} \in A_{1}$.
Hölder's inequality shows that (1.4) is sufficient. Obtaining the factorization (1.4) for $w \in A_{p}$ is more difficult.

Theorem 2 is a simple consequence of Theorem 3. Indeed, let $\varphi \in$ BMO and take $A(\varphi) / 2<A<A(\varphi)$. Write $w=e^{4 \varphi}$. Then for any Q,

$$
\begin{aligned}
\left(\frac{1}{|Q|} \int_{Q} w d x\right)\left(\frac{1}{|Q|} \int_{Q} \frac{1}{w} d x\right) & =\left(\frac{1}{|Q|} \int_{Q} e^{A\left(\varphi-\varphi_{Q}\right)} d x\right)\left(\frac{1}{|Q|} \int_{Q} e^{-A\left(\varphi-\varphi_{Q}\right)} d x\right) \\
& \leqq\left(\frac{1}{|Q|} \int_{Q} e^{A\left|\varphi-\varphi_{Q}\right|} d x\right)^{2}
\end{aligned}
$$

so that $w \in A_{2}$. By Theorem 3,

$$
A \varphi=\log w=F_{1}-F_{2}
$$

where $e^{F_{1}}, e^{F_{2}} \in A_{1}$. From A_{1} it follows easily that

$$
e^{F_{j}} \leqq M\left(e^{F_{j}}\right) \leqq c e^{F_{j}}
$$

almost everywhere, where $M(f)$ denotes the Hardy-Littlewood maximal function of f. Coifman and Rochberg [3] have shown $\|\log M(f)\|_{\text {вмо }} \leqq$ $C(m)$ whenever $f \in L_{1 \mathrm{loc}}^{1}$. Consequently

$$
\begin{aligned}
F_{j} & =\log M\left(e^{F_{j}}\right)+\log \left(e^{F_{j}} / M\left(e^{F_{j}}\right)\right) \\
& =\psi_{j}+g_{j}
\end{aligned}
$$

where $g_{j} \in L^{\infty}$ and $\left\|\psi_{j}\right\| \leqq C(m)$. Hence

$$
\varphi=\frac{g_{1}-g_{2}}{A}+\frac{\psi_{1}-\dot{\psi}_{2}}{A}=g+\dot{\psi}
$$

with $g \in L^{\infty}$ and $\|\psi\| \leqq 2 C(m) / A$.
The above reasoning also explains why Theorem 3 is a theorem about BMO. See [8] for further application of Theorem 3.

Theorem 4 (Uchiyama [11]). Let $\lambda>0$ and let $E_{1}, E_{2}, \cdots, E_{N}$ be measurable subsets of \boldsymbol{R}^{m} such that

$$
\begin{equation*}
\operatorname{Min}_{1 \leqq i \leqq N} \frac{\left|Q \cap E_{i}\right|}{|Q|} \leqq 2^{-2 m \lambda} \tag{1.5}
\end{equation*}
$$

for every cube Q. Then there exists functions $f_{1}(x), f_{2}(x), \cdots, f_{N}(x)$ such that almost everywhere

$$
\begin{gather*}
f_{i}(x)=0, \quad x \in E_{i} . \tag{1.6}\\
0 \leqq f_{i}(x) \leqq 1 \tag{1.7}\\
\sum_{i=1}^{N} f_{i}(x)=1 \tag{1.8}
\end{gather*}
$$

and such that

$$
\begin{equation*}
\left\|f_{i}\right\| \leqq C(m, N) / \lambda, \quad 1 \leqq i \leqq N \tag{1.9}
\end{equation*}
$$

The converse (with $\left\|f_{i}\right\| \leqq C^{\prime}(m, N) / \lambda$) of this theorem is not difficult. Theorem 4 for $N=2$ is roughly equivalent to Theorem 2. For $N>2$ it has interesting applications to function theory. See [8] and [11].

In §2 we prove the dyadic versions of Theorem 1 and Theorem 3. Although the arguments are well known (see [13] and [8]), they are included for completeness and because some of their byproducts will be needed later. Theorem 3 is proved in $\S 3$ and Theorem 1 is proved in $\S 4$. In $\S 5$ we discuss Theorem 4 and its dyadic analogue.

We would like to acknowledge our indebtedness to Davis [4], who showed on the circle that $T_{\alpha} f \in H_{\text {dyadic }}^{1}$ for almost every α if $f \in H^{1}$, and to Varopoulos [12], who proved Theorem 2 by adapting the argument of the dyadic case to Brownian motion.

2. Two dyadic theorems.

THEOREM 2.1. Let $\varphi \in \mathrm{BMO}_{d}$ and let Q_{0} be a fixed dyadic cube. Then there exists a sequence $\left\{Q_{k}\right\}$ of dyadic cubes $Q_{k} \subset Q_{0}$, and a sequence $\left\{a_{k}\right\}$ of real numbers such that

$$
\begin{equation*}
\sum_{Q_{k} \subset Q}\left|a_{k}\right|\left|Q_{k}\right| \leqq C\|\varphi\|_{d}|Q| \tag{2.1}
\end{equation*}
$$

for all dyadic cubes Q, and there exists $g \in L^{\infty}$,

$$
\|g\|_{\infty} \leqq 2\|\varphi\|_{d}
$$

such that

$$
\begin{equation*}
\varphi(x)-\varphi_{Q_{0}}=g(x)+\sum a_{k} \chi_{Q_{k}}(x) \tag{2.2}
\end{equation*}
$$

almost everywhere on Q_{0}. The constant C depends only on the dimension.

To understand why Theorem 2.1 is the dyadic formulation of Theorem 1, replace \boldsymbol{R}_{+}^{m+1} by its discrete subset $\mathscr{D}=\left\{p_{Q}=(c(Q), \ell(Q))\right.$, Q dyadic where $c(Q) \in \boldsymbol{R}^{m}$ is the center of Q and $\ell(Q)$ is the sidelength of Q. The correspondence between p_{Q} and $K_{Q}(x)=\chi_{Q}(x) /|Q|$ resembles the correspondence between $(t, y) \in \boldsymbol{R}_{+}^{m+1}$ and $K_{y}(x-t)$. Let σ be the measure on \mathscr{D} having mass $a_{k}|Q|$ at $p_{Q_{k}}$. Then (2.1) says that

$$
\begin{aligned}
|\sigma|(Q \times(0, \iota(Q)] & =\sum_{Q_{k} \subset Q}\left|a_{k}\right|\left|Q_{k}\right| \\
& \leqq C\|\varphi\|_{d}|Q|
\end{aligned}
$$

and σ can be viewed as a dyadic Carleson measure. Since

$$
\int K_{Q}(x) d \sigma\left(p_{Q}\right)=\sum a_{k} \chi_{Q_{k}}(x),
$$

(2.2) is now the dyadic version of (1.2).

Proof. We suppose $\varphi_{Q_{0}}=0$. Fix $\lambda=2\|\varphi\|_{d}$ and set

$$
G_{1}=\left\{Q_{k} \subset Q_{0}: Q_{k} \text { dyadic, }\left|\varphi_{Q_{k}}\right|>\lambda, \quad \text { and } \quad Q_{k} \text { maximal }\right\}
$$

Because $Q_{k} \in G_{1}$ is maximal, we have

$$
\begin{equation*}
\left|\varphi_{Q_{k}}\right| \leqq \lambda+2^{m}\|\varphi\|_{d} \leqq 2^{m+1}\|\rho\|_{d} . \tag{2.3}
\end{equation*}
$$

Indeed, if Q_{k}^{*} is that dyadic cube with $Q_{k}^{*} \supset Q_{k}$ and $\left|Q_{k}^{*}\right|=2^{m}\left|Q_{k}\right|$, then

$$
\left|\varphi_{Q_{k}}-\varphi_{Q_{k}^{*}}\right| \leqq \frac{1}{\left|Q_{k}\right|} \int_{Q_{k}^{*}}\left|\varphi-\varphi_{Q_{k}^{*}}\right| d x \leqq 2^{m}\|\varphi\|_{d}
$$

and $\left|\varphi_{Q_{k}^{*}}\right| \leqq \lambda$ as Q_{k} is maximal. The Q_{k} in G_{1} are pairwise disjoint, because they are maximal, so that

$$
\begin{equation*}
\sum_{G_{1}}\left|Q_{k}\right| \geqq \frac{1}{\lambda} \sum_{G_{1}}\left|\int_{Q_{k}} \varphi d x\right| \leqq \frac{1}{\lambda} \int_{Q_{0}}|\varphi| d x \leqq \frac{\|\varphi\|_{d}\left|Q_{0}\right|}{\lambda} \leqq\left|Q_{0}\right| / 2 \tag{2.4}
\end{equation*}
$$

Write $a_{k}=\varphi_{Q_{k}}, Q_{k} \in G_{1}$. Then we have

$$
\varphi(x)=g_{1}(x)+\sum_{G_{1}} a_{k} \chi_{Q_{k}}(x)+\varphi_{1}(x),
$$

where $g_{1}=\varphi \chi_{E_{1}}, E_{1}=Q_{0} \backslash \cup\left\{Q_{k}: Q_{k_{k}} \in G_{1}\right\}$, satisfies $\left|g_{1}\right| \leqq \lambda$ by Lebesgue's theorem on differentiating the integral, where $\left|a_{k}\right| \leqq 2^{m+1}\|\rho\|_{d}$ by (2.3), and where

$$
\varphi_{1}=\sum_{G_{1}}\left(\varphi(x)-\varphi_{Q_{k}}\right) \chi_{Q_{k}}(x)
$$

Now because $\varphi \in \mathrm{BMO}_{d}, \varphi_{1} \chi_{Q_{k}}=\left(\varphi-\varphi_{Q_{k}}\right) \chi_{Q_{k}}$ has the same behavior on Q_{k} that ρ has an Q_{0}, and we can repeat the construction with each $\varphi_{1} \chi_{Q_{k}}$, and continue by induction. At stage n we have a family G_{n-1} of disjoint dyadic cubes and $\varphi_{n-1}=\sum_{G_{n-1}}\left(\varphi(x)-\varphi_{Q_{j}}\right) \chi_{Q_{j}}(x)$. For each $Q_{j} \in G_{n-1}$ we set

$$
G_{1}\left(Q_{j}\right)=\left\{Q_{k} \subset Q_{j}: Q_{k} \quad \text { dyadic, }\left|\varphi_{Q_{k}}-\varphi_{Q_{j}}\right|>\lambda, Q_{k} \quad \text { maximal }\right\}
$$

and $G_{n}=\cup\left\{G_{1}\left(Q_{j}\right): Q_{1} \in G_{n-1}\right\}$. Then

$$
\varphi_{n-1}(x)=g_{n}(x)+\sum_{G_{n}} a_{k} \chi_{Q_{k}}(x)+\varphi_{n}(x),
$$

where $g_{n}=\varphi_{n-1} \chi_{E_{n}}, E_{n}=\mathbf{U}_{G_{n-1}} Q_{j} \mid \mathbf{U}_{G_{n}} Q_{k}$, satisfies $\left|g_{n}\right| \leqq \lambda$ and where $a_{k}=\varphi_{Q_{k}}-\varphi_{Q_{j}}, Q_{k} \subset Q_{j} \in G_{n-1}$, satisfies

$$
\begin{equation*}
\left|a_{k}\right| \leqq 2^{m+1}\|\varphi\|_{d} \tag{2.5}
\end{equation*}
$$

by the proof of (2.3). Moreover, the proof of (2.4) now gives

$$
\begin{equation*}
\sum_{\substack{Q_{k} \in Q_{j} \\ Q_{k} \in G_{n}}}\left|Q_{k}\right| \leqq\left|Q_{j}\right| / 2 \tag{2.6}
\end{equation*}
$$

for all $Q_{j} \in G_{n-1}$. Consequently $\varphi_{n}(x) \rightarrow 0$ almost everywhere, because φ_{n} has support $\bigcup_{G_{n}} Q_{k}$ and this set has measure $\leqq 2^{-n}\left|Q_{0}\right|$. Summing, we obtain

$$
\varphi(x)=\sum_{n=1}^{\infty} g_{n}(x)+\sum_{n=1}^{\infty} \sum_{G_{n}} a_{k} \chi_{Q_{k}}(x) .
$$

Since $\left|g_{n}\right| \leqq \lambda$ and the g_{n} have pairwise disjoint supports, $g=\sum g_{n}$ satisfies $\|g\|_{\infty} \leqq \lambda=2\|\varphi\|_{d}$ and we have the representation (2.2).

To prove (2.1) fix a dyadic cube and set $G_{1}(Q)=\left\{Q_{j} \in \cup G_{n}: Q_{j} \subset\right.$ Q, Q_{j} maximal $\}$. The Q_{j} in $G_{1}(Q)$ are disjoint and

$$
\sum_{Q_{k} \subset Q}\left|a_{k}\right|\left|Q_{k}\right|=\sum_{Q_{j} \in G_{1}(Q)} \sum_{Q \subseteq Q_{j}}\left|a_{k}\right|\left|Q_{k}\right| .
$$

Hence by (2.5), (2.6) and induction,

$$
\begin{aligned}
\sum_{Q_{k} \subset Q}\left|a_{k}\right|\left|Q_{k}\right| & \leqq 2^{m+1}\|\varphi\|_{d} \sum_{Q_{j} \in G_{1}(Q)} \sum_{\substack{Q_{k} \in Q_{j} \\
Q_{k} \in G_{n}}}\left|Q_{k}\right| \\
& \leqq 2^{m+1}\|\varphi\|_{d} \sum_{Q_{j} \in G_{1}(Q)} 2\left|Q_{j}\right| \\
& \leqq 2^{m+2}\|\varphi\|_{d}|Q| .
\end{aligned}
$$

Theorem 2.1 is proved.
Notice that when applied to the translates $T_{\alpha} \varphi, \varphi \in \mathrm{BMO}$, the costruction above produces functions $g^{(\alpha)}(x)$ and coefficients $a_{k}^{(\alpha)}$ which vary measurably in α.

Now let $w \geqq 0$ and set $\varphi=\log w$. Then $w \in A_{p}, 1<p<\infty$, if and only if

$$
\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} e^{\varphi-\varphi_{Q}} d x\right)\left(\frac{1}{|Q|} \int e^{-\left(\varphi-\varphi_{Q}\right) /(p-1)} d x\right)^{p-1}<\infty
$$

By Jensen's inequality each factor is at least 1 , and hence $w \in A_{p}$ if and only if

$$
\begin{equation*}
\sup _{Q} \frac{1}{|Q|} \int_{Q} e^{\varphi-\varphi} Q d x<\infty \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{Q} \frac{1}{|Q|} \int_{Q} e^{-\left(\varphi-\varphi_{Q}\right) /(p-1)} d x<\infty . \tag{2.8}
\end{equation*}
$$

For the dyadic form of Theorem 3, the suprema in (2.7) and (2.8) are taken over dyadic subcubes of Q_{0} only.

Theorem 2.2. Let $\varphi(x)$ be a real function on a dyadic cube Q_{0} and let $1<p<\infty$. Assume

$$
\begin{equation*}
\sup _{\substack{Q \subset Q_{0} \\ Q \text { dyadic }}} \frac{1}{|Q|} \int_{Q} e^{\varphi-\varphi} Q d x<\infty, \tag{2.7d}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{\substack{Q \in Q_{0} \\ Q \text { dyadic }}} \frac{1}{|Q|} \int_{Q} e^{-\left(\varphi-\varphi_{Q}\right) /(p-1)} d x<\infty . \tag{2.8d}
\end{equation*}
$$

Then

$$
\varphi-\varphi_{Q}=g+F-G,
$$

where $g \in L^{\infty},\|g\|_{\infty} \leqq C_{1}$, where

$$
\begin{equation*}
\sup _{\substack{Q \subset Q_{0} \\ Q \text { dyadic }}}\left\{\left(\frac{1}{|Q|} \int_{Q} e^{F} d x\right)\left\|e^{-F}\right\|_{\left.L^{\infty}(Q)\right\}}\right\}<C_{2} \tag{2.9}
\end{equation*}
$$

and where

$$
\begin{equation*}
\sup _{\substack{Q Q_{0} \\ Q \text { dyadic }}}\left\{\left(\frac{1}{|Q|} \int_{Q} e^{G /(p-1)} d x\right)\left\|e^{-G /(p-1)}\right\|_{L^{\infty}(Q)}\right\}<\mathrm{C}_{3} \tag{2.10}
\end{equation*}
$$

The constants C_{1}, C_{2}, C_{3} depend only on m and the bounds in (2.7d) and (2.8d).

Thus if $w=e^{\varphi}$ satisfies the dyadic A_{p} condition (i.e., if 2.7 d) and (2.8d), then $w=w_{1}\left(w_{2}\right)^{1-p}$ where $w_{1}=e^{\varphi Q_{0}+g+f}$ and $w_{2}=e^{G /(p-1)}$ satisfy A_{1} on dyadic subcubes of Q_{0}.

Proof. The construction is the same as in the proof of Theorem 2.1. By (2.7d) and (2.8d) and by Jensen's inequality, $\varphi \chi_{Q_{0}} \in \mathrm{BMO}_{d}$. Fix $\lambda>2\|\varphi\|_{d}$ to be determined later and set $G_{1}=\left\{Q_{k} \subset Q_{0}: Q_{k}\right.$ dyadic, $\left|\varphi_{Q_{k}}-\varphi_{Q_{0}}\right|>\lambda, Q_{k}$ maximal $\}$ and by induction

$$
G_{n}=\bigcup_{Q_{j} \in G_{n-1}}\left\{Q_{k} \subset Q_{j}: Q_{k} \text { dyadic, }\left|\varphi_{Q_{k}}-\varphi_{Q_{j}}\right|>\lambda, Q_{k} \text { maximal }\right\}
$$

For $Q_{k} \in G_{n}, Q_{k} \subset Q_{j} \in G_{n-1}$, set $a_{k}=\left(\varphi_{Q_{k}}-\varphi_{Q_{j}}\right)$. The proof of (2.3) gives

$$
\begin{equation*}
\lambda<\left|a_{j}\right|<\lambda+2^{m}\|\varphi\|_{d} \tag{2.11}
\end{equation*}
$$

As in the proof of Theorem 2.1, we have

$$
\varphi=\varphi_{Q_{0}}+g+\sum_{n=1}^{\infty} \sum_{G_{n}} a_{k} \chi_{Q_{k}}(x)
$$

where $\|g\|_{\infty} \leqq \lambda$. Write

$$
\begin{align*}
F & =\sum_{a_{k}>0} a_{k} \chi_{Q_{k}} \tag{2.12}\\
G & =-\sum_{a_{k}<0} a_{k} \chi_{Q_{k}} \tag{2.13}
\end{align*}
$$

Then $\varphi=\varphi_{Q_{0}}+g+F-G$.
To prove (2.9) and (2.10) we recall that there is $\varepsilon>0$, depending only on the bounds in (2.7d) and (2.8d), such that

$$
\begin{equation*}
\sup _{\substack{Q \in Q_{0} \\ Q \text { dyadic }}} \frac{1}{|Q|} \int_{Q} e^{(1+\varepsilon)\left(\varphi-\varphi_{Q}\right)} d x<\infty \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{\substack{Q \in Q_{0} \\ Q \text { dyadic }}} \frac{1}{|Q|} \int_{Q} e^{-(1+\varepsilon)\left(\varphi-\varphi Q^{2}\right) /(p-1)} d x<\infty \tag{2.15}
\end{equation*}
$$

See [3] or [10].
We prove (2.9). Fix $Q_{j} \in \cup G_{n}$ with $a_{j}>0$ and set

$$
G_{1}^{+}\left(Q_{j}\right)=\left\{Q_{k} \in \cup G_{n}: Q_{k} \varsubsetneqq Q_{j}, a_{k}>0, Q_{k} \text { maximal }\right\},
$$

and by induction $G_{n+1}^{+}(Q)=\cup\left\{G_{1}^{+}\left(Q_{k}\right): Q_{k} \in G_{n}^{+}\left(Q_{j}\right)\right\}$. The critical inequality for the proof of (2.9) is

$$
\begin{equation*}
\sum_{G_{n}^{\ddagger} Q_{j} \mid} \frac{\left|Q_{k}\right|}{\left|Q_{j}\right|} \leqq(2 C)^{n} e^{-n(1+\epsilon) \lambda}, \tag{2.16}
\end{equation*}
$$

where C is the sumpremum in (2.14). By induction we need only obtain (2.16) for $n=1$. There are two case.

Case 1. $Q_{j} \in G_{n}$ and $Q_{k} \in G_{n+1}$. Then $\varphi_{Q_{k}}-\varphi_{Q_{j}}>\lambda$, so by Jensen's inequality

$$
e^{(1+\varepsilon) \lambda} \leqq \frac{1}{\left|Q_{k}\right|} \int_{Q_{k}} e^{(1+\varepsilon)\left(\varphi-Q_{Q}\right)} d x .
$$

Since the Q_{k} are disjoint this gives

$$
\begin{aligned}
\sum_{\text {Case } 1} \frac{\left|Q_{k}\right|}{\left|Q_{j}\right|} & \leqq e^{-(1+\varepsilon) \lambda} \sum_{\text {Case } 1} \frac{1}{\left|Q_{j}\right|} \int_{Q} e^{(1+\varepsilon)\left(\varphi-\varphi \varphi_{Q}\right)} d x \\
& \leqq e^{-(1+\varepsilon) \lambda} \frac{1}{\left|Q_{j}\right|} \int_{e^{(1+\varepsilon)\left(\varphi-\varphi \varphi_{j}\right)} d x} e^{(1)} . \\
& \leqq e^{-(1+\varepsilon) 2} .
\end{aligned}
$$

Case 2. $Q_{j} \in G_{n}$ and $Q_{k} \in G_{n+p}, p \geqq 2$. Then if $Q_{\iota} \in G_{n+r}, 1 \leqq r \leqq$ $p-1$, and if $Q_{k} \subset Q_{\iota}$, it must be that $a_{\iota}<0$. Let $D_{1}=\left\{Q_{\iota} \in G_{n+1}\right.$: $\left.Q_{\iota} \subset Q_{j}, a_{\iota}<0\right\}$ and by induction $D_{r}=\left\{Q_{\iota} \in G_{n+r}: \exists Q_{m} \in D_{r-1}, Q_{\iota} \subset Q_{m}\right.$, $\left.a_{\iota}<0\right\}$. Then as in the proof of Case $1,\left|\cup D_{1}\right| \leqq C e^{-(1+e) / 2 / p-1}\left|Q_{j}\right| \leqq$ $1 / 2\left|Q_{j}\right|$ if λ is large enough. Induction then shows $\left|\cup D_{r}\right| \leqq 2^{-r}\left|Q_{j}\right|$. For $Q_{\iota} \in D_{r}, r \geqq 1$, let $U\left(Q_{\iota}\right)=\left\{Q_{k} \in G_{n+r+1}: Q_{k} \subset Q_{\iota}, a_{k}>0\right\}$. By Case $\left.1, \mid U U_{\ell}\right)|\leqq C| Q_{\ell} e^{-(1+\epsilon)}$. Consequently,

$$
\begin{aligned}
\sum_{C a s e} \frac{\left|Q_{k}\right|}{} \frac{\left|Q_{j}\right|}{} & =\sum_{r=1}^{\infty} \frac{1}{\left|Q_{j}\right|} \sum_{Q_{\ell} \in D_{r}}\left|\mathbf{U} U\left(Q_{\ell}\right)\right| \\
& \leqq C e^{-(1+\epsilon)} \sum_{r=1}^{\infty} \frac{1}{\left|Q_{j}\right|} \sum_{Q_{t} \in D_{r}}\left|Q_{\iota}\right| \\
& \leqq C e^{-(1+e) \lambda} \sum_{r=1}^{\infty} 2^{-r},
\end{aligned}
$$

because the cubes $Q_{\iota} \in D_{r}$ are disjoint for each r. Summing the two cases gives (2.16) for $n=1$.

Now fix a dyadic cube $Q \subset Q_{0}$ and set

$$
F_{1}=\sum_{\substack{Q_{k}=又_{k} \\ a_{k}>0}} a_{k} \chi_{Q_{k}}, \quad F_{2}=\sum_{\substack{Q_{k}=a_{k} \\ a_{k} \gg}} a_{k} \chi_{Q_{k}} .
$$

On $Q, F=F_{1}+F_{2}, F_{2}$ is constant, and $F_{1} \geqq 0$. Hence

$$
\begin{aligned}
\left(\frac{1}{|Q|} \int_{Q} e^{F} d x\right)\left\|e^{-\left(F_{1}+F_{2}\right)}\right\|_{L^{\infty}(Q)} & =\left(\frac{1}{|Q|} \int_{Q} e^{F_{1}+F_{2}} d x\right)\left\|e^{-\left(F_{1}+F_{2}\right.}\right\|_{L^{\infty}(Q)} \\
& \leqq \frac{1}{|Q|} \int_{Q} e^{F_{1}} d x
\end{aligned}
$$

and it suffices to establish

$$
\begin{equation*}
\frac{1}{|Q|} \int_{Q} e^{F_{1}} d x \leqq C_{2} \tag{2.17}
\end{equation*}
$$

If $\left\{Q_{j}\right\}$ denotes the set of maximal cubes $Q_{j} \subset Q$ having $a_{j}>0$, then $\sum\left|Q_{j}\right| \leqq|Q|$ and

$$
\frac{1}{|Q|} \int_{Q}\left(e^{F_{1}}-1\right) d x \leqq \sum \frac{\left|Q_{j}\right|}{|Q|}\left(\frac{1}{\left|Q_{j}\right|} \int_{Q_{j}} e^{F_{1}} d x\right) \leqq \sup _{j}\left(\frac{1}{\left|Q_{j}\right|} \int_{Q_{j}} e^{F_{1}} d x\right)
$$

Now by (2.11),

$$
\left\{x \in Q: F_{1}(x)>(n+1)\left(\lambda+2^{m}\|\varphi\|_{d}\right\} \subset \bigcup_{G_{n}^{+}\left(Q_{j}\right)} Q_{k},\right.
$$

so that by (2.16),

$$
\frac{1}{\left|Q_{j}\right|} \int_{Q_{j}} e^{F_{1}} d x \leqq \sum_{n=0}^{\infty} e^{(n+1)\left(\lambda+2^{m}\|\varphi\|_{d}\right)}(2 C)^{n} e^{-n(1+\varepsilon) \lambda}
$$

If $\lambda>\lambda\left(\varepsilon, C,\|\varphi\|_{d}\right)$ the series sums and we obtain (2.17) and therefore (2.9).

The proof of (2.11) is the same except that (2.15) is used in place of (2.14).
3. The proof of Theorem 3. Let $w=e^{\varphi} \in A_{p}$ and let S_{N} be the cube $\left\{\left|x_{i}\right| \leqq 2^{N}, 1 \leqq i \leqq m\right\}$.

Lemma 3.1. There exist $g_{N}(x), F_{N}(x)$ and $G_{N}(x), x \in S_{N}$, such that $\left\|g_{N}\right\|^{\infty} \leqq C_{1}$, and

$$
\begin{gather*}
\sup _{Q \subset S_{N}}\left(\frac{1}{|Q|} \int_{Q} e^{F_{N N}} d x\right)\left\|e^{-F_{N}}\right\|_{L^{\infty}(Q)} \leqq C_{2}, \tag{3.1}\\
\sup _{Q \subset S_{N}}\left(\frac{1}{|Q|} \int_{Q} e^{G_{N_{N}} / p-1} d x\right)\left\|e^{-G_{N^{\prime} / p-1}}\right\|_{L^{\infty}(Q)} \leqq C_{3}, \tag{3.2}
\end{gather*}
$$

and such that

$$
\varphi(x)-\varphi_{S_{N}}=g_{N}(x)+F_{N}(x)-G_{N}(x), \quad x \in S_{N}
$$

The constants C_{1}, C_{2}, C_{3} do not depend on N.
We first show how Lemma 3.1 easily implies Theorem 3. We suppose $\varphi_{S_{0}}=0$. By Lemma 3.1,

$$
\begin{aligned}
\varphi & =R_{N}+\left(F_{N}-\left(F_{N}\right)_{S_{0}}\right)-\left(G_{N}-\left(G_{N}\right)_{s_{0}}\right) \\
& =R_{N}+\widetilde{F}_{N}-\widetilde{G}_{N}, \quad x \in S_{N},
\end{aligned}
$$

where $R_{N}=\varphi_{S_{N}}+g_{N}+\left(F_{N}\right)_{S_{0}}-\left(G_{N}\right)_{S_{0}}$ satisfies $\left\|R_{N}\right\|_{\infty} \leqq 2 C_{1}$ since $\left|\varphi_{S_{N}}+\left(\boldsymbol{F}_{N}\right)_{S_{0}}-\left(G_{N}\right)_{S_{0}}\right|=\left|\varphi_{S_{0}}-\left(g_{N}\right)_{S_{0}}\right| \leqq C_{1}$. For $N>M$, (3.1) and (3.2) give

$$
\begin{aligned}
& \frac{1}{\left|S_{M}\right|} \int_{S_{M}}\left|\widetilde{F}_{N}-\left(\widetilde{F}_{N}\right)_{S_{M}}\right|^{2} d x \leqq C \\
& \frac{1}{\left|S_{M}\right|} \int_{S_{M}}\left|\widetilde{G}_{N}-\left(\widetilde{G}_{N}\right)_{S_{M}}\right|^{2} d x \leqq C,
\end{aligned}
$$

and hence as $\left(\widetilde{F}_{N}\right)_{s_{0}}=\left(\widetilde{G}_{N}\right)_{s_{0}}=0,\left|\left(\widetilde{F}_{N}\right)_{s_{M}}\right| \leqq C_{M},\left|\left(\widetilde{G}_{N}\right)_{s_{M}}\right| \leqq C_{M}$. Consequently $\left\{\left(\widetilde{F}_{N}: N \geqq M\right\}\right.$ and $\left\{\widetilde{G}_{N}: N \geqq M\right\}$ are bounded in $L^{2}\left(S_{M}\right)$. Choose $N_{j} \rightarrow \infty$ so that $\widetilde{F}_{N_{j}} \rightarrow F, \widetilde{G}_{N_{j}} \rightarrow G$ weakly in $L^{2}\left(S_{M}\right)$ for all M and so that $R_{N_{j}} \rightarrow g$ weak-star in L^{∞}. Then

$$
\varphi=g+F-G
$$

with $\|g\|_{\infty} \leqq C_{1}$. For any cube Q there is a sequence of finite convex combinations

$$
F^{(n)}=\sum_{j} t_{j, n} F_{N j, n}, \quad t_{j, n} \geqq 0, \quad \sum t_{j, n}=1
$$

converging to F almost everywhere on $S_{M} \subset Q$. Then by Fatou's Lemma and Hölder's inequality

$$
\left(\frac{1}{|Q|} \int_{Q} e^{F} d x\right)\left\|e^{-F}\right\|_{L^{\infty}(Q)} \leqq \lim _{n \rightarrow \infty} \Pi\left(\frac{1}{|Q|} \int e^{F_{N j}, n} d x\right)^{t_{j, n}} \Pi\left\|e^{-F_{N_{j}, n}}\right\|^{t_{n}, j} \leqq C_{2},
$$

and hence $w_{1}=e^{g+F} \in A_{1}$. Using (3.2) we see $w_{2}=e^{G / p-1} \in A_{1}$ in the same way.

Proof of Lemma 3.1. We assume $\varphi_{S_{N}}=0$. For $\alpha \in S_{N}$ we use Theorem 2.2 on $T_{\alpha} \varphi(x)=\varphi(x-\alpha)$ with $Q_{0}=S_{N+1}$ (which we pretend is a dyadic cube) to obtain

$$
T_{\alpha} \varphi=g^{(\alpha)}+F^{(\alpha)}-G^{(\alpha)}
$$

where F_{α} and G_{α} satisfy (2.9) and (2.10) respectively and where $\|g\|_{\infty} \leqq C_{1}$ (since $\varphi \in \mathrm{BMO}$ and $\varphi_{S_{N}}=0, \sup _{\alpha \in S_{N}}\left(T_{\alpha} \varphi\right)_{S_{N+1}}$ is bounded). Almost everywhere on S_{N},

$$
\begin{aligned}
\varphi(x)= & \frac{1}{\left|S_{N}\right|} \int_{S_{N}} T_{-\alpha}\left(T_{\alpha} \varphi\right)(x) d \alpha \\
= & \frac{1}{\left|S_{N}\right|} \int_{S_{N}} T_{-\alpha}\left(g^{(\alpha)}\right)(x) d \alpha+\frac{1}{\left|S_{N}\right|} \int_{S_{N}} T_{-\alpha}\left(F^{(\alpha)}\right)(x) d \alpha \\
& +\frac{1}{\left|S_{N}\right|} \int_{S_{N}} T_{-\alpha}\left(G^{(\alpha)}\right)(x) d \alpha=g(x)+F(x)-G(x)
\end{aligned}
$$

Clearly $\|g\|_{\infty} \leqq C_{1}$. By (2.12) there are $\alpha_{k}^{(\alpha)}>0$ such that

$$
\begin{aligned}
F^{(\alpha)}(x) & =\sum_{n=0}^{\infty} \sum_{\ell\left(Q_{k}\right)=2^{-n}\left(S_{S}\right)} a_{k}^{(\alpha)} \chi_{Q_{k}}(x) \\
& =\sum_{n=0}^{\infty} f_{n}^{(\alpha)}(x)
\end{aligned}
$$

and by (2.13), $G^{(\alpha)}(x)$ has a similar representation. Write

$$
f_{n}(x)=\frac{1}{\left|S_{N}\right|} \int_{S_{N}}\left(T_{-\alpha} f_{n}^{(\alpha)}\right)(x) d \alpha
$$

so that $F=\sum_{n=0}^{\infty} f_{n}$.
Lemma 3.2. If $\sup _{i}\left|x_{i}-y_{i}\right| \leqq 2^{-n} \ell\left(S_{N}\right)$ then

$$
\begin{equation*}
\left|f_{n}(x)-f_{n}(y)\right| \leqq \frac{C_{4} 2^{n}}{\ell\left(S_{N}\right)}|x-y| \tag{3.3}
\end{equation*}
$$

with C_{4} indopendent of n.
Proof. By (2.11), $\left|a^{(\alpha)}\right| \leqq C$, and hence

$$
\left|f_{n}(x)-f_{n}(y)\right| \leqq \frac{C}{\left|S_{N}\right|} \int_{S_{N}} \sum_{\left\langle\left(2_{k}\right)=2^{n} \ell\left(S_{N}\right)\right.}\left|\chi_{Q_{k}}(x+\alpha)-\chi_{Q_{k}}(y+\alpha)\right| d \alpha
$$

The integrand is twice the characteristic function of $\left\{\alpha \in S_{N}: x+\alpha\right.$ and $y+\alpha$ fall in different $\left.Q_{k}, \ell\left(Q_{k}\right)=2^{-n} \ell\left(S_{N}\right)\right\}$, and this set has probability not exceeding

$$
\sum_{i=1}^{m} \frac{\left|x_{i}-y_{i}\right|}{2^{-n} \zeta\left(S_{N}\right)}
$$

Returning to the proof of Lemma 3.1, we fix $Q \subset S_{N}$ with $2^{-k} \iota\left(S_{N}\right)<\ell(Q) \leqq 2^{-k+1} \iota\left(S_{N}\right)$. Then

$$
\begin{aligned}
F(x) & =\sum_{n>k} f_{n}(x)+\sum_{n \leq k} f_{n}(x)=F_{1}(x)+F_{2}(x) \\
& =\frac{1}{\left|S_{N}\right|} \int_{S_{N}} F_{1}^{(\alpha)}(x+\alpha) d \alpha+\frac{1}{\left|S_{N}\right|} \int_{S_{N}} F_{2}^{(\alpha)}(x+\alpha) d \alpha
\end{aligned}
$$

By Lemma 3.2,

$$
\sup _{Q} F_{2}(x)-\inf _{Q} F_{2}(x) \leqq \frac{C}{\iota\left(S_{N}\right)} \sum_{n=0}^{k} 2^{n} \iota(Q) \leqq C
$$

Hence as $F_{1} \geqq 0$,

$$
\left(\frac{1}{|Q|} \int_{Q} e^{F_{1}+F_{2}} d x\right)\left\|e^{-\left(F_{1}+F_{2}\right)}\right\|_{L^{\infty}(Q)} \leqq C\left(\frac{1}{|Q|} \int_{Q} e^{F_{1}} d x\right)
$$

But by Jensen's inequality,

$$
\begin{aligned}
\frac{1}{|Q|} \int_{Q} e^{F_{1}(x)} d x & =\frac{1}{|Q|} \int_{Q} \exp \left(\frac{1}{\left|S_{N}\right|} \int_{S_{N}} F_{1}^{(\alpha)}(x+\alpha) d \alpha\right) d x \\
& \leqq \frac{1}{\left|S_{N}\right|} \int_{S_{N}}\left(\frac{1}{|Q|} \int_{Q} e^{F_{1}^{(\alpha)}(x+\alpha)} d x\right) d \alpha \leqq C_{2}
\end{aligned}
$$

by (2.17). The proof of (3.2) is the same.
4. The proof of Theorem 1. We suppose $\varphi \in \mathrm{BMO}$ has support $S_{0}=\left\{\left|x_{i}\right| \leqq 1,1 \leqq i \leqq m\right\}$ and $\int \rho d x=0$. For each $\alpha \in S_{0}$ we have, by Theorem 2.1,

$$
T_{\alpha} \varphi(x)=\varphi(x-\alpha)=g^{(\alpha)}(x)+\sum_{Q_{k} \subset Q_{0}} a_{k}^{(\alpha)} \chi_{Q_{k}}(x)
$$

where $Q_{0}=\left\{\left|x_{i}\right| \leqq 2,1 \leqq i \leqq m\right\}$, where $\left\|g^{(\alpha)}\right\|_{\infty} \leqq C\|\varphi\|$, and where

$$
\begin{equation*}
\sum_{Q_{k} \in Q}\left|\alpha_{k}^{(\alpha)}\right|\left|Q_{k}\right| \leqq C\|\varphi\||Q| \tag{4.1}
\end{equation*}
$$

Write

$$
f_{n}^{(\alpha)}(x)=\sum_{\varepsilon(Q)=2^{-n}} a_{k}^{(\alpha)} \chi_{Q_{k}}(x),
$$

so that $T_{\alpha} \varphi(x)=g^{(\alpha)}(x)+\sum_{n=0}^{\infty} f_{n}^{(\alpha)}(x)$. Then as before

$$
\begin{aligned}
\varphi(x) & =\frac{1}{\left|S_{0}\right|} \int_{S_{0}} g^{(\alpha)}(x+\alpha) d \alpha+\sum_{n=0}^{\infty} \frac{1}{\left|S_{0}\right|} \int_{S_{0}} f_{n}^{(\alpha)}(x+\alpha) d \alpha \\
& =g(x)+\sum_{n=0}^{\infty} f_{n}(x)
\end{aligned}
$$

where $\|g\|_{\infty} \leqq C\|\varphi\|$. For any cube Q we have

$$
\begin{align*}
\frac{1}{|Q|} \int_{Q_{2}-n} \sum_{n \leqq(Q)}\left|f_{n}(x)\right| d x & \leqq \sup _{\alpha \in S_{0}}\left(\frac{1}{|Q|} \int_{Q_{2}-n_{<}<\ell(Q)}\left|f_{n}^{(\alpha)}(x)\right| d x\right) \tag{4.2}\\
& \leqq \sup _{\alpha \in S_{0}}\left(\frac{1}{|Q|} \sum_{Q_{k} \subset \widetilde{Q}}\left|\alpha_{k}^{(\alpha)}\right|\left|Q_{k}\right|\right) \leqq C\|\varphi\|,
\end{align*}
$$

where \widetilde{Q} is concentric with Q and $\iota(\widetilde{Q})=3 \iota(Q)$. Thus for any $\delta>0, d \sigma=\sum f_{n}(x) d \sigma_{n}$, where $d \sigma_{n}$ is surface measure on $\boldsymbol{R}^{m} \times\{y=$ $\left.\delta 2^{-n}\right\}$, is a Carleson measure and $N(\sigma) \leqq C \delta^{-m}\|\varphi\|$, and

$$
\begin{aligned}
\int K_{y}(x-z) d \sigma(z, y) & =\sum_{n=0}^{\infty} f_{n} * K_{\partial 2}-n(x) \\
& =\sum h_{n}(x) .
\end{aligned}
$$

We will show that when δ is small,

$$
\begin{equation*}
\left\|\sum\left(f_{n}-h_{n}\right)\right\| \leqq \frac{1}{2}\|\rho\| \tag{4.3}
\end{equation*}
$$

With an iteration, that will prove Theorem 1.
To prove (4.3) fix a cube Q and a point $x_{0} \in Q$. We have

$$
\begin{aligned}
& \frac{1}{|Q|} \int_{Q}\left|\sum\left(f_{n}(x)-h_{n}(x)-\left(f_{n}-h_{n}\right)_{Q}\right)\right| d x \\
& \quad \leqq 2 \sum_{2-n \geqq A \angle(Q) \mid} \frac{1}{|Q|} \int_{Q}\left|\left(f_{n}-h_{n}\right)(x)-\left(f_{n}-h_{n}\right)\left(x_{0}\right)\right| d x \\
& \quad+2 \sum_{\ell(Q) \leq 2} \sum_{2-n<A ८(2)} \frac{1}{|Q|} \int_{Q}\left|f_{n}(x)-h_{n}(x)\right| d x \\
& \quad+2 \sum \frac{1}{|Q|} \int_{Q}\left|f_{n}(x)-h_{n}(x)\right| d x \\
& \quad=2 \sum_{1}+2 \sum_{2}+2 \sum_{3},
\end{aligned}
$$

where $A \geqq 2$ is a constant to be determined.
To estimate \sum_{1}, recall that

$$
\begin{equation*}
\left|f_{n}(x)-f_{n}(y)\right| \leqq C 2^{n}\|\rho\||x-y| \tag{4.4}
\end{equation*}
$$

by the proof of Lemma 3.2. The convolution $h_{n}=K_{\dot{02}-n * f_{n}}$ has the same continuity as f_{n}, since $\int K d x=1$, and we have

$$
\begin{aligned}
\sum_{1} \leqq \sum_{2^{-n}>A \ell(Q)} \frac{1}{|Q|} \int_{Q} 2 C 2^{n}\|\varphi\|\left|x-x_{0}\right| d x & \leqq C^{\prime}\|\varphi\| \ell(Q) \sum_{2^{n} \leqq(A \in(Q))^{-1}} 2^{n} \\
& \leqq C^{\prime}\|\varphi\| / A
\end{aligned}
$$

Hence $2 \sum_{1} \leqq\|\varphi\| / 6$ if A is large.
To estimate \sum_{2}, note that by (4.4) and the bound $\left\|f_{n}\right\|_{\infty} \leqq C\|\varphi\|$ (because $\left|a_{k}^{(\alpha)}\right| \leqq C\|\rho\|$), we have

$$
\left\|f_{n}-f_{n} * K_{\dot{\delta} 2-n}\right\|_{\infty} \leqq \varepsilon\|\varphi\|
$$

if δ is small, independent of n. Therefore

$$
2 \sum_{2} \leqq 2 \varepsilon\|\rho\| \sum_{\epsilon(Q) \leqq 2} \sum_{2 \leqq A /(2)} \leqq C \varepsilon\|\rho\| \log A \leqq\|\varphi\| / 6
$$

if $\varepsilon \log A$ is small.
Finally, we have

$$
\sum_{3} \leqq \sup _{\alpha} \frac{1}{|Q|} \int_{Q_{2}-n<\ell(Q)}\left|f_{n}^{(\alpha)}-f_{n}^{(\alpha)} * K_{\delta 2}^{(\alpha)}\right| d x
$$

by the definition of f_{n}. After a translation it is enough to consider $\alpha=0$. Let $Q^{(0)}=Q$ and pave \boldsymbol{R}^{m} with cubes $Q^{(j)}$ congruent to \widetilde{Q}. Then

$$
\sum_{3} \leqq \sum_{j} \sum_{Q_{k}<Q^{(j)}}\left|a_{k^{(0)}}\right|\left|Q_{k}\right| \frac{1}{|Q|} \int_{Q}\left|\frac{\chi_{Q_{k}}(x)}{\left|Q_{k}\right|}-\frac{\chi_{Q_{k}} * K_{\partial \ell\left(Q_{k}\right)}(x)}{\left|Q_{k}\right|}\right| d x
$$

By a change of scale,

$$
\frac{1}{|Q|} \int_{R^{m}}\left|\frac{\chi_{Q_{k}}(x)}{\left|Q_{k}\right|}-\frac{\chi_{Q_{k}} * K_{\dot{\partial}\left(Q_{k}\right)}(x)}{\left|Q_{k}\right|}\right| d x
$$

does not depend on $\ell\left(Q_{k}\right)$. Thus for $\varepsilon>0$ we can choose δ so that

$$
\frac{1}{|Q|} \int_{Q}\left|\frac{\chi_{Q_{k}}(x)}{\left|Q_{k}\right|}-\frac{\chi_{Q_{k}} * K_{\delta 厄\left(Q_{k}\right)}}{\left|Q_{k}\right|}\right| d x<\varepsilon /|Q|
$$

Moreover, if $Q_{k} \subset Q^{(j)}, Q^{(j)} \neq Q^{(0)}$, then $\chi_{Q_{k}}(x)=0$ on Q and by (1.1),

$$
\begin{aligned}
\frac{1}{|Q|} \int_{Q} \frac{\chi_{Q_{k}} * K_{\delta \ell\left(Q_{k}\right)}(x)}{\left|Q_{k}\right|} d x & \leqq \sup _{\substack{x \in \in \\
x \in Q_{k}}} K_{\delta \iota\left(Q_{k}\right)}(x-t) \leqq \frac{C \delta \iota\left(Q_{k}\right)}{\left(\operatorname{dist}\left(Q_{k}, Q\right)\right)^{m+1}} \\
& \leqq \frac{C \delta \iota(Q)}{\left(\operatorname{dist}\left(Q^{(j)}, Q\right)\right)^{m+1}}
\end{aligned}
$$

since $\operatorname{dist}\left(Q_{k}, Q\right) \geqq \operatorname{dist}\left(Q^{(j)}, Q\right)$. Therefore

$$
\begin{aligned}
\sum_{3} \leqq & \varepsilon \sum_{Q_{k} \sum_{(0)}(0)} \frac{\left|a_{k}^{(0)}\right|\left|Q_{k}\right|}{|Q|} \\
& +C \delta \iota<(Q) \sum_{j \neq 0} \frac{1}{\left(\operatorname{dist}\left(Q^{(j)}, Q\right)\right)^{m+1}} \sum_{Q_{k}<Q(j)}\left|a_{k}^{(0)}\right|\left|Q_{k}\right|
\end{aligned}
$$

and by (4.1),

$$
\begin{aligned}
2 \sum_{3} & \leqq C \varepsilon\|\varphi\|+C \delta\|\varphi\| \iota(Q) \sum_{j \neq 0} \frac{\left|Q^{(j)}\right|}{\left(\operatorname{dist}\left(Q^{(j)}, Q\right)\right)^{m+1}} \\
& \leqq C \varepsilon\|\varphi\|+C \delta\|\varphi\| \iota(Q) \int_{R^{m} / Q^{(0)}} \frac{d x}{\left|x-x_{0}\right|^{\left(m^{m+1}\right.}} \\
& \leqq C(\varepsilon+\delta)\|\varphi\| \leqq\|\varphi\| / 6
\end{aligned}
$$

if ε and δ are small.
5. The proof of Theorem 4. We begin with the dyadic form of the theorem, which is also due to Uchiyama.

Theorem 5.1. Let $\lambda>0$, let Q_{0} be a dyadic cube in \boldsymbol{R}^{m}, and let $E_{1}, E_{2}, \cdots, E_{N}$ be measurable subsets of Q_{0} such that

$$
\begin{equation*}
\operatorname{Min}_{1 \leq i \leq N} \frac{\left|Q \cap E_{i}\right|}{|Q|} \leqq 2^{-2 m \lambda} \tag{5.1}
\end{equation*}
$$

for all dyadic $Q \subset Q_{0}$. Then there exist $f_{1}(x), f_{2}(x), \cdots, f_{N}(x)$ such that almost everywhere on Q_{0},

$$
\begin{equation*}
f_{i}(x)=0, x \in E_{i} \tag{5.2}
\end{equation*}
$$

$$
\begin{gather*}
0 \leqq f_{i}(x) \leqq 1 \tag{5.3}\\
\sum_{i=1}^{N} f_{0}(x)=1 \tag{5.4}
\end{gather*}
$$

and

$$
\begin{equation*}
\sup _{\substack{Q \in C_{Q} \\ Q \text { dyadic }}} \frac{1}{|Q|} \int_{Q}\left|f_{i}-\left(f_{i}\right)_{Q}\right| d x \leqq C_{1}(m, N) / \lambda \tag{5.5}
\end{equation*}
$$

Proof. By (5.1), $\left|\cap E_{i}\right|=0$ and the bounded solutions $f_{i}(x)=$ $\left(1-\chi_{E_{i}}(x)\right) / \sum_{j}\left(1-\chi_{E_{j}}(x)\right)$ satisfy (5.5) if λ is not large. Thus we assume $\lambda>N$.

We shall inductively choose families G_{n} of dyadic cubes $Q_{k} \subset Q_{0}$ and functions $\psi_{i}^{(n)}, 1 \leqq i \leqq N$ such that

$$
\psi_{i}^{(n)}=\psi_{i}^{(n-1)}+\sum_{Q_{k} \in G_{n}} a_{i, k} \chi_{Q_{k}}(x),
$$

$$
\begin{equation*}
\sum_{i} \psi_{i}^{(n)}=\lambda \tag{5.7}
\end{equation*}
$$

$$
\begin{equation*}
0 \leqq \psi_{i}^{(n)} \leqq \lambda \tag{5.6}
\end{equation*}
$$

$$
\begin{equation*}
\left(\psi_{i}^{(n)}\right)_{Q_{k}} \leqq \operatorname{Max}\left(0,-N+\frac{1}{m} \log _{2}\left(\frac{\left|Q_{k}\right|}{\left|Q_{k} \cap E_{i}\right|}\right)\right) \tag{5.8}
\end{equation*}
$$

if $Q_{k} \in G_{n}$, and

$$
\begin{equation*}
\left|a_{i, k}\right| \leqq N^{2}-1, Q_{k} \in G_{n}, n \geqq 1 \tag{5.9}
\end{equation*}
$$

For each dyadic cube $Q \subset Q_{0}$, (5.1) ensures there exists an index $i(Q), 1 \leqq i(Q) \leqq N$, such that

$$
\begin{equation*}
2 \lambda \leqq \frac{1}{m} \log _{2}\left(\frac{\left|Q_{k}\right|}{\left|Q \cap E_{i(Q)}\right|}\right) \tag{5.10}
\end{equation*}
$$

To start the induction take $G_{0}=\left\{G_{0}\right\}$, and $\psi_{i}^{(0)}(x)=a_{i, 0} \chi_{Q_{0}}(x)$, where

$$
a_{i, 0}= \begin{cases}0, & i \neq i\left(Q_{0}\right) \\ \lambda, & i=i\left(Q_{0}\right)\end{cases}
$$

Then (5.6) and (5.7) are trivial and (5.8) follows from (5.10) and our choice $\lambda>N$. At $n=0$, (5.9) is not required.

Let G_{n} be the set of maximal dyadic cubes satisfying $Q_{k} \subset Q_{j} \in G_{n-1}$ and

$$
\begin{equation*}
\left(\psi_{i}^{(n-1)}\right)_{Q_{k}}>\frac{1}{m} \log _{2}\left(\frac{\left|Q_{k}\right|}{\left|Q_{k} \cap E_{i}\right|}\right) \tag{5.11}
\end{equation*}
$$

for some $i, 1 \leqq i \leqq N$. Define

$$
a_{i, k}= \begin{cases}-\operatorname{Min}\left(N+1,\left(\psi_{i}^{(n-1)}\right)_{Q_{k}},\right. & i \neq i\left(Q_{k}\right) \\ -\sum_{j \neq i\left(Q_{k}\right)} a_{j, k}, & i=i\left(Q_{k}\right) .\end{cases}
$$

Then by definition $\psi_{i}^{(n)}=\psi_{i}^{(n-1)}+\sum_{Q_{k} \in G_{n}} a_{i, k} \chi_{Q_{k}}$ clearly satisfies $\psi_{i}^{(n)} \geqq 0$ and $\sum_{i} \psi_{i}^{(n)}=\lambda$. Thus (5.6) and (5.7) hold. Since $\left|a_{i, k}\right| \leqq N+1$ for $i \neq i\left(Q_{k}\right)$, and since $\left|a_{i\left(Q_{k}\right), k}\right| \leqq(N-1)(N+1)$, (5.9) holds.

We now verify inequality (5.8). If $i=i\left(Q_{k}\right)$, then by (5.6) and (5.10),

$$
\left(\psi_{i}^{(n)}\right)_{Q_{k}} \leqq \lambda \leqq-N+\frac{1}{m} \log _{2}\left(\frac{\left|Q_{k}\right|}{\left|Q_{k} \cap E_{i}\right|}\right) .
$$

Suppose $Q_{k} \in G_{n}$ and $i \neq i\left(Q_{k}\right)$. If $Q_{k}^{*} \supset Q_{k}$ is that dyadic cube with $\left|Q_{k}^{*}\right|=2^{m}\left|Q_{k}\right|$, then $\left(\psi_{i}^{(n-1)}\right)_{Q_{k}^{*}}=\left(\psi_{i}^{(n-1)}\right)_{Q_{k}}$ and

$$
\log _{2}\left(\frac{\left|Q_{k}^{*}\right|}{\left|Q_{k}^{*} \cap E_{i}\right|}\right) \leqq m+\log _{2}\left(\frac{\left|Q_{k}\right|}{\left|Q_{k} \cap E_{i}\right|}\right) .
$$

Since Q_{k} is maximal, (5.11) fails for Q_{k}^{*}, and so we have

$$
\begin{equation*}
1=\frac{1}{m} \log _{2}\left(\frac{\left|Q_{k}\right|}{\left|Q_{k} \cap E_{i}\right|}\right) \geqq\left(\psi_{i}^{(n-1)}\right)_{Q_{k}} . \tag{5.12}
\end{equation*}
$$

If $a_{i, k}=-\left(\psi_{i}^{(n-1)}\right)_{Q_{k}}$, then $\left(\psi_{i}^{(n)}\right)_{Q_{k}}=0$ and (5.9) is clear. If $a_{i, k}=$ $-(N+1)$, then (5.9) follows from (5.12). Thus the induction is completed.

We thank J. Michael Wilson for this argument.
To obtain convergence and ultimately (5.5) we observe that if $Q_{j} \in G_{n-1}$, then

$$
\begin{equation*}
\sum_{\substack{Q_{k} \in G_{i}^{(i)} \\ Q_{k} \subset Q_{j}}}\left|Q_{k}\right| \leqq 2^{-m N}\left|Q_{j}\right| \tag{5.13}
\end{equation*}
$$

Indeed, if the left side of (5.13) is nonzero, we have $\left(\psi_{i}^{(n-1)}\right)_{Q_{j}}>0$, and then (5.11) and (5.8) yield

$$
\begin{aligned}
\sum_{\substack{q_{k} \in G_{i}^{(i)} \\
Q_{k} \in Q_{j}}}\left|Q_{k}\right| & \leqq 2^{m\left(\psi_{i}^{(n-1)}\right) Q_{j}} \sum_{\substack{Q_{k} \in G_{n}^{(i)} \\
Q_{k} \subset Q_{j}}}\left|Q_{k} \cap E_{i}\right| \\
& \leqq 2^{m\left(\psi_{i}^{(n-1)}\right) Q_{j}}\left|Q_{j} \cap E_{i}\right| \\
& \leqq 2^{-m N}\left|Q_{j}\right| .
\end{aligned}
$$

Since $N 2^{-m N}<1$, (5.9), (5.13) and induction show $\sum\left\|\psi_{i}^{(n)}-\psi_{i}^{(n-1)}\right\|_{1}<$ ∞, so that

$$
\psi_{i}(x)=\lim _{n} \psi_{i}^{(n)}(x)
$$

exists almost everywhere. Moreover, if $Q \subset Q_{0}$ is a dyadic cube, then by (5.9) and (5.13)

$$
\begin{align*}
& \frac{1}{|Q|} \int_{Q}\left|\psi_{i}-\left(\psi_{i}\right)_{Q}\right| d x \\
& \leqq \frac{2}{|Q|} \int_{Q} \sum_{Q_{k} \neq Q}\left|a_{i, k}\right| \chi_{Q_{k}}(x) d x \tag{5.19}\\
& \leqq 2\left(N^{2}-1\right) \sum_{\substack{Q_{k}=\frac{c}{2} \\
Q_{k} \in G_{n}}}\left|Q_{k}\right| /|Q| \leqq 2\left(N^{2}-1\right) \sum_{\ell=1}^{\infty}\left(N 2^{-m N}\right)^{\ell} \\
& =C_{1}(m, N) \text {. }
\end{align*}
$$

Write $f_{i}=\dot{\psi}_{i} / \lambda$. Then (5.5) follows from (5.14) and (5.6) and (5.7) give (5.3) and (5.4).

To conclude the proof we establish (5.2). Almost every point $x \in Q_{0}$ lies in a unique dyadic cube $Q_{k}(x),\left|Q_{k}\right|=2^{-m k}, k=0,1,2, \cdots$. For almost such $x, Q_{k}(x) \in \cup G_{n}$ for only finitely k, because by (5.13), $\sum_{n}\left|\cup\left\{Q_{k}: Q_{k} \in G_{n}\right\}\right|<\infty$. Hence for almost every x there exist $k_{x}<\infty$ and $n_{x}<8$ such that for $k>k_{x}$ and $n>n_{x}$

$$
Q_{k}(x) \notin G_{n}
$$

and

$$
\psi_{i}(x)=\psi_{i}^{(n)}(x) .
$$

So by the definition of G_{n},

$$
\psi_{i}(x)=\left(\psi_{i}^{(n-1)}\right)_{Q_{k}(x)} \leqq \frac{1}{m} \log _{2}\left(\frac{\left|Q_{k}(x)\right|}{\left|Q_{k}(x) \cap E_{i}\right|}\right)
$$

$k>k_{x}, n>n_{x}$, almost all x. On the other hand,

$$
\log _{2}\left(\frac{\left|Q_{k}(x)\right|}{\left|Q_{k}(x) \cap E_{i}\right|}\right) \longrightarrow 0 \quad(k \longrightarrow \infty)
$$

almost everywhere on E_{i}. Therefore $f_{i}(x)=\psi_{i}(x)=0$ almost everywhere on E_{i}.

Proof of Theorem 4. The argument is much like the proof of Theorem 3. Let S_{M} be the cube $\left\{x:\left|x_{i}\right| \leqq 2^{M}\right\}$. It is enough to produce $f_{1, M}(x), \cdots, f_{N, M}(x)$ which satisfy (1.6), (1.7) and (1.8) for $x \in$ S_{M} and also

$$
\begin{equation*}
\sup _{Q \subset S_{M}} \frac{1}{|Q|} \int_{Q}\left|f_{i, M}-\left(f_{i, M}\right)_{Q}\right| d x \leqq C(m, N) / \lambda, \tag{5.15}
\end{equation*}
$$

by then taking $f_{i}(x)$ an L^{∞} weak-star limit of $\left\{f_{1, M}(x)\right\}_{M=1}^{\infty}$.

So fix $S_{u k}$. For $\alpha \in S_{\Delta t}$ we set $E_{i}^{(\alpha)}=\left\{x+\alpha: x \in E_{i} \cap S_{u k}\right\} \subset S_{\mu+1}$. With $Q_{0}=S_{\mu+1}$, (5.1) holds for $E_{1}^{(\alpha)}, \cdots, E_{N}^{(\alpha)}$, and Theorem 5.1 gives us $f_{1}^{(\alpha)}(x), \cdots, f_{N}^{(\alpha)}(x)$ satisfying (5.2), (5.3), (5.4) and (5.5) on $S_{K H+1}$. Define, as before,

$$
f_{i, M}(x)=\frac{1}{\left|S_{n!}\right|} \int f_{i}^{(\alpha)}(x+\alpha) d \alpha, \quad x \in S_{\mu l} .
$$

Then (1.6), (1.7) and (1.8) hold on S_{s}. To prove (5.15) write

$$
\begin{aligned}
f_{i}^{(\alpha)}(x) & =\frac{1}{\lambda} \sum_{n=0}^{\infty} \sum_{\ell\left(Z_{k}\right)=2} \sum_{n=n_{\ell}\left(S_{X+1}\right)} a_{i k}^{(\alpha)} \chi_{Q_{k}}(x) \\
& =\sum_{n=0}^{\infty} f_{i, n}^{(\alpha)}(x)
\end{aligned}
$$

and

$$
\begin{aligned}
f_{i, M}(x) & =\sum_{n=0}^{\infty} \frac{1}{\left|S_{M}\right|} \int f_{i, n}^{(\alpha)}(x+\alpha) d \alpha \\
& =\sum_{n=0}^{\infty} f_{i, n}(x)
\end{aligned}
$$

If $Q \subset S_{k k}$ and $2^{-k} \iota\left(S_{w+1}\right)<\ell(Q) \leqq 2^{-k+1} \iota\left(S_{k+1}\right)$, then

$$
\begin{aligned}
\frac{1}{|Q|} \int_{Q}\left|f_{i, n}(x)-\left(f_{i, u}\right)_{Q}\right| d x \leqq & \sum_{n<k} \frac{1}{|Q|} \int_{Q}\left|f_{i, n}(x)-\left(f_{i, n}\right)_{Q}\right| d x \\
& +2 \sum_{n \geq k} \frac{1}{Q \mid} \int_{Q}\left|f_{i, n}(x)\right| d x=\sum_{1}+2 \sum_{2} .
\end{aligned}
$$

By the proof of Lemma 3.2

$$
\left|f_{i, m}(x)-f_{i, n}(y)\right| \leqq \frac{C(N) 2^{n}}{\lambda \angle\left(S_{x+1}\right)}|x-y|,
$$

so that $\Sigma_{1} \leqq C(N) / \lambda$, and by (5.13) and (5.9),

$$
\begin{gathered}
\sum_{i} \leqq \sup _{\alpha \in S_{M}} \sum_{k \in Q+\alpha}\left|a_{i k k}^{(\alpha)}\right| Q \mid \\
\leqq \frac{C\left(N^{2}-1\right)}{\lambda}|Q| .
\end{gathered}
$$

Hence (5.15) holds and Theorem 4 is proved.

References

1. L. Carleson Two remarks on H^{1} and BMO, Advances in Math., 22 (1976) 269-277.
2. R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. LI (1974), 241-250.
3. R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc., 79 (1980), 249-254.
4. B. Davis, Hardy spaces and rearrangements, Trans. Amer. Math. Soc., 261 (1980), 211-233.
5. C. Fefferman and E. M. Stein, H^{p} spaces of sereral real variables, Acta Math., 129 (1972), 137-193.
6. J. B. Garnett and P. W. Jones The distance in BMO to L^{∞}, Annals of Math., 108 (1978), 373-393.
7. F. John and L. Nirenberg, On function of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426.
8. P. Jones, Estimates for the corona problem, to appear in J. Functional Analysis.
9. -, Factorization of A_{p} weights, Annals of Math., 111 (1980), 511-530.
10. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226.
11. A. Uchiyama, The construction of certain BMO functions and the corona problem, to appear.
12. N. Th. Varopoulos, A probabilistic proof of the Garnett-Jones theorem on BMO, to appear in Pacific J. Math.
13. N. Th. Varopoulos, BMO functions and the $\bar{\partial}$ equation, Pacific J. Math., 71 (1977), 221-273.

Received November 19, 1980. The first author was partially supported by NSF Grant MCS80-02955 and the second by NSF Grant MCS810-2631.

University of California
Los Angeles, CA 90024
AND
University of Chicago
Chicago, IL 60637

