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BMO FROM DYADIC BMO

JOHN B. GARNETT AND PETER W. JONES

We give new proofs of four decomposition theorems for
functions of bounded mean oscillation by first obtaining each
theorem in the easier dyadic case and then averaging the
results of the dyadic decomposition over translations in jRm.

l Introduction* Let φ be a locally integrable real function
on jRm, let Q be a bounded cube in Rm, with sides parallel to the
axes, and let \Q\ be the Lebesgue measure of Q. Then

is the average of φ over Q. We say φ has bounded mean oscillation,
9>eBM0, if

\\φ\\ = Sup-—- ( \φ - φQ\dx < °o .

A dyadic cube is a cube of the special form

Q = {kj2~n < xd < (kd + 1)2-*; 1 ^ j ^ m)

where n and kj91 ^ j ^ m, are integers, and φ has bounded dyadic
mean oscillation, φ 6 BMOd, if

= Sup I I φ —
Q dyadic Q J§

Then clearly BMO c BMO, with \\φ\\d £\\φ\\, but BMO and BMO, are
not the same space; the function log\x9 \X{ttlj>0] is in BMO, but not in
BMO. In analysis BMO is more important than BMO, because BMO
is translation invariant, but BMO, is not. On the other hand, BMO,
is very much the easier space to work with because dyadic cubes
are nested (if two open daydic cubes intersect then one of them is
contained in the other). For example, for BMO the original proofs
[1], [6], [8], [11] of the four theorems stated below were rather
technical, while for BMO, the analogous results are comparatively
trivial. In this paper we derive the four theorems from their dyadic
counterparts.

Here is the idea. Let Taφ(x) = φ(x — a). Then

φ{x) = lN^^2kr[ajl^
TMx + a)da'
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Each of the theorems amounts to showing ψ e BMO has the form
φ — Fλ + F2 where F1 and F2 are BMO functions satisfying certain
additional growth conditions. By the BMOd result we have

Taφ = F[a) + F{

2

a)

where F[a\ F{

2

a) e BMOd satisfy the extra growth conditions on dyadic
cubes. To prove each theorem we show the averages

Fj(x) = lim —L- \ Ff\x + cήda

are in BMO and have the correct growth. The method yields this
general result.

THEOREM. Suppose that a —> φ{a) is a measurable mapping from
Rm to BMOd such that all φ{a\x) have support a fixed dyadic cube,
such that \\φ{a)\\d ^ 1 and such that

\φ{a\χ)dx = 0

Then

(2N)

is in BMO and \\φN\\ S C.

By duality, this theorem implies Davis's result connecting H1

and dyadic on the unit circle. The proof of theorem is implicit in
the arguments below. In §4 we show

ΨN = g + Σ/»
n=l

where g e L°° and where fjx) satisfies the Lipschitz condition (3.3)
and the thinness condition (4.2). From these | | ^ | | ^ C follows
easily. This general result is not explicitly used in the proofs of
Theorem 1 to 4.

Let s(Q) denote the sidelength of the cube Q. A Carleson
measure is a signed measure on the upper half space R++1 = Rm x
(0, oo) such that for some constant N(σ),

\σ\(Qx (0,/(Q)])^iSΓ(σ)!Q|

for all cubes QaRm. Here \σ\ is the total variation of σ. Let K(x)
be a positive function for which

(1.1) K(x)
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and

\κ(x)dx = 1 .

Write Ky(x) = y-"K(x/y), y > 0.

THEOREM 1 (Carleson [1]). If φe BMO has compact support, then
there is g e L°° and there is a Carleson measure σ such that

(1.2) φ(χ) = g(χ) + \ Ky(x - t)dσ{t, V) ,

where

\\g\\-£C\\φ\\

and

where the constant C depends only on K(x).

Theorem 1 implies Fefferman's Theorem [5] that H\Rm) has dual
space BMO. Under the additional hypotheses

the converse of Theorem 1 is true (and not difficult). It then follows
that Hι(Rm) = {/e L1:/# e L1} where f£ is the maximal function
supIf_βI<J/*JS?(ί)|. See [5].

By the theorem of John and Nirenberg [7], φe BMO if and only
if there is A > 0 such that

(1.3) s u p — ( eAlφ~φQ]dx < oo .
Q \Q\ k

In fact, (1.3) holds with A = c\\φ\\~~\ c depending only on the dimen-
sion. Set

A(φ) = sup{A: (1.3) holds} .

THEOREM 2 ([6]). There are constants c^m) and c2(m) such that
if φe BMO then

The left inequality is immediate since A(φ — g) ^ c\\φ — g\
g eL°°. We prove the other inequality.
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Let w(x) > 0 be a locally integrable function on Rm, and let 1 <
p < oo. We say w eAp if

/ I f \/ 1 Γ /1 V/ί*-1) V"1

l|w|U = s u p ί — 1 wdx)[—-\ ( —) da?) < oo *

The Riesz transforms and the Hardy-Littlewood maximal functions
are bounded on Lp(wdx) if and only if w eAp [2]. As p—>1 the
limiting form of Ap is

\Q\ w

and we say weA1 if \\w\\Aχ < oo.

THEOREM 3 ([8]). If 1 < p < oo, ί^e^ weAp if and only if

(1.4) w = WiOz)1"*

where wu w^eA^

Holder's inequality shows that (1.4) is sufficient. Obtaining the
factorization (1.4) for weAp is more difficult.

Theorem 2 is a simple consequence of Theorem 3. Indeed, let
φ e BMO and take A(φ)/2 < A < A(φ). Write w = eAψ. Then for any

Q,

(JL\ [ dx) f S e^^ajV-l-S
\Q\)QW I \\Q\}Q Λ\Q\)Q

< (JL [ eΛ\<p
N | Q | Jβ

so that weA2. By Theorem 3,

Aφ = log W = ί\ — F 2

where eFl, βF2 6 Alβ From Ax it follows easily that

eFJ ^ M(eFη ^ cβFi

almost everywhere, where M(f) denotes the Hardy-Littlewood maximal
function of /. Coif man and Rochberg [3] have shown || log M(f) ||BMO ^
C(m) whenever feL\0C. Consequently

Fd = logM(eFή

where g^eL™ and ||ψv|| ^ C(m). Hence
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with geL00 and \\ψ\\ ^ 2C(m)/A.
The above reasoning also explains why Theorem 3 is a theorem

about BMO. See [8] for further application of Theorem 3.

THEOREM 4 (Uchiyama [11]). Let λ > 0 and let El9 E2, --,EN be
measurable subsets of Rm such that

(1.5) Min l g n ^ l ^ 2

\Q\
for every cube Q. Then there exists functions f{x), f2(x), -—,fN(x)
such that almost everywhere

(1.6)

(1.7)

(1.8)

and such that

(1.9)

/<(») =

o<
N

Σ

= 0,

i\D/λ

xeE{.

^ 1

- 1

1-g, N.

The converse (with \\ft \\ <; C'(m, N)/X) of this theorem is not
difficult. Theorem 4 for N = 2 is roughly equivalent to Theorem 2.
For i\Γ > 2 it has interesting applications to function theory. See
[8] and [11].

In §2 we prove the dyadic versions of Theorem 1 and Theorem
3. Although the arguments are well known (see [13] and [8]),
they are included for completeness and because some of their by-
products will be needed later. Theorem 3 is proved in §3 and
Theorem 1 is proved in §4. In §5 we discuss Theorem 4 and its
dyadic analogue.

We would like to acknowledge our indebtedness to Davis [4], who
showed on the circle that TafeHl^iG for almost every a if feH1,
and to Varopoulos [12], who proved Theorem 2 by adapting the
argument of the dyadic case to Brownian motion.

2* Two dyadic theorems*

THEOREM 2.1. Let <peBMOd and let Qo be a fixed dyadic cube.
Then there exists a sequence {Qk} of dyadic cubes Qk c QQ, and a se-
quence {ak} of real numbers such that
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(2.1) Σ l α * I I Q * l £ C | l ? > I U Q I ,

for all dyadic cubes Q, and there exists g e L°°,

such that

(2.2) φ(x) - φQo = g(x) + Σ akXQh(x)

almost everywhere on Qo. The constant C depends only on the
dimension.

To understand why Theorem 2.1 is the dyadic formulation of
Theorem 1, replace R++1 by its discrete subset & = {pQ = (c(Q), /(Q)),
Q dyadic} where c(Q) e Rm is the center of Q and s(Q) is the sidelength
of Q. The correspondence between pQ and KQ(x) = ΊQ(x)l\Q\ resembles
the correspondence between (t, y) eR™+1 and ϋΓ̂ (ίc — t). Let σ be the
measure on 3f having mass ak\Q\ at pQk. Then (2.1) says that

\σ\(Qx (

and σ can be viewed as a dyadic Carleson measure. Since

\κQ(x)dσ(pq) = Σ αjbZρjb(αj) ,

(2.2) is now the dyadic version of (1.2).

Proof. We suppose <pρo = 0. Fix λ = 2||?>||d and set

G1 = {ζ^ c Qo* Qfc dyadic, \φQk\ > λ, and QA maximal} .

Because QksG1 is maximal, we have

(2.3) I^J^λ + 2

Indeed, if QJ is that dyadic cube with Qf=)Q* and |Q?| = 2 m | Q f c | ,
then

\φQk - yQ | £ - f r ί

and |?>ρ*| ^ λ as Qk is maximal. The Qfc in Gt are pairwise disjoint,
because they are maximal, so that

(2.4) Σ I Q * I ^ — E l i Ψdx ^—\ \ φ \ d x ^ H ^ l l ^ Q o l ^ | Q 0 | / 2 .
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Write ak = φQk1 QkeGx. Then we have

φ{x) = gx(x) + Σ <*>iXQk{x) + φx(χ) ,

where gx = φXEι, Ex = Qo\ U {Qfc: Qfc 6 GJ, satisfies | g1 | ^ λ by Lebesgue's
theorem on differentiating the integral, where |α*| <; 2w+1 | |<p||d by
(2.3), and where

<Pi = Σ (?>(aθ - <PQi)XQk(x)

Now because <p 6 BMOd, 9iZβt = (?> — Ψqi)Xqk has the same behavior
on Qfc that <p has an Qo, and we can repeat the construction with
each φ&Qv and continue by induction. At stage n we have a family
Gn-i of disjoint dyadic cubes and φn_x = ΣσΛ_! (?(«) — Ψq$>$&)• F°*
each Q3 6GW_! we set

Gi(Qy) = {QfccQy: QA dyadic, |^ ρ & ~ <pQ.\ > λ, Qfc maximal}

and Gn = U {(^(βy): Qi 6 GΛ_J. Then

φn^(x) = flfn(») + Σ akXQk(x) + φjx) ,

where ^ = φn^XEnf En = \JGn_xQ3\\JGn Qk, satisfies \gn\ S λ and where
α* = ^«fc - 9>ρy, Qk c Q, e G , ^ , satisfies

(2.5)

by the proof of (2.3). Moreover, the proof of (2.4) now gives

(2.6) Σ I Q f c | ^ I Q ; i / 2
Qk^Qj
Qk*G3

n

for all Qj e Gn_^ Consequently <pn(x) —> 0 almost everywhere, because
φn has support \JGn Qk and this set has measure <£ 2" n |Q 0 | Summing,
we obtain

Ψ(x) = Σfir Ca?) + ΣΣαΛ*0*0
1 G

»=1 Gn

Since | flrΛ | ^ λ and the gn have pairwise disjoint supports, g = Σ*9n
satisfies |jflf||oo^λ = 2||9>||d and we have the representation (2.2).

To prove (2.1) fix a dyadic cube and set GX(Q) = {Qs e U Gn: Qs c
Q, Q,. maximal}. The Q3> in GX(Q) are disjoint and

= Σ

Hence by (2.5), (2.6) and induction,
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Σ Σ |Q*

Σ 2|Q,|

£2»+*\\φ\\Λ\Q\.

Theorem 2.1 is proved.
Notice that when applied to the translates Taφ, ^>eBMO, the

costruction above produces functions g{a\x) and coefficients a(

k

a) which
vary measurably in α.

Now let w ^ 0 and set φ = log w. Then w e AV1 1 < p < ooy if
and only if

By Jensen's inequality each factor is at least 1, and hence w e Ap if
and only if

sup— [
Q

and

(2.7) s u p — [ eψ-ψQdx <
Q \Q\U

(2.8) sup — ί e-{φ-φQ)/ip~1)dx < oo .
Q \Q\ JQ

For the dyadic form of Theorem 3, the suprema in (2.7) and (2.8)
are taken over dyadic subcubes of Qo only.

THEOREM 2.2. Let φ(x) be a real function on a dyadic cube Qo

and let 1 < p < oo. Assume

(2.7d) sup — ( eφ~φQdx < oo ,
Q c ρ 0 \ Q \ ) Q

Qdyadic

and

(2.8d) sup — ί e-[v-VQ)np-1]dx < oo .
Q^QQ \Q\JQ

Q dyadic

Then

where geL°°f \\g\\oo ^ Clf where

(2.9) sup j(_L \
0

Q dyadic
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and where

(2.10) sup {(JL ί eG'^dx)||*-"<'-« \\h-w\ < C3 .
Q dyadic ' '

The constants Cu C2, CB depend only on m and the bounds in (2.7d)
and (2.8d).

Thus if w — eψ satisfies the dyadic Ap condition (i.e., if 2.7d)
and (2.8d), then w = w^wj1-* where wx = e

φQ*+g+f and w2 - eQn*-»
satisfy Aλ on dyadic subcubes of Qo.

Proof. The construction is the same as in the proof of Theorem

2.1. By (2.7d) and (2.8d) and by Jensen's inequality, ^ZQ oeBMOd.

Fix λ > 21| φ \\d to be determined later and set Gx — {Qk c Qo: Qk dyadic,

I PQJC ~ ΦQO i > λ> ^^ maximal} and by induction

Gn = U {Q* c Q / . Qfc dyadic, |^ ρ f c - φq.\ > λ, QΛ maximal} .
QjeGn-l

For Qfc e Gn, QkdQό e Gn_lf set ak = (φQk-φQ.). The proof of (2.3) gives

(2.11) λ < \aό\ < λ + 2w | |<p|]d .

As in the proof of Theorem 2.1, we have

φ = φQo + g + Σ Σ α Λ > ) ,

where | | ^ | |oo^λ. Write

(2.12) F

(2.13) G = -

Then φ = φQo + g + F-G.
To prove (2.9) and (2.10) we recall that there is ε > 0, depending

only on the bounds in (2.7d) and (2.8d), such that

(2.14) sup — [ e{1+ε){WQ]dx < oo ,
Q^Qo \Q\ JQ

and

ε \Q\
Qdyadic

(2.15) sup — ί e-*+Mψ-ψQ)«*-»dx <
GC«O \Q\ k

Q dyadic

See [3] or [10].

We prove (2.9). Fix Qs e U Gn with a5 > 0 and set
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GKQi) = W»eU Gn: Qk£Qjt ak > 0, Qk maximal} ,

and by induction Gί+ι(Q) = U [Gt{Qk): Q f c eGί(Q 3 )} The critical
inequality for the proof of (2.9) is

(2.16) Σ [

where C is the sumpremum in (2.14). By induction we need only
obtain (2.16) for n — 1. There are two case.

Case 1. Qs e Gn and Qk e Gn+1. Then <pρ/, — £>ρi > λ, so by Jensen's
inequality

" I Q * | J

Since the Q& are disjoint this gives

Σ \Q>\

Case 2. QseGn and QkeGn+P> p^2. Then if Q,eGn+r, l£r<,
p — 1, and if Q t c Q Λ it must be that a, < 0. Let D1 = {Q<reGB+1:
Q, c Q,-, a,, < 0} and by induction Dr = {Q, e Gn+r: 3Qm e !>,._!, Q^ c Qn,
a^ < 0}. Then as in the proof of Case 1, | U A l ^ Ce- ( 1 + ε U / ! > - 1 [Qs\ ^
1/21QjI if λ is large enough. Induction then shows \\JDr\£2~r\Qs\.
For QseDr,r^ 1, let U(Q,) = {Qk e Gn+r+1: QkczQ,, ak > 0}. By Case
It \\JU,)\£G\Q<e-a+ n. Consequently,

= Σ:j-r Σ \ΌU(Qs)\

rr Σ \QA

because the cubes Q^ e D r are disjoint for each r. Summing the two
cases gives (2.16) for n — 1.

Now fix a dyadic cube QaQ0 and set

= Σ f̂ê Qfc 9 ^2 = Σ

On Q, F = F! + F2, F2 is constant, and JF\ ^ 0. Hence
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s w\ ie"dx •
and it suffices to establish

(2.17) J L \ e^dx ^ C2 .
\Q\ h

If {Qj} denotes the set of maximal cubes Qj c Q having a5 > 0,
then ΣIQ I ̂  !Q| and

-!- ( (eFi - l)dx < Σ i ^ i i f J L ί eF^dx) < sup f - i - ( e^dx) .

Now by (2.11),

{aj€Q:F1(a?)>(w + l)(λ + 2*||9||d}c U Q* ,
O + ίβj)

so that by (2.16),

1 ί e

Fldx <. 2 β

If λ > λ(ε, C, ll̂ Hd) the series sums and we obtain (2.17) and therefore
(2.9).

The proof of (2.11) is the same except that (2.15) is used in
place of (2.14).

3. The proof of Theorem 3. Let w = eφ e Ap and let SN be
the cube {|a?t| ^ 2N, 1 ^ i ^ m}.

LEMMA 3.1. There exist gN{x), FN(x) and GN{x), xeSN, such that
^ Clf and

(3.1) sup (-L ( β^(te)||β-^|UcoW ̂  C2 ,

(3.2) S U P ( T 7 Π [ eGN^dx)\\e-GN^\\L^Q) £ C3 ,

and such that

<P(x) - ΨsN = gAx) + FN(x) - GN(x) , x e SN .

The constants Cl9 C2, C3 do not depend on N.

We first show how Lemma 3.1 easily implies Theorem 3. We
suppose <PSQ — 0. By Lemma 3.1,

<P = RN + (FN- (FN)So) - (GN - (GN)SQ)

= RN + FN - GN••, α? e S Λ , ,
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where BN = φSN + gN + (FN)So - (GN)So satisfies \\Rir\\«,-£2C1 since
\9sN + (FN)8t - (GN)So\ = \φSt- (gN)So\ ^ C,. For N> M, (3.1) and
(3.2) give

ιdx < C
SM

and hence as (FN)So = ( G A 0 = 0, \(FN)SM\ ^ CM, \(GN)SM\ ^ CM. Con-

sequently {(FN:N^M) and {GN: N ^ M] are bounded in L 2(Sy.
Choose Nj -> oo so that F ^ -> ί7, G^. -* G weakly in L^Sjr) for all Λf
and so that RNj -> ̂ r weak-star in L°°. Then

^ - ^ + ^ - G

with ||flr||oo ^ Cx. For any cube Q there is a sequence of finite convex
combinations

converging to F almost everywhere on SMαQ. Then by Fatou's
Lemma and Holder's inequality

= S π (iii Sβ" i>llίtoΓ π

and hence w1 = e9+F e Λlβ Using (3.2) we see w2 = eG/p'1 e Ax in the
same way.

Proof of Lemma 3.1. We assume φSN = 0. For aeSN we use
Theorem 2.2 on Tα£>(a0 = φ(x — a) with Qo = SN+1 (which we pretend
is a dyadic cube) to obtain

Taφ - gia) + F{a) - G ( α )

where Fa and Gα satisfy (2.9) and (2.10) respectively and where
Halloo ^ Cx (since «^GBMO and φSjr = 0, s u p α 6 ^ ( Γ α ^ v + 1 is bounded).
Almost everywhere on SN,

T_a(Taφ)(x)da

Γ ^ τ ( Γ.β(ff)(α?)dα + ^
\SN\ isN \SN

T_a{G^){x)da = g{x)

Clearly || ^ |(oo ̂  Clβ By (2.12) there are α[α) > 0 such that
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Σ

and by (2.13), G{a\x) has a similar representation. Write

so that F - ΣSU/

LEMMA 3.2. / /

(3.3)

with C4 independent of n.

Proof By (2.11), |α ( α ) | ^ C, and hence

W ~ fM I ^ " # - ί Σ I Zβ4(ίu + a) - Zρfc(^/ + α) I d α .

The integrand is twice the characteristic function of {a 6 £^: a? + a
and 2/ + a fall in different Qfc, AQk) — 2"V(S^)}, and this set has
probability not exceeding

v %i- Vi\

Returning to the proof of Lemma 3.1, we fix QaSN with
2-V(SW < ΛQ) £ 2~k+V(SN). Then

Fί*\x + a)da
N\ JsN \bN\

By Lemma 3.2,

sup F2{x) - inf FM £ - g - Σ 2V(Q) ^ C .
β β /(S)

Hence as Fx ^ 0,

But by Jensen's inequality,
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\Q\h \Q\)Q \\SN\ hN

 y J )

(ϊ7π( eF^^\\Q\" \Sy\ isN\\Q\jQ

by (2.17). The proof of (3.2) is the same.

4* The proof of Theorem 1* We suppose φ 6 BMO has support

So = {\xtI <£ 1,1 ^ i ^ m} and \φdx = 0. For each α € So we have,

by Theorem 2.1,

where Qo = {\xt\ ^ 2, 1 <: i ^ m}, where | |# ( α ) |U ^ C | | ^ | | , and where

Write

so that Taφ(x) = βf{α)(x) + Σ ^ U / Γ O E ) . Then as before

φ(χ) = T ^ T ( 9{a)(χ + ^ ) ^ + ΣΣ τ4τ (

Σ
»=0

where ||flr||oo <^C\\φ\\. For any cube Q we have

(4.2) - U Σ \Mx)\dx£*vp(±:\ Σ \rta)(x)\dx)

where Q is concentric with Q and /(Q) = 3/(Q). Thus for any
δ > 0, dσ = Σf*(x)dσn, where dα^ is surface measure on j?m x {?/ =
δ2~w}, is a Carleson measure and N(σ) <: Cδ~ m | | 9 | | , and

f(α? - z)dσ(z, y) -

We will show that when δ is small,

(4.3)
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With an iteration, that will prove Theorem 1.
To prove (4.3) fix a cube Q and a point xoeQ. We have

7777 ί I Σ (/.(«) - KM ~ (/. - K,
\QI Jβ

+ 2

where A ̂  2 is a constant to be determined.
To estimate Σi> recall that

(4.4) \Mx)-fM\£C2*\\φ\\\x-y\

by the proof of Lemma 3.2. The convolution hn = Kδ2-n*fn has the

same continuity as fn9 since \Kdx = 1, and we have

Σ rγr, \ 2C2^\\φ\\\x - x,\dx ̂ C'\\φ\\ΛQ) Σ 2"

Hence 2 Σ i ̂  II 0> 11/6 if A is large.
To estimate Σ 2 , note that by (4.4) and the bound \\fn\U ^ C\\φ\\

(because |αiα> | <£ C| |^ | | ) , we have

if 8 is small, independent of n. Therefore

if ε log A is small.
Finally, we have

«ΊQI
by the definition of fn. After a translation it is enough to consider
a — 0. Let Q(0) = Q and pave i?m with cubes Q{j) congruent to Q.
Then

Q*
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By a change of scale,

|Q|3ι 10* \Qu\
dx

does not depend on /(Qfc). Thus for e > 0 we can choose δ so that

Q\h Q \Qk

dx<ε/\Q\ .

Moreover, if Qk c Q(i), Qu) Φ QW), then XQk(x) = 0 on Q and by (1.1),

(x -t)^x v * ( d ί

Cd/(Qk)

xeόu

since dist(Qtf Q) ^ dist(Q(ί), Q). Therefore

v < * 1
\Q\

and by (4.1),

^ Ce\\φ\\

£ C{6 + δ)\\φ\\ £ \\φ\\/β

if ε and δ are small.

5* The proof of Theorem 4. We begin with the dyadic form
of the theorem, which is also due to Uchiyama.

THEOREM 5.1. Let λ > 0, let QQ be a dyadic cube in Rm, and let
Eu E29 , EN be measurable subsets of Qo such that

(5.1) Min.•nJβn >-2mλ

\Q\

for all dyadic Q c Qo. Then there exist f(x), f2(x), ,fN(x) such that
almost everywhere on Qo,

(5.2)



(5.3)

(5.4)

and

(5.5) sup
<?cρ0

Q dyadic

BMO FROM DYADIC BMO

0 ^ ft(x) <; 1

Σ/.(») = i

367

Proo/. By (5.1), | Γt Et\ = 0 and the bounded solutions /,(&) =
(1 - XEi(x))/ΣiA - Xεp)) satisfy (5.5) if λ is not large. Thus we
assume λ > N.

We shall inductively choose families Gn of dyadic cubes Qk c QQ

and functions ψln\ 1 <Ξ i ^ N such that

(5.6) 0 ^ α/r^ ^ λ ,

(5.7) Σ ^ l w ) - λ ,

(5.8) W .)βι S Max(θ, -N + i

if Qk e £„, and

(5.9) | α < > 4 | ^ Λ P - l , Q » 6 G . , w ^ l .

For each dyadic cube QcQ0> (5.1) ensures there exists an index
%{Q), 1 g ΐ(Q) ^ iSΓ, such that

(5.10) ϋ λ g - l l o f t f IQ>I )

To start the induction take Go — {Go}, and ψio)(x) — aitOlQo(x)f where

0, iΦi{Q0)
iy° ~ λ , i = i(Qo) .

Then (5.6) and (5.7) are trivial and (5.8) follows from (5.10) and our
choice λ > N. At n = 0, (5.9) is not required.

Let Gn be the set of maximal dyadic cubes satisfying Qk<zQ5 e Gn^
and

(5.11) W"1*)** > ~
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for some i, 1 <L i <L N. Define

Then by definition ψΊn) = ψ{^~ι) + Σ ^ € G % α ί ) f c Z ^ clearly satisfies ψln) Ξ> 0
and Σnψϊn) = λ. Thus (5.6) and (5.7) hold. Since |α< l f c | ^ N + 1 for
i ^ i(Qfc), and since \aiiQkhk\ ^ (N — ΐ)(N + 1), (5.9) holds.

We now verify inequality (5.8). If i = i(Qfc), then by (5.6) and
(5.10),

Suppose QkeGn and i ^ ΐ(QA). If Qf D Q S is that dyadic cube with

|Qϊ | = 2-IQJ, then ( t ί - " ) β ί = W" 1 '),* and

Since Q& is maximal, (5.11) fails for Qjf, and so we have

<5 12) 1 = i l

If αί)fc = —(rf{ii~1))Qk, then (^1*%* = 0 and (5.9) is clear. If aί)k =
- ( J V + 1 ) , then (5.9) follows from (5.12). Thus the induction is
completed.

We thank J. Michael Wilson for this argument.
To obtain convergence and ultimately (5.5) we observe that if

QJGG^U then

(5.13) Σ |ζ

Indeed, if the left side of (5.13) is nonzero, we have ( |̂w~1))$y > 0,
and then (5.11) and (5.8) yield

Σ

Since JV2—y < 1, (5.9), (5.13) and induction show Σ II ψln)

oo, so that
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exists almost everywhere. Moreover, if Q (zQ0 is a dyadic cube,
then by (5.9) and (5.13)

(5 19) X
-i)QllQ\Qk\I\Q\£

= Cλ{m, N) .

Write fa = fjx. Then (5.5) follows from (5.14) and (5.6) and
(5.7) give (5.3) and (5.4).

To conclude the proof we establish (5.2). Almost every point
x e Qo lies in a unique dyadic cube Qk(x), \Qk\ = 2~mk, k = 0, 1, 2,
For almost such x, Qk(x) e U Gn for only finitely k, because by (5.13),
Σ * I U {Qk- Qk £ Gn} \<oo. Hence for almost every x there exist kx<oo
and nx < 8 such that for k > kx and n > nx

and

So by the definition of GΛ,

ΨAX) ifr)Qk{x) s iog2 ( , n f f

k> kx, n > ^ , almost all α?. On the other hand,

— ^ 0 ( * — > o o ) ,

almost everywhere on £7̂ . Therefore /^x) = ^(a;) = 0 almost every-
where on Ef

Proof of Theorem 4. The argument is much like the proof of
Theorem 3. Let SM be the cube {x: \xt\ ^ 2M). It is enough to
produce fltM(x), - 9fNtM(x) which satisfy (1.6), (1.7) and (1.8) for xe
SM and also

(5.15) sup - L ( \ftιM - (fitM)Q I dx ^ C{m, N)/X ,
Q^s \Q\ JQ

by then taking f(x) an L~ weak-star limit of {/1>Jf(α?)}ϊ=1.
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So fix SM. For aeSM we set Ela) = {x + a:xeEtr\ SM}cz SM+1.
With Qo = SM+1, (5.1) holds for E[*\ , ##°, and Theorem 5.1 gives
us ft«\x), " . j r W satisfying (5.2), (5.3), (5.4) and (5.5) on SM+ι.
Define, as before,

Then (1.6), (1.7) and (1.8) hold on SM. To prove (5.15) write

Ji \X) — 2 J 2J a i k**Qk\X)

λ »=

and

H Q(zSM and 2~V(SJf+1) < /(Q) ^ 2-*+V(SJf+1), then

By the proof of Lemma 3.2

\fi,n\X) ~~ fί,n\V)\ = T~77ct \"\X ~~ V\ >

so that Σ i ^ C(N)/\, and by (5.13) and (5.9),

Σ ^ s u p Σ + | α « | \Q\

^ C(N2- 1 ) | Q |

Hence (5.15) holds and Theorem 4 is proved.
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