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ISOPERIMETRIC EIGENVALUE PROBLEM OF
EVEN ORDER DIFFERENTIAL EQUATIONS

Sui SUN CHENG

This paper is concerned with the following eigenvalue
problem

2n) + (-l)n+ίλp(t)x = 0
2*>(0) = 0 - x™(l) , fc = 0,l, « , n - l ,

where p(£) is assumed to be positive and continuous in [0,1].
For the class of functions q(t) which are equimeasurable to
p(t), we shall show that the rearrangement of p(t) in sym-
metrically increasing order maximizes the least positive
eigenvalue of (1), while the rearrangement of pit) in sym-
metrically decreasing order minimizes it.

Rearrangements of sets of numbers and functions are defined
and investigated in detail in the book by Hardy, Littlewood and
Pόlya [11, Chapter X] and the book by Pόlya and Szegδ [18]. Using
these notions, classes of nonhomogeneous strings, membranes, rods
and plates with equimeasurable densities are considered in [3, 4, 5,
10] and the extremum of the principal frequencies are found for
these classes. In particular, the above assertion has been proven
by Beesack and Schwarz [5] and Fink [10] for n = 1. For n = 2,
the proof is given by Banks [3]. Our proof will differ from those
given for the special cases in that we will rely on some of the
results in the theory of positive operators [12, 13, 14, 15, 16, 17]
and certain rearrangement inequalities [18, 19]. All the required
results will be explicitly stated in the sequel; the explanations of
which, however, will be brief.

2* Rearrangement inequalities* Let h be a real function
defined on a subset S of Rn, we shall denote the level set

{ί e S: h{t) ^ c}

by L(h, c). Two real functions f(t) and git) defined on [0, 1] are called
similarly ordered if, for each pair of points tu t2 of [0, 1], we have

[/(ίi) ~ /(«][flr(ίi) - 0(*»)] ^ 0

/ and g are called oppositely ordered if / and — g are similarly
ordered. If for each ceRt the measure of L(f, c) is equal to that
of Lig, c), then we say that / and g are equimeasurable. Let /, /
and / be equimeasurable, and in addition let fit) and (2ί — I)2 be
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similarly ordered, and f(t) and (2ί — I)2 be oppositely ordered. The
uniquely defined and continuous functions fit) and fit) are called the
rearrangement of f(t) in symmetrically increasing, respectively
decreasing order (for detail of these statements and their validity,
see [11, Chapter X]).

LEMMA 1. ([11, Theorem 378 and 18, p. 153]). Suppose f, f, f2,
g, gι and g2 are real continuous functions defined on [0, 1], f and
gx are similarly ordered, f2 and g2 are oppositely orcered, f, f and f2

are equimeasurable, and also g, g1 and g2 are equimeasurable, then

\ / 2 ^ 2 ^ \ fg ^ \ fiβi.
Jo Jo Jo

Call a real function h defined on a convex subset S of Rn

quasiconcave if each of its level sets L(h, c) is convex [2, p. 145].
The following is a slightly modified version of a result of Vollman
[19, Theorem 2.1].

LEMMA 2. Let K(t, s) be a continuous, nonnegative, quasiconcave
function defined on [0, 1] x [0, 1] which satisfies K(t, s) = K(l — t,
1 — s). Let p, q be nonnegative, continuous functions defined on
[0, 1] with pf q their rearrangements in symmetrically decreasing
order. Then

, s)p(s)q(s)q(t)dsdt S [[ K(t, s)p{s)q{s)q{t)dsdt .
JoJo

We remark that under the same assumptions in Lemma 2, the
original version only asserts that

, s)p{s)q{t)dsdt ̂  ί T K{t, s)p{s)p{t)dsdt .
JoJo

We can, however, first strengthen the conclusion of Lemma 2.4 in
[19] to

p{x)q{x)q{t)dA ^ \ p(x)q(x)q(t)dA ,
LC(K) JLC{K)

and then prove Lemma 2 in a way similar to the one used in the
proof of the original version. Since the modifications are slight,
the proof is thus omitted.

3* Positive operators* Let B be a real Banach space. A closed
subset K of B is a cone if the following conditions are satisfied:

( i ) If x G K and y e K, then x + y e K.
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(ii) lί xeK and t ^ 0, then txeK.
(iii) lί xeK and x Φ 0, then — x<tK.

A cone is said to be solid if it contains interior elements. An
operator T defined on B is said to be positive (with respec to K) if
it leaves the cone K invariant and w0-positive if nonzero u0 exists
in K so that for every nonzero u in K, positive numbers s, t and
positive integer p can be found satisfying suQ ^ Tpu ^ tu0 where we
write x^y if y — x e K and we write x<y iΐ y — xeK and y — x Φ 0.

LEMMA 3. ([13, 14, 15, 16]). Let T be a linear, u0-positive and
completely continuous operator defined on a real Banach space B
with solid cone K. Then T has exactly one (normalized) eigenvector
in K and the corresponding eigenvalue is simple, positive, and larger
than the absolute value of any other eigenvalue.

Let Bf denote the dual space of continuous linear functionals on
B, and let Kf denote the dual cone of all elements of Bf that are
nonnegative on K, i.e.,

K' = {x' e B': (x, x') ^ 0 for all xeK} ,

where (x, x') denotes the number xf(x). If T is a linear operator
defined on B, we shall denote its special radius by r(T), i.e.,

r(T) = sup{|λ|:λeσ(Γ)} .

LEMMA 4. ([17, Lemma 3.3]). Let T be a linear, positive and
completely continuous operator defined on a real Banach space B
with cone K. For x Φ 0, let

(2) S = {XeR: X(x, xf) ̂  (Tx, x'), xr e K'} .

Let

(sup S ifSφ0

Then rx(T) ^ r(T).

The set of 2w-times continuously differentiable real functions
C{2n)[0, 1] equipped with the norm

= max {sup
iSiS2n ogίsi

is a Banach space. In the sequel, we shall denote the subset

{/ e C12ί"[0, 1]: /i2W(0) = 0 = /(2*>(1) for k = 0, 1, , % - 1 ,

and (-l)kf2k)(t) ^ 0 for 0 ̂  k ̂  n - 1 and 0 ̂  t £ 1}
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of C(2n)[0, 1] by Kn. Kn is a solid cone of C(2n)[0, 1] as may be verified
directly.

4* The Green's functions associated with (1)* Let the function
Gi(ί, s) and its successive iterates be defined as follows

t(l - s) if 0 ^ t ^ s

s(l — t) if s ^ t 5Ξ 1 ,

( 5 ) Gn(t, β) = Γ Gt(ί, r)Gn_!(r, β)dr (w = 2, 3, -..) .
Jo

If g(t) is any function continuous in the interval [0, 1], then it
is easily verified that the unique solution of the differential system

(-l)V2 n )(ί) = git)

χM\0) = 0 = x{2k)(l) , k = 0, 1, , n - 1

is

In fact Gn(tf s) is the familiar Green's function of the system. Con-
sequently, system (1) can be transformed into an integral equation
of the form

( 6 ) XTnx = x .

Where Tn: C
(2n)[0, 1] -> C(27l)[0, 1] is defined by

( 7 ) (Γnα?) = [Gn(t, s)p(s)x(s)ds .
J

!Γn is clearly linear, furthermore, since Gn(ί, s) and p(β) are continuous,
Tn is also compact.

LEMMA 5. For each positive integer m, Gm(tf s) is positive in
the interior of [0, 1] x [0, 1] and zero on the boundary.

LEMMA 6. Gn(ί, s) = Gn(s, t) = Gn(l - β, 1 - ί) - Gn(l - ί, 1 - «),

G n ( l — t, s) — GJX — s, t) and

*i(tf s)ds = ί ( l — ί)/2 .

LEMMA 7. Le£ y be a continuous, nonnegative function which
does not vanish identically in [0, 1], then positive a can be found
such that for t e [0, 1]
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( 8 ) at(l - t) ̂  Γ Gχ(ί, s)y{s)ds .
Jo

Lemma 5 follows directly from the definition of Gm(t, s). Lemma
7 is a result in [14, p. 283]. Lemma 6 is a result of Cheng [6,
Corollary 4.6] which also follows from direct verification. Note that
Lemma 6 implies that Gn(t, s) takes on the same value at the corners
of any parallelogram lying in the square [0, 1] x [0, 1] and having
sides parallelled to the diagonals of [0, 1] x [0, 1].

LEMMA 8. Gn(t, s) is quasiconcave on [0, 1] x [0, 1].

Proof. We start by defining a sequence of polynomials /i,/2,/3,
by means of the conditions

/2 n_x(-l) = 0 n>l

/2MW = f2n(-%) n ̂  1 .

Denote the points (-1, -1), (0,0), (1, -1) and (0, -2) by A, B, C
and D respectively. Let Hn(u, v) be the function

τ τ , N f (~ WM - AM] if (u, v) e A ABC
Hn(u, v) = ]

(( — l)n[An{u) — An{ — v — 2)] if (u, v)

Under the change of variables

t = (u - v)/2 , 8 = (u + v + 2)/2

it is easily seen that the square with vertices A, B, C and D is
transformed into [0, 1] x [0, 1]. We assert that

Gn(ί, s) = Hn(t + s - 1, s - t - 1) , (t, β) e[0, 1] x [0, 1] .

Indeed, if we set G'n(t, s) = Hn(t + s — 1, s — t — 1), we may verify
directly that G'n(tf s), when regarded as a function of t with s fixed,
satisfies the following conditions:

( i ) Together with its first 2w — 2 derivatives, it is continuous
on [0, 1], At the point t — s, the (2n — l)th derivative has an up-
ward jump ( —1)\

(ii) Its 2wth derivative is identically zero.
(iii) It satisfies the boundary conditions in (1).

Since the Green's function is the only function with the above
properties Gn(t, s) = G'n(t9 s).
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Since for each m ^ n, Gm(t, s) > 0 in the interior of [0, 1] x
[0, 1], it is clear that Hm(u, v) > 0 for — I <* v < u S 0. Hence,
(-l) m (/ 2 w W-/2^))>0 for -l£v<u^0, that is, (-l)m/2 m is strictly
increasing in [-1, 0]. Since / ^ ( - l ) = 0, (-l)mfL - (~l)m/2w-i > 0
and (-lTfZ-t = (-1Γ/2-8 = (-l)(-l)m-%*-3 < 0 over (-1, 0]. We
therefore conclude that ( —I)m/2m-i is positive and concave over ( — 1,0].

To show that for every c > 0, L(Gn, e) is a convex set, it is
sufficient to show that L(Hn, c) is bounded on one side of the line
v — — 1 by a concave curve, and on the other side by a convex
curve. But in view of Lemma 6 (and the statements following
Lemma 7), it suffices to show that the part of L(Hn, c) contained in
the triangle — 1 <^ v < u ^ 0 is bounded by a concave curve. For
this purpose, we implicitly differentiate Hn(u, v) = c to obtain [8,
p. 223]

dv_ == ( - l ) 7 k M = Λn-iM . o
du (-I)n + 1/2;(t;) /2n-i(t0

and

d2v „ _[fL(v)Y(-l)nfZ(u) + [

for ~1 < v < u S 0. But since ( — l)nf2n~i is positive and concave
over ( —1, 0], thus l/( — l)nf2n-i is convex over ( —1, 0] (see [2, p. 156]),
so that (l/( —I)n/2n-i)' is increasing in ( — 1,0], Consequently,

Γ i i

for - 1 < v < u <: 0. This shows that d2v/du2 <:0 for -Ku^O
so that the part of L(Hn, c) contained in the triangle — 1 <i v < u ^ 0
is indeed bounded above by a concave curve. The proof is complete.

5* Existence of eigenvalues* It is known (see for instance [7f

pp. 228-230, and 9, 1]) that the selfadjoint and positive definite
eigenvalue problem (1) has a smallest positive eigenvalue which is
simple and the corresponding eigenfunctions have no zeros in (0, 1).
Here, we shall give an alternate proof which also shows that the
corresponding eigenfunctions belong to Kn. For this purpose, we
first show that the operator Tn defined in the last section is uQ-
positive with respect to Kn.
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Let x be an arbitrary nonzero element of Kn. Recall that for
each positive integer m, Tmx is the unique solution of

y«*)(0) - 0 = yi2k\l) , k = 0, 1, - -, m - 1 .

In view of this and (7),

(9) (Tmx)" = - Tm_,x if m > 1

furthermore, by Lemma 5, Tmx e Km for each m ^ n. Let

(10) 2*0 - 2Vi^* ,

where u*(t) = ί(l — £). Since u* eiί,- for any j ^ 1, uoeKm for any
m ^ 1, and in particular, uQeKn. We assert that positive numbers
a and β can be found such that

(11) au0 ^ Tnx ^ βu0 .

First recall from Lemma 7 that positive number a can be found
such that

au*(t) ^ (T&Xt) , 0 ^ ί ^ 1 .

Thus

au*(t) £ (T&Xt) ^ βu*(t) , 0 £ t £

where /§ = max [p{t)x(t)ι 0 g ί ^ 1}. Consequently, by (9) and induc-
tion

(-iy-i(Tnx - auo)
{2n-2)(t) = (T,x - au*)(t) ^ 0

-l)(Γnα? - auo)'\t) = (Tn^x - aTn_2u*){t) ^ 0

for O ^ ί ^ l . In other words, we have shown that Tnx — au0 eKn.
Similarly, we can show that βu0 — TnxeKn.

We conclude that Tn is ^-positive so that according to Lemma
3, Tn has exactly one (normalized) eigenvector in Kn and the cor-
responding eigenvalue is simple, positive, and larger than the
absolute value of any other eigenvalue. In view of (6), we have
thus shown the following

THEOREM 1. The eigenvalue problem (1) has exactly one
(normalized) eigenvector in Kn and the corresponding eigenvalue is
simple, positive, and smaller than the absolute value of any other
eigenvalue.
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In the sequel, we shall denote the smallest eigenvalue of (1) by

COROLLARY 1. Let x(t) be an eigenfunction of (1) corresponding
to X(p)f then #(<) ̂  0 for any t e [0, 1].

Proof Since X(p) is simple, we may assume x(t) ̂  0 for 0 ̂  t ^ 1.
If n — 1, then

x" = -pα; ̂  0

on [0, 1]. If n > 1, then by Theorem 1, x" ^ 0 on [0, 1] also. Thus
x is a nonnegative and concave function. Since x(0) — 0 = x(l), x(t)
cannot vanish in (0, 1).

COROLLARY 2. If p{t) in symmetric in [0, 1] (i.e., p{t) — p(l — t)
for t e [0, 1]), and if x{t) is an eigenfunction corresponding to X(p),
then x(t) = x(l - t) for t e [0, 1].

Proof. We may verify by direct substitution into (1) that
x(l — t) is also an eigenfunction corresponding to λ(p). Consequently,
x(t) = ax{l — t) for some nonzero number a. But since x(l/2) Φ 0,
thus α = 1 as required.

COROLLARY 3. The spectral radius r(Tn) is equal to X~x(p).

6* Isoperimetric inequalities* In this section, we shall prove
the following result as asserted in §1.

THEOREM 2. Let p{t) be a positive and continuous function
defined on [0, 1], and let p{t) and p(t) be respectively the rearrange-
ments of p{t) in symmetrically increasing and decreasing order.
Consider the three eigenvalue problems (1) and

u™ + (l-)nP(t)n = 0

u { 2 k ) ( 0 ) = 0 = u w { \ ) , fc = 0 , 1 , . - - f n - l

t; + ( l
(J-O)

^ 2 & > ( 0 ) = 0 = v { 2 k ) ( l ) , fc = 0 , 1 , -- , n - 1 .
Denote their least positive eigenvalues by X(p), X(p) and X(p) respec-
tively. Then

We first show that X(p) ^ λ(p). We recall that [7, p. 239 and
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1] the least positive eigenvalue of (1) is equal to

min

where the minimum is taken over functions x e C(2n)[0,1] that satisfy
the boundary conditions in (1) and for which the denominator is
positive. Furthermore, no function other than the corresponding
eigenfunction yields the minimum.

Let u(t) be a nonnegative eigenfunction of (12) corresponding
to λ(ί>). Since p(t) = p(l - t) for te[O, 1], by Corollaries 1 and 2,
u(t) is symmetric in [0, 1], positive for 0 < t < 1 and concave on
[0, 1]. Consequently, u\t) is together with u(t), symmetrically
decreasing so that p(t) and u\t) are oppositely ordered. But then
by Lemma 1,

X(p) - Γ [u' 'Γ/ί1 m2 ^ Γ [u^YJi1

Jo / J o Jo / Jo
pu>

^ min JΓ Wn)}2ft

as required.
Next we show that X(p) ^ λ(p). For this purpose, we need the

following

THEOREM 3. The least positive eigenvalue of (1) satisfies

\ \ Gn(t, s)p(s)u(s)u(t)dsdt
X~Hv) = max - ^

where the maximum is taken over nonzero elements in Kn. Further-
more, the unique function, except for a constant multiple, which
yields the maximum is the eigenfunction corresponding to X(p).

Proof. According to Lemma 4 and Corollary 3, for any nonzero
x in C{2n)[0, 1],

r.(Γn) ύ r(T) = X~\p) ,

so that

sup rx(Tn) ^ X-\p) .

Now for each nonzero u in Kn, define the positive linear functional
u'eK: by
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(x, u'} = I x(s)u(s)ds
Jo

for all xeKn. Then for each x e Kn, we have that

sup {λ 6 R: X(x, uf) ^ (Tnx, u')} ^ rx(Tn)

and consequently, that

sup {λ 6 R: X(u, nf) ^ (Tnu, u')} ^ τu{Tn) ^ X~\p) ,

and

[ (Tnu)(s)u(s)ds
sup ^— £ ru{Tn) <,

\ u\s)ds
Jo

p

Since we have equality when u is equal to a constant multiple of
the eigenfunction corresponding to X(p)9 the first part of the theorem
is proven.

To prove the remainder of the theorem, let veKn be such that
X-\p) = (Tnv,v)/(v,v). Then

ψ^> <: rv(Tn) ^ ψ^ψ ^ : rv(Tn) ^ XKP) ψ ^
(v, v) (v, v)

shows that rv(Tn) = (Tnv, v)/(v, v}. It follows that < ϊ > -
rv(Tn)v, xf} ^ 0 for all xr eK'n, and consequently, by the Krein-Rutman
theorem [15, Theorem 1.1], that Tnv - rυ(Tn)veKn. We assert that
v is an eigenf unction corresponding to X(p). If not, there would
exist a positive number a and a positive integer m such that

T:{Tnv - τv{Tn)v) = Tn(T:v) - rv(TnχT:v) > au0

where uQ is given by (10). Let z = T™v. Since zeKn, there exists
a positive number β (as can be seen from (11)) such that z > βu0.
Hence, for sufficiently small ε > 0,

Tnz - rv(Tn)z - εz>(a - εβ)u0

where (a — eβ) > 0. Consequently,

{T/Z' fx'
> ^ r,(ΓJ ^ n(ΓJ + ε ,

<z, « >

which contradicts the fact that rz(Tn) ^ λ"1^) = rv(Tn). The proof
is complete.

We remark that the proof given above is similar to that of
Theorem 3.1 in [12]. However we feel that there are enough
differences to include it here.
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Now let u be the normalized eigenfunction corresponding to
. Then

[[ Gn(ί, s)p(s)u(s)u(t)dsdt

I u\s)ds
Jo

Let u be the rearrangement of u in symmetrically decreasing order,
then by Lemmas 2 and 8,

i T Gn(t, s)p(s)u(s)u(t)dsdt ^ [Ύ Gn(t, s)p(s)u(s)u(t)dsdt .
JoJo JoJo

Thus

5Λ(*, s)p(s)u(s)ύ(t)dsdt

\:

ΐ1

OJO

?n(*> s)p(s)v(s)v(t)dsdt
max

#2(s)c£s
o

Consequently, λ(jp) ^ λ(p) as required. The proof of Theorem 2 is
complete.

7* Conclusion remarks* We remark that in Theorem 2, λ(p) =
λ(p) only if p = p. Indeed, if λ(p) = λ(p), then by Theorem 3, an
eigenfunction ^ corresponding to X(p) is also an eigenfunction cor-
responding to λ(j>). Substitute u into (1) and (12) respectively, we
see that

for 0 < t < 1. Consequently, p(t) = p(t) for 0 < t < 1 and by con-
tinuity pit) = p(t) for 0 <̂  ί ^ 1. Similarly, we can also show that
X(p) = λ(p) only if p = p.

We have mentioned that Beesack and Schwarz [5] and Banks [3]
proved X(p) ^ X(p) for n = 1 and 2 respectively. However, a close
examination of their proofs reveals the fact that in order to
establish by similar arguments the more general result, we shall
run into the difficulty in constructing from a nonnegative function
u (satisfying the boundary conditions in (1)) two functions u and v9

where u is the rearrangement of u in symmetrically decreasing order
and v is symmetric in [0, 1] such that
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Jo Jo

and u(t) ^ v(ί) for 0 ^ ί ^ 1. This difficulty we have avoided by
employing an extremal characterization (which is essentially a mini-
max principle) of X~\p) and a rearrangement inequality. In view of
the fact that a large body of minimax principles exists for positive
operators [12, 17], our approach indicates that other isoperimetric
eigenvalue problems (e.g., fixed end-points problems [3]) can similarly
be solved, provided, of course, that Vollman's inequality can be
applied. Moreover, since the rearrangement inequality of Vollman
clearly depends on the quasiconcavity of the kernel K(t, s), our ap-
proach also indicates a close connection between the quasiconcavity
of Green's function and the optimality of eigenvalues depending on
equimeasurable densities.
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