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ON THE SEMIMETRIC ON A BOOLEAN ALGEBRA
INDUCED BY A FINITELY ADDITIVE

PROBABILITY MEASURE

THOMAS E. ARMSTRONG AND KAREL PRIKRY

A finitely additive probability measure μ on a Boolean
algebra & induces a semi-metric dμ defined by dμ(A, B) —
μ(AJB). When & is a σ-algebra and μ countably additive
& is complete as is well known. The converse is shown to
be true. More precisely, if &μ is the quotient of & via
μ-null sets then &μ is e^-complete iff μ is countably additive
on &μ and &μ is complete as a Boolean algebra. Further-
more &μ is c^-complete iff every v <C μ has a Hahn decompo-
sition iff (when & is an algebra of sets) every v < μ has a
^-measurable Radon-Nikodym derivative. If &μ is not
^-complete it is either meager in itself or fails to have
the property of Baire in it's completion. Examples are
given of both situations with the density character of &μ

an arbitrary infinite cardinal number.

If <5§ is a Boolean algebra with supremum X and μ is a finitely
additive probability measure on & (i.e., μeBAt{^)) there is a
semi-metric dμ on & given by dμ(A9 B) = μ(AΔB) (where Δ denotes
symmetric difference) for {A,B}c:&. Drewnowski [13] calls such
semi-metrics Frechet-Nikodym semi-metrics. The metric space
obtained by identifying A and B if dμ(A, B) = 0 is the quotient
Boolean algebra &μ — &\<yΓμ where ^Yμ is the ideal of μ-negligible
sets. We consider μ and dμ to be defined on ggμ in the usual
manner so that μ(AΔB) = dμ(A, B) if {A, B} c &μ. The operation
of complementation is an isometry in & or &μ for dμ.

When &μ is σ-complete and μ is countably additive on &μ then
&μ is complete both as a Boolean algebra and as a metric space.
This fact has been very useful for analysts in the special case where
& is a σ-algebra of subsets of X and μ a countably additive
measure on &. In [12] it was asked to what extent this remains
true if μ is only finitely additive. If μ is a {0, l}-valued measure
on the Boolean algebra & then &μ is a two point space {φ, X) with
dμ(φ, X) = 1. Thus, the theorem is true in this case. Of course, μ
is then countably additive on έ%?μ. We may ask when &μ has an
isolated point.

PROPOSITION 1. £$μ has an isolated point iff it is finite iff μ is
a finite convex combination of {0, l}-valued measures,
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Proof. If &μ is finite it has a finite number of μ-atoms and μ
is a finite convex combination of {0, l}-valued measures. If μ isn't
a finite convex combination of {0, l}-valued measures there is an
infinite sequence {An} c &μ\{φ} with lim^^ μ(An) = 0. If A 6 &μ then
A Φ AΔAn for large n and lim^oo dP(A, AJAn) = 0. Thus, A isn't
isolated. This suffices to establish the proposition. •

Thus, except in trivial cases, &μ is an infinite perfect metric
space. It turns out that the only time &μ is complete under dμ is
when &μ is complete as a Boolean algebra and μ is countably
additive on &μ.

PROPOSITION 2. In order that £&μ be a complete metric space
under dμ it is necessary and sufficient that g@μ be a complete Boolean
algebra and that μ be countably additive on &μ.

Proof. First suppose that <2§μ isn't a complete Boolean algebra.
Since έ%?μ satisfies the countable chain condition it can't be a σ-com-
plete Boolean algebra. Thus, there is an increasing sequence {An}a
έ%fμ without a supremum in &μ. Let λ = limn_oo μ(An). We have
dμ(An, An+k) = μ(An+k\An) ^ λ - μ{An) -> 0 as n -» oo. Thus, {An} is

cί̂ -Cauchy. If A e &μ were such that lim^*, dμ(An, A) — 0 then
lim^co μ(An\A) = 0 so μ(An\A) = 0 for all n hence An c A for all A.
From limn_>0O μ(A\An) = 0 it would follow that A = supn An which is
impossible. Thus, if <S$μ is cϊ^-incomplete it is incomplete as a
Boolean algebra.

Now suppose that &μ is a complete Boolean algebra with μ not
countably additive. There exists an increasing sequence {An}cz^μ

with union A so that limn_>oo μ(An) = λ < μ(A). Once again, {An}
must be d^-Cauchy and if Ce^μ with limn_oo dμ(An9 C) — 0 then
C — A. Since lim^oo dμ(An, A) = μ(A) — X Φ 0, &μ is d^-incomplete.
Thus, if &μ is d^-complete then ^ is countably additive on &μ.
This suffices to establish the proposition. •

Plachky, [23] gives a characterization of extreme extensions v
of a finitely additive probability μ on ^ to ^ . He denotes by
6 α ( ^ , /£, ̂ ) all such extensions. We denote by ξba(&19 μ, &2) the
extreme elements of the compact convex set 6 α ( ^ , μ, ̂ ?2). In terms
of the semi-metric dv elements v of ξ 6 α ( ^ , μt ^ ) are characterized
by the condition that for all A2 e ̂  and ε > 0 there is an Ax e ^
with (ZΛ-Ai, A2) < ε. That is, v e ξ ba(&lf μ, ̂ ) iff ^ is cZ,-dense in

COROLLARY 2.1. Lei ^ c ^ δe Boolean algebras and let μ be
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a probability measure with &x dμ-complete. For v e ba ( ^ , μ,
to be in ξ ba(&l9 μ, &2) it is necessary and sufficient that for all
A 2 e ^ 2 there be an Aλ e ̂  with du(Al9 A2) = 0. If ve ha(0u μ,
then &2 is du-complete.

Proof. It is only necessary to show that it v e ζ ba(.^?lf μ,
and A2e^2 there is an Ax e ̂  with du(Alf A2) = 0. By Plachky's
condition we may construct a sequence {An} c ^ which dv-converges
to A2. Any delimit Ax of this sequence will suffice. •

REMARKS. (1) Bogdan and Oberle in Proposition 1.1.1 of [9]
obtain a result closely related to Proposition 2. M. Bhaskara Rao
and K. P. S. Bhaskara Rao in [25] essentially obtain Propositions
1 and 2.

(2) Corollary 2.1 yields a method for obtaining noncountably
additive μ with <%fμ d^-complete.

Recall that a finitely additive measure μ of bounded variation
on a Boolean algebra έ@ (i.e., μeBA(&)) has a Hahn decomposition
iff there is an i e ^ so that μ{A) = \\μ+\\ and μ(Ac) = ||u~||. Thus,
μ+(E) = μ(A Π E) and μ~(E) = ̂ n Ac) if Ee.^. Here, μ+ and
μ~ are the positive and negative variations of μ. \/t\ — μ+ + μ~
is the total variation of μ.

PROPOSITION 3. Let μ be a probability measure on the algebra
&. &μ is dμ-complete iff every v^BA{0) with \v\ — μ has a
Hahn decomposition iff every v e BA[0) with v < μ has a Hahn
decomposition.

Proof. If μ is countably additive on the complete algebra &μ

then every v e BA(0?) with v < μ is countably additive on £&μ hence
has a Hahn-decomposition in &μ and in ^ (we are using the ε — d
definition of absolute continuity < as in [8]). Only the converse
needs to be established.

We must show that if every v e BA{0) with | v \ = μ has a
Hahn-decomposition then <2&μ is d^-complete. Suppose that μ isn't
countably additive on &μ. There exists {An} an increasing sequence
in &μ with supremum X such that 0 < limn_oo μ(An) = λ < 1. Let
μ\A) = \imn^O0μ(AnAn) define μ\A) for 4 e ^ so that μ'eBA+(&μ)
hence μ' e BA+(^). Let μ" = μ - μf 6 BA+{0). Let v = μ' - μ" e
BA{0). Since μ' and ^" may be verified to be singular, v+ — μ',
v~ — μ" and \v\ — μ. Let i e J ^ be such that v(A) = v+(A) and
-v(Ac) - v-(A). We have v+(A) = μ\A) - l i m ^ ^ ( A n An) = \\μ'\\ =
X. Thus, AndA for all w. Thus, A = X and //' = 0 which is
impossible. Thus, μ must be countably additive on ,ζ&μ.
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If &μ isn't (/-complete there is an increasing sequence {An} with-
out a supremum. Define μ\A) = lim,^ μ\An Π A) so that μ' e
BA+(^μ) hence μ' 6 BA+{^) let μ" = μ - μf and let v ^ μ' - μ".
If μ" = o then X = supπ An and if μ' — 0 then ^ = supra An which
are impossible. If i e ^ is such that v+(E) = v{EΠ A) and v~"(2£):
- y ( J ϊ n ^ ) . Once again, A would have to be supnAn which is
impossible. Since such an A is guaranteed to exist &μ must be
σ-complete hence complete. •

& may be an algebra of subsets of X. This is the case if X
is the Stone space Xm of & and & is regarded as the clopen
algebra of X#. If μ e BA{0) one may integrate simple step func-
tions / = Σ?=i^i^< with {Al9 , An) in the usual manner. One may
integrate any / which is the uniform limit of simple step functions
as the limit of the integrals of the step functions. The totality of
such /will be called bounded ^-measurable functions. More gener-
ally /: X—>[ — oof oo] is called ^-measurable iff/ΛwV( — m) is a
bounded ^-measurable function for all integers n9 m ^ 0. One
defines \fdμ, for any ^-measurable /, to be lim(w,n)_(0O>oo) \fΛnV
(~m)dμ provided this limit exists. For any ^-measurable / on X
with 11 /1 dμ < oo one may define the measure fμ on & by the
requirement that (fμ)(A) = [fXAdμ for A e ^ . Then, fμzBA(0)
and is absolutely continuous with respect to μ. If μ G BA + (^) one
has (fμy - (/V0)ft (//^)- = -(/Λ0)iK and |/i«| = I/IJH. If g is
^-measurable and \#cί(///) exists it is \gfdμ. lί v<ζ.μeBA+(&) one

says that v has a Radon-Nikodym derivative, / = dvjdμ, iff / is
^-measurable with v — fμ. When μ is a countably additive pro-
bability on the σ-complete &μ (i.e., when έ%?μ is d^-complete) every
v < μ has a Radon-Nikodym derivative on ^ ί with respect to μ and
on <S§ if /-ί is countably additive on &.

PROPOSITION 4. Let <2& he a Boolean set algebra and let μ 6
BAt(0). &μ is dμ-complete iff every v < μ has a Radon-Nikodym
derivative on £% (hence on

Proof. There is a Banach lattice isomorphism between the M-
space of bounded ^-measurable functions on X and the continuous
functions on the Stone space X&. If the bounded ^-measurable /
on X has corresponding to it / and the finitely additive p e BA{0)
has corresponding to it p e ,y£{XJ) under the Stone correspondence

then ί fdp = ί fdp. For v e BA{0), v = fμ with / bounded and

^-measurable I f ΰ = fμ with feC(XJ. If \v\ = μ then \f\μ =
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|p | = μ so I/I = 1 on supp (β). There is a clopen set [A]aX^ cor-
responding to A e & so that / = Z u ] — Z u β ] on supp (/I) consequently
δ = (%U] — %Uc])/2 and v = (Z^ — XAc)μ. Thus, v has a Hahn-decom-
position. Since v was arbitrary with \v\ = μ ^ μ is d^-complete by
Proposition 3.

Now suppose that &μ is eZ -̂complete. If X~ιμ <Ξ> v <*Xμ for some
λe(0, oo) then, on X& , there is a Radon-Nikodym derivative g for
v with respect to μ which is bounded and .^-measurable hence
continuous (0μ is considered to be the clopen algebra of Xm ). If
v and μ are the Radon measures on X& corresponding to v and μ
we have ΰ — gμ. Extend g continuously from X& , considered as a
closed subspace of X&, to a continuous function / on Xm. Then,
P z= fμ where {£, /Z} are considered as Radon measures on X^. f is
^-measurable on X& hence is the uniform limit of simple step
functions {/J. If X — X<% then v — fμ. Otherwise {fn} corresponds
to a uniformly convergent sequence {/̂ } of simple step functions on
X (where fή(x) = fn(x) where x e X^ is the ultrafilter of supersets
of x in ^ ) . Once again v — fμ where / ' =

If v < μ then v is the limit in the variation norm of vn — vf\
(nμ)V(—nμ) as w->oo, We have vn = vn+kΛ (nμ) V ( — nμ) for all
k > 0. Since ~nμ ^ v <; nμ we have v = / n ^ and /n = fn+kΛnΛ —n
for & > 0 where {/n} are ^-measurable on X Define f(x) = fn(x)
if /n+Jb(a?) = fn(x) for all fc > 0. If f(x) isn't defined either fn(x) = w
for all w or /n(a?) = — n. In the first case set f(x) = oo and in the
second set f(x) = — oo. Since fΛn\/—n = fn is ^-measurable it
follows that / is ^-measurable. If A e ^ then v(̂ 4) = limn_oo vn(A)~
lim^̂ co \ fndμ — \ fdμ. Thus, / = dvjdμ. This establishes the prop-

}A }A

osition. •

REMARK. Since <3$μ remains unchanged if & is enlarged, and
μ redefined, by only an enlargement of ημ we may consider fjμ the
set of A with A c X such that for all ε > 0 there is an Aε e &
with AczAε and μ(Ae) ^ ε. Let &Δf)μ denote all sets A! in X
differing from an i e ^ by an Neήμ. For such A' set μ(A')=μ(A)
so that ^ is the ideal of ^-negligible sets in &'Δημ. Propositions
3 and 4 remain unchanged when & is replaced by &;Aημ.

In general &μ isn't complete under dμ but its completion is
easily identified.

PROPOSITION 5. Let μeBAt(^?), X^(X^μ) be the Stone space
of &(0μ) and let μ be the Radon probability measure on X^(X^μ)
corresponding to μ. The d^-completion of & is the quotient of the
Baire algebra, &\ of X^(X0μ) modulo /^-negligible sets (i.e., &°μ)
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under dμ.

Proof. It is easiest to work with £§μ considered as the clopen
algebra of X& . Then &μ c ^ ° and the metric dμ on &μ is the
same as is induced by the semi-metric d^. As a result &μ is iso-
metric to a subset of the djr-complete &?μ . Since ^ ° is the mono-
tone sequential closure of &μ it follows that &μ is d^-dense in ^ °
hence in &\. Thus, ^?\ must be the completion of &μ. Π

REMARK. Proposition 2 is an immediate corollary of Proposition 5.

One may extend μ defined on the algebra, & of subsets of X,
not just to 0?Δημ but to an even larger algebra &μ of subsets of
X in a unique manner. &μ is the μ-completion of & and consists
of those sets EaX so that μ*(E) = mt{μ(A):E(zAe^} = μή:(E) =
suΐ>{μ(A):Ez) A e ^ } . One sets, for Ee^?μ, μ{E) = μ*(E) = μ*(E).
fjμ is then the ideal of μ negligible sets in &μ and &;Aημ(z^μ.
One may ask whether &μ is ever d^-complete. To answer this it
is convenient to characterize &μ in terms of the Stone space X^.

Let j^(x) = {Ae &, xeA}e X#. The mapping j^ from X to

X# is such that if A is in & then [A] = j^(A) so that A = j ^
The inverse image of the clopen algebra of X^ is the algebra &.
It is convenient to identify X with the dense subset jM(X) of X^
even though this is only proper if j& is injective iff & separates
X.

PROPOSITION 6. EaX is in ^ μ iff there is a closed Gδ, F and
an open F0,G, in X^ with GdF, μ(F\G) = 0, and j^(G)

. In particular μ(djm(E)) = 0.

Proof. Let Ee^μ. Let {An} be an increasing sequence in &
and {A71} be a decreasing sequence in & with AnczEc:An so that
/i(Aw\An) -> 0 as 7i -> oo. Let G - Uϊ=i [^»] and ί7 - flϊ=i [An]. We
have ( J c F with /Z(F\G) = 0 and we have j~J(β) = U - i ^

Conversely, if G is an open Fσ and ί7 a closed Gδ in Z^, with
j-^(G) a E a uKF) and with /Z(F\G) = 0 then G - U - J A J and F =
Πϊ=i [^w] with {An, An: w G iV} c ^ with AnaEc:An for w e iV and
with ^(An\An) ^ 0 as w -> oo. Thus, E e &μ. Q

PROPOSITION 7. ^ ^ is dμ-complete iff (i) ^ ^ is a o'-algebra of
subsets of X and (ii) μ is countably additive on έ@μ. In this case
£@μ is μ-complete as a σ-algebra.
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Proof. From Proposition 2, ^-completeness of ggμ follows from
(i) and (ii). Also, ^-completeness of &μ implies (ii) and that &μ

is (j-complete as a Boolean algebra. If {En} is an increasing sequence
in £gμ we must show that E = U^U En e ggμ. Let E~ be the
supremum of {En} in &μ. Let {An} be chosen increasing in & with
An c En and μ(En\An) < 1/w for all w. Let {A71} be chosen decreasing
in & with iί00 c An and μiA^EJ) < 1/n for all w. We have An c
E'c l7' and μ(An\An)-+0 as n—>oo. Thus, Ee^μ. Q

PROPOSITION 8. ^P^ is dμ-complete iff μ is a category measure
on X^μ.

Proof. A residual Radon measure is a category measure on its
support, [2].

Let &μ be ^-complete. We must show that if Θ is an open
set in X^μ then μ(dθ) = 0, [3]. There is an open Fσ & c θ with
μ(θ/&) = 0. Let θ' be an open Fσ in X^ with θ' Π X^^ - βf (where
X ^ is considered to be supp(/Z)C-X^). We have /Z(d#') = 0. Thus,
considering closure in X^μ9 μ{dθ') = 0. Since X ^ = supp (μ), θ' = θ.
Since Θ differs from θ' by a /ί-negligible set and & differs from Θ
by a negligible set β(β'θ) = 0 which shows that μ is residual on X# .

Let /Z be residual on X^μ. From Oxtoby [20, Theorem 4] any
Borel set A in X& has the property that μ(A) = μ(A°) = μ(A).
Thus, if A is a Baire set in X^ there is an open Fσ GaA and a
closed G5 F D A with £(F\G) = 6. Represent G as UϊU {[-4m] Π X*μ)
where {An} c ^ is increasing, and F as f|?=i {[^w] Π X^} with {ATO}c
^ decreasing with An c A71 for all w, and with μ(An\An) = 0. Let
EczX be n?=i ^ n Since AncEc:An for all w we have E e ̂ μ . It
is easily checked that E is the delimit of the Cauchy sequence
{An} c & and that E corresponds to the element A in the (̂ -com-
pletion of <%?μ as given in Proposition 5. •

By Proposition 4, ^ μ is c^-eomplete iff every ι> with |v| =
a ^''-measurable Radon-Nikodym derivative. One may ask what is
the case if one allows Eudoxus integrable, [14], Radon-Nikodym
derivatives. A bounded function / is Eudoxus integrable iff there
an increasing sequence {fn} of bounded ^-measurable functions and
a decreasing sequence {fn} of bounded ^-measurable functions such

that fn^f^fn for all n and l i m ^ ί/n — fndμ = 0. Since bounded

^^-measurable functions are Eudoxus integrable no more Endoxus

integrable functions are obtained if one only requires ^

bility of {/,} and {/n}. ^fdμ is defined by limn^fndμ or lim
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COROLLARY 8.1. &μ is dμ-complete iff every v with \v\ = μ has
a Eudoxus integrable Radon-Nikodym derivative.

Proof. One direction is clear. For the other suppose that all
v with \v\ = μ have Eudoxus integrable derivatives. We shall con-
sider X as identified with a subset of X& via the map j ^ . Let v
have I v | = μ and let / be a Eudoxus integrable Radon-Nikodym
derivative. Let {fn} and {fn} be the monotone sequences of bounded
^-measurable functions with fn^ftίfn for all n so that
lim^oo \fn — fndμ = 0. Let {fn} and {fn} be the corresponding se-
quences in ^{X^). Let / = infn f

n and / = supw fn. f is upper
semicontinuous and / is lower semi-continuous. The restrictions of /
and f to X are themselves Eudoxus integrable Radon-Nikodym
derivatives of v. Both | / | and | / | are equal to 1 β a.e. Let K be
the compact Gδ{f ^ 1}. One has / = Xκ — Xκcβ a.e. Since v was
arbitrary v could have been of the form (Xθ — Xθc)β for an open set
θ in X^. Thus, for each open θ there is a compact GδK in X# with
μ{ΘΔK) = 0. The closure of θ n X&u must be contained in i ί n X£

since supp (β) — X^μ. Thus, in -X̂  , /f(9(ί Π -X"̂ )̂) = 0. Since
θ n -X"̂ . may be an arbitrary open set in X& μ is a category
measure on X ^ . Proposition 8 shows that έ%μ is (incomplete. •

REMARKS. Can Eudoxus integrability be replaced by ^-integra-
bility? Recall that / is μ-integrable iff there is a sequence of simple
^-measurable functions which converges to / in /^-measure or in
/^-probability.

The maximal ideal space Zμ of L°°(X^ , μ) is the Gleason space
or projective cover of X^μ iff μ is a category measure on X^ , [3].
This is true iff the projection dual to the injection C{X^ ) c L°°(X^ ,
μ) is irreducible. This yields a method for constructing &μ which
are d^-complete, yet such that £§Δf}μ isn't cί̂ -complete no matter
how ££f is represented as an algebra of sets. One need only take
an irreducible totally disconnected image Y of the maximal ideal
space Z of L°°(i2, Σ, P) where (Ω, Σ, P) is a probability measure
space. Letting & be the clopen algebra of Y one has Y = X^.
One may take X(—j^{X)) any dense subset of X# regarding &
now to be equal to it's trace on X. One way to obtain Y from Z
is to identify two nonisolated points in Z (or even to identify a
closed nowhere dense subset of Z).

COROLLARY 8.2. There exists a set X, a Boolean algebra & of
subsets of X and a strictly positive finitely additive probability μ
on & so that &μ isn't dμ-complete yet {^μ)μ is dμ-complete.
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The completion ^ J r of έ@μ under d^ is a complete metrizable
abelian topological group when the group operation is symmetric
difference. Since &μ is a dense subgroup of &\ the regular open
algebra of &μ is isomorphic to that of ^jjr, [18], [20]. If F is a
closed subset of &μ its interior is the intersection of F° with &μ

where closure and interior are taken in &\. Thus, F is nowhere
dense in &μ iff F is nowhere dense in &\. Thus, &μ is meager
in itself iff it is meager in &\. When &μ is incomplete yet non-
meager it must be badly behaved as a subset of &\. In Kelley
[16, Problem 6P] it is shown that any nonmeager dense subgroup
of a Baire topological group fails to have the property of Baire.

PROPOSITION 9. // &μ is not complete then it either
(a) is meager in itself under dμ or
(b) fails to have the property of Baire in its dμ-completion.

When &μ is c^-incomplete it may be meager. One instance is
when &μ is countably infinite in particular when & is countable
and &μ is infinite. In this case each point of &μ is nowhere dense
hence & is meager. In quite a few instances &μ will be meager.

PROPOSITION 10. Let μeBAt(0). If i e ^ {or &) let J?(A) =
{Af e &μ\ A' c A) and let J ^ A ) = {A' e &μ\ A c A!\ he the principal
ideal and filter in £@μ generated by A.

(a) Both ^(A) and ^(A) are dμ-closed.
(b) -J^(A) is nowhere dense iff Ac isn't a finite union of μ-

atoms and is open if Ac is a finite union of μ-atoms.
(c) ^~(A) is nowhere dense iff A isn't a finite union of

μ-atoms and is open if A is a finite union of μ-atoms.

Proof. Only statements about ^(A) need be proven for the
statements about ^~(A) follow from those for ^(A) upon applying
the isometry E->EC.

(a) To show that ^(A) is c^-closed consider a sequence {An} c
J?(A) converging to Ce &μ. We have μ(C\An) = μ(C\A) + μ(C Π
(A\An)) ^ μ(C\A). From l i m ^ μ(C\An) = 0 it follows that μ(C\A) = 0
so Ce^(A). This establishes (a).

(b) If Ac is a finite union of atoms then &μ = U [J?(A)AF:
FaAc), where J?(A)ΔF = {EAF: Ee^{A)}, is a finite disjoint union.
The map E-> EAF is an isometry of &μ for dμ. Thus, ^{A)AF is
a closed set for each FaAc. Since &μ is a finite union of disjoint
closed sets each is a clopen set. Thus, <J^{A) is clopen.

Conversely, if Ac is not a finite union of atoms there are Fc&μ

F(zAc with μ(F)>0 but arbitrarily small. If AreJ?(A) then
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dμ(A',A'UF) is arbitrarily small yet A ' U F ^ ( A ) . Thus, no
A e <J^(A) is an interior point of ^(A). Thus, ^(A) is nowhere
dense. •

To show that &μ was meager it would suffice to show that
there was a countable family {An} c ^μ\{φ), with ^{An) nowhere
dense for all n, with &μ = \Jn=i^(An). That is, {An} should be a
family such that if A e ̂ μ there is an An with An c A and so that
no An is a finite union of atoms. A collection {Aa} c ^μ\{φ] such
that any A e ̂ μ\{φ) contains an Aa is called a pseudo base of the
algebra &μf [21]. Included in any pseudo base for &μ is the, at
most countable, collection of atoms. If every A e &μ contains an
atom then the collection of atoms is a pseudo base and is minimal
as a pseudo base. This is the case iff X# is the closure of its
countable set of isolated points iff X^u is between Nl) {oo} and βN
as a compact Hausdorff space.

PROPOSITION 11. Suppose that ^ μ is such that there exists an
A 6 έ&μ\{φ) not containing a μ-atom and such that the restriction of
£%fμ to A has a countable pseudo base. έ%?μ is meager.

Proof. Let μA be the restriction of μ to A normalized to be a
probability measure. &μA is the restriction of &μ to A. 3$μA is
meager as the preceding remarks have shown. Let μAC be the
normalized restriction of μ to Ac. If μAe doesn't exist then &μ —
&;

μA is meager. It is easily verified that &μ may be represented
as the product έ$μA x <̂ P̂ C Furthermore the metric dμ is given
by dμ((Elf FJ, (E2, F2)) = μ(A)dμA(Elf E2) + μ{A')dμAt(Fu F2) which
yields a topology on &μA x £$μAc which is the product topology.
Since ^μA is meager so is ^μA x έ%?μAC = &μ. Π

REMARK. Every nonnegligible element of έ%fμ contains a non-
negligible element of & hence this proposition extends to the case
of &μ. We may even extend this proposition to cover the case of
the Boolean algebra completion of <3& or &μ.

PROPOSITION 12. If iS§ is an infinite Boolean algebra there is
a probability measure μ on £$ such that &μ is meager•, μ may be
taken to be non-atomic if & admits a non-atomic measure and may
always be chosen to be atomic otherwise.

Proof. If & admits a non-atomic measure μ there is, [4], [24]
a countable subalgebra ^ 0 of & isomorphic to the clopen algebra
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of the Cantor set Δ. The algebra ^ 0 has a countable base hence a
countable pseudo base. Let Φ: X^ —• X^,o = Δ be the canonical sur-
jection. Let v be any non-atomic Radon probability measure on
X^o with support equal to X^o. Let X be a minimal closed subset
of X^ such that Φ(Γ) = Xm. The map Φ is irreducible on Y, [27],
[4], hence Y has a countable pseudo base, [27]. Let μ be a Radon
probability measure on Y (hence on XJ) whose image under Φ is v.
As in [4], /? is non-atomic on Xa. Let μ be the measure on &
corresponding to μ under the Stone correspondence. We have Y =
X^ . Since Y has a countable pseudo base and μ is non-atomic it
follows from Proposition 11 that &μ is meager.

If & admits no nonzero non-atomic measure there is no non-
zero non-atomic Radon measure on X^ hence Xm is scattered, [27],
as is any closed subset. Since Xm is infinite there is a probability
μ — Σϊ=i 2"nδXΛ where {xn} is an infinite sequence in X^. The
support Y of μ is a separable scattered space. If μ is the measure
on & corresponding to μ under the Stone correspondence then
Y = X^μ. The algebra &μ is the clopen algebra of Y. Every
clopen set in Y contains one of the countable many isolated points.
Thus, &μ has a countable pseudobase. •

REMARK. Again if & is an algebra of sets this proposition is
valid for Sμ.

We may improve Proposition 11 to some extent in the following
proposition.

PROPOSITION 13. Let & he an algebra and μ be a finitely
additive probability on & so that έ$μ has a nonprincipal ultra-
filter with a countable base. έ%?μ is dμ-meager.

Proof. Let {An: n e N} be a countable base for an ultrafilter
^ in &μ so that An z> An+1 for all n and so that μ(An\An+1) > 0
for all n. ά^ is equal to \JZ=ι ^(An). By Proposition 10 each
J?~(An) is nowhere dense hence ^ is meager for dμ. Consequently,
the maximal ideal ^ dual to ά?" is also meager. Since ^ = «^U
^ . &μ is meager. •

PROPOSITION 14. For any infinite cardinal number m there is
a Boolean algebra & and a finitely additive probability μ on &
so that £$μ is meager and has density character m.

Proof. (The density character of a topological space is the
minimum cardinal number of a dense subset.)
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Let &' be the clopen algebra of the maximal ideal space X^,
of Z/°°({0, l}m, μ) where μ is the coin flip measure. Let μ be the
probability Radon measure on X&, corresponding to μ under the
Banach lattice isomorphism between ^£{X^) and L°°*({0, 1}W, μ)
dual to that between ^{X^) and L°°({0, l}m, μ). Let μ be the
countably additive probability on &' corresponding to μ under the
Stone correspondence. Consider the cardinal m to be the first
ordinal of cardinal m. Let Aa, for a an ordinal less than m, denote
the clopen subset of {0, l}m consisting of those elements whose αth
coordinate is 0. Let Aa be the element of &' corresponding to Aa

for ordinals a < m. The subalgebra of £%?' generated by {Aa: a<m}
is of cardinality m and is d^-dense in &'. Thus, the dμ density
character of &' is at most m. It is easily verified that dμ(Aa, Aβ) =
1/2 for all a Φ β. Thus, the density character of &r is at least
m. This establishes the (well known) fact that &' has density
character m. The same reasoning shows that J?(Ac

a), the principal
ideal in &' generated by Ae

a has density character m as a closed
subset of &'. Choose a decreasing sequence {En: n eN) cέ%f with
Ex = Ax and μ(E3\Ed+1) > 0. Let j r be the filter \Jϊ=ι ^{En) and
let ^ be the ideal dual to ^ . Let & be the algebra ^ U ^ .
From Proposition 13, & = &μ is c^-meager. Since ^(A{) c ^
there is a closed subset of the metric space & of density character
m. Thus, <5& has density character at least m and, since ^ c ^ P * ' ,
the density character of <3& is equal to m. •

REMARK. Under this construction μ is never countably additive.
Can μ be constructed to be countably additive?

If one wishes to find an algebra & and a finitely additive pro-
bability measure μ on & so that &μ is not meager for dμ yet not
complete one should choose &μ very large in its c^-completion &\.
Considering &μ as a subalgebra of «̂ P*)r one has the Stone space
X& a continuous image of the Stone space X^i X ^ is obtained by
identifying points in XJL. TO make &μ large one should identify
as few points as possible. For our construction we will start out
with a given infinite hyperstonian space Z satisfying the countable
chain condition so that Z is the maximal ideal space of L°°(Ω, Σ, P)
for some probability measure space {Ω, Σ, P) not consisting of finitely
many P atoms. We will consider μ to be the Radon probability
measure on Z associated with P and will denote by &\ the clopen
algebra of Z so that Z — X^L. We will identify finitely many non-
isolated points of Z to obtain a totally disconnected Zf whose clopen
algebra will be denoted by &. We will again denote by μ the
Radon probability measure on Zf which is the image of μ under
the canonical projection of Z onto Zf. By μ we will mean the
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finitely additive probability on & (or ^ j r ) corresponding to μ.
Since μ is strictly positive on &\- and on & = &μ and Z' = X^ .
Consequently, we are in the desired setting for this proposition.

PROPOSITION 15. Let {Ω, Σ,P) be a {countably additive) pro-
bability measure space not consisting of finitely many P-atoms.
There is a subalgebra Σ of Σ so that ΣP is incomplete, nonmeager
for dP with dp-completion ΣP.

Proof Assume the notation in the paragraph preceding this
proposition. If we show that &μ is d^-incomplete we may obtain
Σ from ^ c &\- = ΣP by using a lifting λ for L°°(£, Σ, P) and
taking Σ to be the image of £%?μ under λ.

Let {xlf '",xn) be the points identified in Z to get xeZ'. Each
of {xl9 , xn) is an ultrafilter on ^°μ which contains elements of
^°μ of arbitrarily small μ measure (since each xt is nonisolated).
Let ^~ be the filter x1 n * Π xn which again contains elements of
arbitrarily small μ measure. Let ^ be the ideal of &\ dual to
&~ so ^ = {Ac: AeF). J^ is a subgroup of &\ and is dense for
dμ since ά^ contains sets of arbitrarily small measure. Thus, u /
is either meager or fails to have the property of Baire. J ^ is a
subgroup of &\ of finite index. This is because ^ = ̂ ( Ί Π ^
where ^ is the maximal ideal of &\ dual to the ultrafilter xjt No
subgroup of ^\ of finite index can be meager. Thus, ^ is non
meager. The algebra &μ is easily seen to be J ^ U J^ hence is a
nonmeager, dense, incomplete subgroup of ^ j . Thus, &μ fails to
have the property of Baire. •

REMARKS. (1) It may be shown that as constructed, P is not
countably additive on Σ nor is Σ complete as a Boolean algebra. (2)
Is it true that if the projection of X^μ onto X#μ is irreducible that
&μ is nonmeager? We conclude with a variation of Proposition 14
valid for complete Boolean algebras but with density characters
restricted to cardinals between y$0 and 2*°.

PROPOSITION 16. Let & be an infinite complete Boolean algebra
and m a cardinal number between ^ 0 <md 2K°. There is a finitely
additive probability measure μ on & such that <S£μ is dμ-meager
and has density character m.

Proof The first step of the proof is the construction of a pro-
bability measure μ, on 2^ so that 2N has dμι density character m.
Let J ^ b e a free subalgebra of 2^ with m generators (since m<*2*°

exists). On J^£ let μx be the usual coin toss measure so that each
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of the m generators of J ^ receives measure 1/2 and so that the
generators are ^-independent. The density character of J^J for
dμA is equal to m. Under any extension of μx to 2N, 2N will have
cί^-density character at least m. If μ1 is extended to 2N so that
J^f0 is d^-dense in 2N then the density character of 2N will be equal
torn. To accomplish this we extend μx by a transfinite inductive
definition. Suppose, for ordinals β < α, μ1 has been extended from
J^ζ to an algebra j ^ so that Jϊ/r c j ^ c 2N if 7 < /3 and μλ when
restricted to <sfr from j ^ is the extension to j>/r of μx from jχf0

and so that , i^ is eί^-dense in j^J for all β < α. If α is a limit
ordinal let .JK = U/3<α^s and let μ1 be the unique extension to
JK whose restrictions to j^J are the already given extension of ^
for β < α. It is immediate that j^J is ώ^-dense in <$/a in this case.
If α is not limit ordinal, β is its predecessor, and if j ^ =£ 2^ select
an Ae2N\s*fβ and let j^ς be the algebra generated by J*fβ and A.
It is well known that, if (μJ^A) and (μ^^A) are the outer and
inner measures of A with respect to μt on jy£, there is an extension
of μx to j^ς with μL(A) = X whenever (μJ^A) ^ λ ^ (μ^^A). Select
an extension μx so that ^(A) = (μ^^A). It is easily deduced that
A is in the cί^-closure of j ^ so there is a sequence {AJ c j*fβ with
d^(An, A) -> 0. From this it follows that dΛl(An Π J5, i ί l 5 ) - ^ 0 and
dμ^Ae

n f ] 5 , i c n 5 ) - > 0 for all Be jVβ. Thus, ,J^ is ώ^-dense in
Thus, j^J is cί^-dense in , j ^ . For all ordinals a we have
dense in JK For some ordinal a, j ^ a = 2N. At this stage the
desired extension has been accomplished.

The second step of the proof is to construct a probability
measure μ on 2N such that 2N is cZ -̂meager with density character
m. Let μQ be the countably additive measure on N with μo({n}) =
2~n for neN. Let μ = l/2(^0 + ^J where μx is constructed in the
preceding paragraph. Since μ is strictly positive on N9 Proposition
11 shows that 2N is cί^-meager. From the construction of μ1 it
follows that there is a set {Aa: a < m) (where m is considered the
first ordinal of cardinality m) with μx(AaΔAf) — 1/2 for a Φ β.
Thus, dμ(Aa, Aβ) = μ(AaΔAβ) ^ ( 1 / 2 ) ^ ^ ^ ) - 1/4. Thus, the density
character of 2^ is at least m. Let {jEα: a < m} be a eZ -̂dense set
in 2^. Let Nf be the (Z 0̂-dense set of finite subsets of 2N. All sets
which differ from an Ea by an element of Nf form a d^-dense set
of cardinality m. Thus, the density character of 2N under dμ is at
most m, hence is equal to m. This establishes the proposition for
the case & = 2N.

The third step of the proof consists of extending from the case
& — 2N to the case where & is an arbitrary complete Boolean
algebra. This is done imitating arguments given in [4]. An infinite
complete algebra contains an infinite disjoint sequence {An\ neN}
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hence contains a subalgebra isomorphic to the clopen algebra of the
Alexandroff compactification, ΛΓU{°°}, of N. There is a continuous
surjection from the Stone space, X^, of & onto iVUί00}. Thus,
by results on protective covers on Gleason spaces, [3], there is a
continuous surjection of X# onto βN the Gleason space of N\J {oo}.
Consequently, by results in [4], there is a closed subspace Y of X&
on which the surjection from Xm to βN is a homeomorphism. The
closed set Y is the Stone space of the algebra &I^P. where ^ is
some ideal of ^ . Thus, there is a Boolean isomorphism j : έ^/^—*
2N. Let μ denote both the measure constructed in the previous
paragraph on 2N and its pull back under j to &/^. Let μ also
denote the measure on & obtained by defining ^ to consist of μ-
negligible sets. έ%l^ — &μ is c^-meager and has density character
m. This complete the proof of the proposition. •

REMARKS. (1) This result is best possible in that on 2N any
measure μ yields density character at most the cardinality, 2*°, for 2N.

(2) Can higher cardinals be obtained for d^-density character
of sufficiently large complete Boolean algebras £%? with &μ dμ-
meager?

(3) There is no hope, by Proposition 2, that μ can be con-
structed in a countably additive fashion. This is because &μ as
the quotient of a complete algebra by an ideal is an .F-algebra, [4],
which satisfies the countable chain condition hence is complete.

(4) The measure μ constructed in Proposition 16 is non-atomic.
Candeloro and Sacchetti, [10] in the proof of Theorem 2.4 show
that if & is 2X and μ is non-atomic there is a σ-algebra Sf of
subsets of X such that Szf under dμ is homeomorphic to {0, 1}N.
Thus, &μ while c^-meager is fairly large.

(5) Seever in [26] shows that the Vitali-Hahn-Saks theorem
is valid for finitely additive measures on <5&μ if &μ is (/-complete.
Labuda, [17], shows that the Vitali-Hahn-Saks theorem is true
when &μ isn't cί^-meager. Propositions 15 and 16 demonstrates the
independence of their results.
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