
PACIFIC JOURNAL OF MATHEMATICS
Vol. 100, No. 1, 1982

CRYSTALLISATION MOVES

M. FERRI AND C. GAGLIARDI

A crystallisation of a closed PL-manifold is an edge-
coloured graph, which represents it via a contracted triangu-
lation. Any two crystallisations of the same manifold are
proved to be joined by a finite sequence of moves, two
alternative sets of which are defined. A further move for
dimension 3 is introduced.

1* Introduction and notation* Throughout this work balls,
spheres, manifolds and maps are piecewise-linear (in the sense of [9]
and [17]).

An %-dimensional ball-complex K will be said to be a pseudo-
complex1 if each fe-ball, considered with all its faces, is abstractly
isomorphic with an /^-simplex. Further, K will be said to be a
contracted n-complex if the number of its vertices is n + 1. We
shall also call simplex each element of a pseudocomplex.

By a pseudodissection (resp. contracted triangulatίon) of a
polyhedron P we mean a pair (K, / ) , where K is a pseudocomplex
(resp. a contracted complex) and f:\K\->P is a homeomorphism.
About pseudodissections, compare also [11].

A theorem of Pezzana states that every closed, connected, n-
dimensional manifold admits a contracted triangulation (for proofs
see [14] and [6] and the sketch contained in this work, §4). The
theorem can be extended to manifolds with connected boundary
and to more general spaces (see [2]). A method for constructing
pseudocomplexes from a set of disjoint w-simplexes is shown in [6]
and [7].

Note that even in a pseudodissected manifold, stars and links
of simplexes are not necessarily balls and spheres. But there exists
a minimal set of severings on them, which makes them balls and
spheres. The so modified stars (resp. links) are called disjoined stars
(resp. disjoined links); compare the quoted papers for detailed
definitions and proofs.

Closely related is the notion of (n + l)-coloured graph. Let
Γ = (X, ί?) be a finite nonoriented multigraph without loops, <& a
set (called colour-set), 7:2?—>^ a map (called a coloration). Such
a pair (Γ, 7) is defined to be an h-coloured graph with boundary
if:

Work performed under the auspices of the G. N. S. A. G. A. of the C. N. R.
(National Research Council) of Italy.

1 In all references pseudocomplexes are symbolised with a tild on top of the letter,
which we omit throughout this work.
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(1) Card i f = Λ,
(2) 7(A) Φ 7(e2) for each pair of adjacent edges eu e2.
Observe that properties (1) and (2) imply that each vertex of

Γ has degree <Z h. A vertex of degree < h will be called a bound-
ary-vertex. If all vertices have degree exactly h, then (Γ, 7) will
be simply called an Λ-coloured graph. If & £ ^ , we define Γ&
to be the partial graph of Γ determined by the edge set 7~1(^).
For each c e ^ , c will be the set ^ — {c}.

In order to evidence the possibly existing boundary-vertices,
we will draw as many "one-ended" edges coming out of them, as
to make their degree equal to h. Figure 1 shows a 4-coloured
graph with just one (boundary-) vertex.

FIGURE 1

For every (n + l)-coloured graph (Γ, 7) (either with or without
boundary), we can construct a finite ^-dimensional pseudocomplex
K(Γ), whose w-simplexes are in bijection with the vertices of Γ,
and two have a common (n — l)-face iff the corresponding vertices
are adjacent. Actually Γ turns out to be the 1-skeleton of the ball-
complex dual to K(Γ). For the general construction and properties
see [4] and [7]. We just recall that K(Γ) is a contracted complex
iff (Γ, 7) also satisfies:

(3) for each colour c e ^ 7 , the partial graph Γ$ is connected.
We will call contracted a graph (Γ, 7) satisfying 3). Note that,

if (Γ, 7) is contracted, to each colour c there corresponds a vertex
vc of K{Γ). Otherwise, K(Γ) has as many vertices corresponding to
c as the connected components of Γ*.

On the other hand, if K is a contracted ^-complex triangulating
a closed manifold M, then there exists an (n + l)-coloured graph
(Γ, 7), such that K{Γ) - K.*

Pezzana's theorem then enables us to represent every closed, con-
nected, n-dimensίonal manifold M by a (contracted) (n + lycoloured
graph related with a contracted triangulation.

Such a graph is called a crystallisation of M. Further informa-
tion on crystallisations is available in [8], [15], [5].

Let now (Γ, 7) and (Γ', 7') be two {n + l)-coloured graphs (either
with or without boundary), and ^ , ^ ' the respective colour-sets.

2 The theorem holds under much wider hypotheses: see [7], Prop. 8.
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DEFINITION. Given a Injection ψ: <& —> <&', a graph isomorphism
Ψ: Γ —> Γ' will be called a colour-isomorphism compatible with ψ if

(Γ, 7) and (Γ\ 7') will then be said to be isomorphic.
Since, by the construction itself, colour-isomorphism of crystalli-

sations is equivalent to abstract isomorphism of the related ball-
complexes, colour-isomorphism also implies homeomorphism of their
spaces. The converse is not true, as nonisomorphic contracted
triangulations — hence also nonisomorphic edge-coloured graphs — can
be given for the same polyhedron.

The aim of this work is to solve the equivalence problem for
crystallisations of closed manifolds of arbitrary dimension. This is
the analogous for crystallisations, to what has already been obtained
for Heegaard diagrams and splittings of 3-manifolds (in [18], [16],
and [1]), for framed links (in [12] and [3]) and, recently, for gener-
alised Heegaard diagrams of 4-manifolds (in [13]).

A possible development of the results of this work could be the
determination of topological invariants of manifolds, as graph —
theoretical invariants of crystallisations, which are left unaltered
by the moves (e.g., the number of vertices of a 2-manifold crystalli-
sation is such an invariant, which classifies 2-manifolds up to
orientability character).

We also are exploring the problem of detecting S3 and S1 x S2,
at the light of the results presented here.

2 Connected sum of /^-coloured graphs* Let (Γlf 7i), (Γ2, γ2)
be ^-coloured graphs, ψ a bijection between their colour-sets ^ and
^ 2 . Let then Λ19 Λ2 be subgraphs of Γx and Γ2 respectively, such
that:

(1) there exists a colour-isomorphism Ψ: Λλ —• Λ2 compatible with

(2 ) ^(1^(^)1) is an (h - l)-ball (i = 1, 2), j t being the inclusion
of I #01,) I into \K(Γt)\.

DEFINITION. We define polyhedral connected sum of Γ1 and Γ2,
with respect to Λ19 Λ2, ψ and Ψ, the fe-coloured graph Γ ^ ^ Γ j so
constructed:

(a) consider the graphs Γ[, Γ[ complementary of Λu Λ2 in Γ19

Γ2 respectively;
(b) join two boundary-vertices Px of Γ[ and P2 of Γ'2 by an s-

coloured edge ( s e ^ ) iff Px is joined with a vertex Qx of Ax in Γλ

by an s-coloured edge, and P2 with a vertex Q2 of Λ2 in Γ2 by a
^(s)-coloured edge, so that Ψ{Qγ) = Q2.



88 M. FERRI AND C. GAGLIARDI

(c) colour the edges of the resulting graph by the coloration
induced by 7i and f"^^,

DEFINITION 3. If (with the above notation) the graphs Λ1 and
Λ2 reduce to the two vertices Qx and Q2 of Γ± and Γ2 respectively,
then Γ1^QlQ2Γ2 will be simply called connected sum of Γx and Γ2.

Figure 2 illustrates the latter operation on crystallisations of
L(3, 1) and S1 x S2, yielding a crystallisation of their connected
sum.

S'xS2

FIGURE 2

3* The moves*

Move of type I (Adding or cancelling of a nondegenerate dipole).
Let (Γ, 7) be an (n + l)-coloured graph. Assume Γ admits a

partial subgraph Θ, composed of two vertices, X and Γ say, joined
by h edges, where I <^ h <> n, coloured by c0, clf , cA_! 6 ̂ . Let
also έ% — <& — {c0, , cΛ_i} be the set of the remaining colours, and
CJJL\ C#(Y) the connected components of Γ&, containing Xand Y
respectively.

DEFINITION 4. Such a partial subgraph Θ is said to be an n-
dίmensίonal dipole of type h, if GJJί) Φ CJJί).
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A dipole of type 1 or n will be called degenerate.
Let now (Γ, 7), (Γ'f 7') be two (n + l)-coloured graphs and Θ a

dipole in Γ. We can assume, w.l.o.g., that ^ is the colour set for
both graphs.

DEFINITION 5. We will say that Γ' is obtained from Γ by
cancelling the dipole Θ, if:

(a) Γ& is obtained from Γ&, by substituting, to CJJL) U C^(Y),
the connected sum C^(X) #X F C^(Y), accomplished with respect to the
identity on &;

(b) two vertices A, B of Γ' are joined by a crcoloured edge
(h ^ i ^ n) iff the corresponding vertices of Γ so are.

We will also say that Γ is obtained from Γf by adding the
dipole θ.

Observe that if θ is a non-degenerate dipole, then (Γ, 7) is
contracted iff (Γ't 7') is. This is not true if θ is degenerate.

The move of type I on a contracted (n 4- l)-coloured graph is
defined to be the adding or cancelling of a nondegenerate dipole.

Figure 3a shows the adding of a dipole of type 2 to a crystalli-
sation of RP.*

Γ'

FIGURE 3a

Γ
FIGURE 3b

Move of type II (simple cut-and-glue).
Let (Γ, 7), (Γf, 7') be two contracted3 (n + l)-coloured graphs.

The move can also be defined for noncontracted graphs.
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As before, we can assume that ^ is the common colour set.

DEFINITION 6. We will say that Γf is obtained from Γ by a
simple cut-and-glue move, or move of type II (and conversely) if
there exist a noncontracted (n + l)-coloured graph (Γ, 7) and a colour
c e ^ , such that:

(a) Γ is obtained from Γ (resp. from Γr) by adding a degenerate
dipole Θ (resp. Θ') of type 1.

(b) the edges of both dipoles are c-coloured.

In other words, ΓA

C must have two connected components, Γ1

and Γ2 say, and there must exist two pairs of vertices (Pl9 P2),
(Qu Q2) joined by a c-coloured edge, with Pif Qt e A (i = 1, 2), such
that ΓA

C = Γ1$Plp2Γ2, Γ'% — Γ1^QlQ2Γ2f both connected sums being
accomplished with respect to the identity on & — {c}. Moreover,
two vertices A, B Φ Pl9 P2 (resp. A, B Φ Qu Q2) of Γ are joined by
a c-coloured edge iff the corresponding vertices of Γ (resp. Γf) so are.

The pass from Γ (resp. Γ') to Γ will be called also a simple
cut; the inverse pass a simple glueing, Figure 4 shows two crystalli-

FIGURE 4
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sations of the 2-torus (compare [8]) which are obtained from each
other by a simple cut-and-glue.

DEFINITION 7. Two contracted (n + l)-coloured graphs (Γ, 7)
and (Γ\ 7') will be said to be (I-H)-equivalent if there exists a finite
sequence {(Ξo , ft )}iej6

4 of contracted (n + l)-coloured graphs, such
that

(ΞOt p0) = (Γ, 7) (Ξ.9 p.) = (Γ' , 7') ,

Γ

FIGURE 5

We denote by Δs, s a positive integer, the set {ieZ\0 <Ξ i ^ s}.
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and Ξt is obtained from S ^ by a move of type I (adding or
cancelling of a nondegenerate dipole) or of type II (simple cut-and-
glue).

Move of type A (polyhedral cut-and-glue).

DEFINITION 8. With the same notations as in Definitions 2 and
6 we will say that Γf is obtained from Γ by a polyhedral cut-and-
glue move or move of type A (and conversely) if there exists a non-
contracted in + l)-coloured graph (Γ, 7) and a colour c e ^ , such
that:

(a) ΓΛ

C has two connected components, Γλ and Γ2 say, and Γ% =
Γx #ΛIΛ2 Γ2, Γί=Γx jfc^ Γ2, where both connected sums are accomplished
with respect to two isomorphisms φ\ Λλ -> Λ2, φ: Λx ~> Λ2 compatible
with the identity on ^ — {c};

(c) every vertex A (resp. B) of Λλ (resp. of Aλ) is joined with
φ(A) (resp. φ(B)) by a c-coloured edge;

(c) two vertices P, Q not in Λx U Λ2 (resp. Λ1 U Λ2) are joined
by a c-coloured edge iff the corresponding vertices of Γ (resp. Γ')
so are;

Definitions of polyhedral cut, polyhedral glueing and A-equί-
valence are analogous to the ones of simple cut, simple glueing and
(I, Π)-equivalence respectively. A polyhedral cut-and-glue binding
two crystallisations of the Dodecahedral-spherical space is shown in
Figure 5, where Λ± (resp. Λ2) is the edge QXQ2 (resp. Q[Q2) and Λλ

(resp. Λ2) is the subgraph spanned by the vertices P19 P2, P3 (resp.
PI, PI, PI).

4* Main theorem*

THEOREM. Let (Γ, 7) and (Γ\ 7') be crystallisations of two n-
dimensionaly closed, connected manifolds M and M'. The following
three sentences are equivalent:

( i ) M and M' are homeomorphic;
(ii) (Γ, 7) and (Γ\ 7') are (I, Iΐ)-equivalent;
(iii) (Γ, 7) and (Γ\ 7') are A-equivalent.

Proof (ii) ==> (iii). The proof is trivial for n ^ 2. It is also
evident that, for n > 2, a simple cut-and-glue is a particular case
of a polyhedral cut-and-glue. Finally, cancelling of a nondegenerate
dipole Θ corresponds to a polyhedral cut-and-glue accomplished by
(1) isolating a vertex of Θ by means of a simple cut and (2) doing
a polyhedral glueing. Figure 3b illustrates, as an example, how the
move of Figure 3a can be obtained by such an operation, c being
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the "dashed" colour, with ΓJ = Γx #P l P, Γ2, Γί = Λ %ΛΛ, Γt. Π

(iii) => (i). Assume that {Γ, 7), (/", 7') are obtainable from each
other by a polyhedral cut-and-glue. Set K = K(Γ), K' = iΓ(Γ'), and
let vo be the vertex of K (resp. vί the vertex of Kf), corresponding
to the colour c.

Γ% (resp. Γ\) represents the pseudocomplex Lkd(#c, K) (resp.
Lkd (v'c, K')), disjoined link of vc in K (resp. of v'c in if')* which is
an (n — l)-sphere. M (resp. Mf) can be obtained from the w-ball
IStd (vef K)I (resp. |Std (v'Cf K

f)\)9 space of the disjoined star of vc

in K (resp. of v'e in if'), by pairwise identification of the (n — 1)-
simplexes of its boundary | Lkd (vCf K) \ (resp. | Lkd (y'ΰf K') |) and of
all their faces. These identifications are represented in Γ (resp. in
Γ') by the c-coloured edges.

In order to show that M and Mr are homeomorphic, it suffices
to prove that both are homeomorphic to the manifold M= |JKχΓ)|.
This comes from explicit construction of ϋΓ(Γ), if one starts from
the pair of disjoint balls, which are bounded by | K(Γj) \ and | K(Γ2) \
respectively, where Γ^ = Γx U Γ2. •

REMARK. Notice that the hypotheses on the graphs Γ and Γ'
can be weakened, the implication (iii) ==> (i) still remaining true. In
particular, if Γ (resp. Γf) is not contracted, or, more precisely, if
ΓA

e (resp. Γζ) is nonconnected, the implication still holds, and the
proof is the same, in its general lines. If, further, Γ (resp. Γ')
does not represent a manifold, the move can still be applied, provided
that Γ% (resp. Γl) represents an (n — l)-sphere, if connected, or a
disjoint union of (n — l)-spheres, one for each connected component.
This condition implies that all vertices associated with the components
of Γ% (resp. Γί) have neighborhoods in \K(Γ)\ (resp. |UΓ(Γ')|), which
are homeomorphic with closed ?ι-balls.

The proof of the last implication ((i) => (ii)) needs some notation
and some lemmas.

1. If Θ is a dipole in (Γ, 7), we will say that the pseudocomplex
3f = K{Θ) is itself a dipole in K(Γ) (of type h if such is θ). &
obviously satisfies the two following properties:

(a) 3ί consists of two w-simplexes Xn, Yn of K, which have h
common (n — l)-faces;

(b) if An~h is the intersection of such common faces, and Xh~x

and Yh~ι are the (h — l)-faces of Xn and Yn respectively, opposite
to An~\ then X ^ 1 Φ Yh~\

We will further call a subcomplex S of a pseudocomplex K a
dipole if £& satisfies (a) and (b), even if K is not associated with
any (n + l)-coloured graph. Two pseudocomplexes K and K', both



94 M. FERRI AND C. GAGLIARDI

triangulating closed manifolds, will be called equal up to dipoles if
one can be obtained from the other by adding and/or cancelling a
finite number of dipoles.

On the same line, we will say that Kf is obtained from K by a
simple cut-and-glue move if Kr is obtained from K by adding a
dipole of type 1 and cancelling one in the resulting pseudocomplex.

Note that in dimension 2 this is nothing but the elementary
move used for normalisation, from which the idea itself of cut-and-
glue is taken. Actually there is a classical (Dehn's) normal form
(see [19], §12) which consists of a contracted triangulation.

LEMMA 1. // K and L, both triangulating closed manifolds,
are equal up to dipoles, then \K\ ~ \L\.

Proof. It follows from \S&\ being a ball. •

Notice that, if £2? is a dipole of type h in K, which consists of
two w-simplexes Xn an Yn, and 2ϊf is a further dipole of type
n + 1 — h, consisting of the w-simplexes Yn and Zn, then & U &'
provides a contracted triangulation of an ^-simplex An. Elimination
of & or of ϋ?'' from K is then equivalent to the substitution of
Xn, Yn, Zn by An.

2. A vertex w of an ^-pseudocomplex K will be called a cone-
vertex, if it belongs to all w-simplexes of K, or, equivalently, if
St (w, K) = K.

Let now M be an ^-dimensional, closed, connected manifold.
We indicate by &, with q e Δn+1, the set of all pseudocomplexes L
having q cone-vertices, and such that \L\ = M. Obviously, every
pseudocomplex triangulating M belongs to at least one of such sets,
and &+1 is the set of the contracted complexes triangulating M (in
fact, if L 6 &+1, it cannot have any other vertices than its n + 1
cone-vert ices).

We will call cone-algorithm any process Szf, which associates to
L e &* the pseudocomplex U = Jϊf(L) e (£ί+1 in the following way:

(a) Call w0, , w^x the cone-vertices of L. One can form (in
many ways) a tree (ε, ζ), whose "vertex"-set ε consists of all disjoined
stars of the (n — ΐ)-simplexes of L not containing any of w0, , wt_u

and where an "edge" of ζ is an (n — l)-simplex which is a common
face, in K, of the two stars at its "end-points". Choose such a tree,
and orient the ζ-edges so, as to make (ε, ζ) an out-tree (with
arbitrary source) (see [10], p. 201).

(b) Consider the disjoined stars of ε, and attach any two of
them which are joined by a ζ-edge (an (n — l)-simplex), by re-
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identifying the two copies of this (n — l)-simplex. The pseudo-
complex D so built is an %-ball, and all of its vertices lie on the
boundary Σ = 3D, excepted for the case i = n; in such a case, any-
way, none of the inner vertices is a cone-vertex. Identification of
suitable pairs of (n — l)-simplexes of Σ and of all their faces gets
L out of Ό. The (n — l)-simplexes of Σ which have to be identified,
in order to get L, will be said to be twin.

(c) Re-triangulate \D\, leaving the triangulation of the boundary
unaltered, by making the join wt*Σ from an arbitrarily chosen,
inner point wt.

(d) Build the complex 1! = >s>/(L) by re-identification of the
twin simplexes of Σ.

Now, I J^(L) I = ILI ~ M. Moreover L' = >s>Z(L) has a new cone
vertex wif hence it belongs to (£ί+1.

Iterated application of n + 1 — i cone-algorithms, starting from
a pseudocomplex in & (in particular, n + 1 cone-algorithms starting
from a simplicial complex) provides a construction of a contracted
triangulation of M. As every (PL)-manifold admits a simplicial
triangulation, this process sketches a proof of Pezzana's theorem.
For further details, and for the formalisation, see [14] and [6].

To every pseudocomplex LeS*, ie An, there corresponds a set
Sί(L) £ &+1 consisting of all pseudocomplexes obtainable from L by
a cone-algorithm.

3. Let now ,5/ be a cone-algorithm on L, (ε, ζ) and D respec-
tively the out-tree and the %-ball of its construction. Build a
different cone-algorithm jzf' as follows.

(a') Consider a disjoined star S e ε and call (εs, ζs) the sub-out-
tree of (ε, ζ) determined by S and by all of its "descendants";
further call (ε ,̂ ζ )̂ the sub-out-tree determined by ε's — s — ss.

(b') Consider the ball Dlf bounded by Σ19 built on the out-tree
(ε5, ζs), and the ball D2, bounded by Σ2, built on the out-tree (ê , ζ's).

(c') Identify a pair of twin (n — l)-simplexes B^1 e Σx and
BΓ1^Σ2f so getting a ball Df with boundary Σ\

(<Γ) Proceed as in (c) and (d) to get L" = j#"(L) from Df and
Σf (noting that Σr contains two new (n — l)-simplexes to be con-
sidered twin).

Observe that if 1/ = J^r(L) and L" = J>r'(L), then I/' is obtained
from U by a simple cut-and-glue move.

LEMMA 2. Let Ke&, ieΔn. If K\ K" 6Sί(X), then K" (resp.
JSL') is obtained from K! (resp. /rom K") by a finite sequence of
cut-and-glue moves.



96 M. FERRI AND C. GAGLIARDI

Proof. By induction on the cardinality of ζ2 — ζu where (elf ζx),
(ε2, ζ2) are respectively the out-trees of the construction of Kf and
K". Π

4. Now consider Le&, ieΛn, and let KeWL(L) be the pseudo-
complex obtained from the ball wt*Σ by identification of twin
simplexes of Σ. Let then p:wt*Σ ~-+K be the canonical projection.

Let ^ be a dipole of type h(l ^ h ^ n — 1) in I7, and 2" the
pseudocomplex obtained from Σ by cancelling £&.

LEMMA 3. If the two (n — l)-simplexes forming & are twin,
then p(wt * £&) is a dipole of type h + 1 in K. Moreover, the pseu-
docomplex Kf obtained from K by cancelling p(wt*£&) is p(wi*Σr).

Proof Straightforward. •

Observe that Kr belongs to S i+1 too.

LEMMA 4a. If Ke&+1, ieAn, then there exist L e E ί and K'e
Sί(L), such that K and Kf are equal up to dipoles of type h ^ 2.
In particular, if i — n, K, L, Kr coincide.

Proof. Recall that if Ke&i+1, then Ke& for each j ^ i. Then
consider L = K as belonging to & by the cone-vertices wlf , wt.
L has a further cone-vertex wi+1, whose disjoined star, Std wi+ι —
wi+1*Σ say, is strongly connected. Consider the graph whose
"vertices" are the disjoined stars of (n — ΐ)-simplexes of L not con-
taining wu , wi9 and whose "edges" are the (n—l)-simplexes joining
them in Stdw i+1. This graph is connected, and one can get a tree
(ε, ζ) from it by neglecting a set of edges. The ball Df built on
(ε, ζ) has a boundary Σr equal to Σ up to as many dipoles as the
neglected edges. Note that, for i = n, the graph reduces to the
single vertex corresponding to Std wi+1 itself, thus no edge is erased,
and no dipole arises.

Now, application of Lemma 3 proves the statement. •

LEMMA 4b. // K, Le(£0, then there exist K'eSΆ(K), UeSϊ(L)
which are equal up to dipoles of type h ^ 2.

Proof K and L are in stellar equivalence, as one can take them
to their barycentric subdivisions, which are simplicial complexes, by
elementary stellar subdivision.

It is then sufficient to consider the case of L being obtained
from K by an elementary stellar subdivision. But in this case a
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construction similar to the one of Lemma 4a proves the statement.

D

LEMMA 4C. // K, LeE% ie Δn, are equal up to dipoles of type
h^2, then there exist Kr e$ί(K) and U eSΆ(L), which are equal up
to dipoles of type h ^ 2 if i < n, up to dipoles of type h, 2 ̂  h <Ξ
n — 1 (i.e., nondegenerate), if i — n.

Proof. Let us assume that Ky Le(£% ie AnJ and that K is
obtained from L by cancelling a dipole <3f of type h ̂  2 formed by
two w-simplexes Xn and Yn meeting at h (n — l)-faces JF7*"1, , JFΫ"1,

If 3f is degenerate, i.e., if h — n, set w = Πî i-^V1"1; w is a
vertex, which is not a cone-vertex for L. Cancelling @f from
£ can be thought of as follows: dig the inside of \Sf\ out of \L\,
so setting a manifold M with a boundary, which is the sphere
formed by the two (n — l)-simplexes Xn~λ and Y71-1 opposite to w
in Xn and Yn respectively; then identify X71"1 and Y71'1 to produce
\K\.

As M is strongly connected, one can build an out-tree (ε, ζ) for
K, so that no ζ-edge represents the (n — l)-simplex Zn~x arisen from
the identification of X71'1 with Yn~\ Call Ό the ball, bounded by
Σ9 built on (ε, ζ), and K' e SΆ(K) the out-coming pseudocomplex.

We must now distinguish the three cases i — n, 0 < i < n,
i = 0.

If i = n, the only noncone-vertex belonging to £? is w, and its
disjoined star is 3f itself. Hence, one can build an out-tree (ε', ζ')
on L by adding to (ε, ζ) a new edge ending in a new vertex which
represents 3f. Call D' the ball, bounded by 2", relative to (ε', ζ'),
and U eSί(L) the pseudocomplex obtained from it. Now, Σf is
isomorphic with Σ by an isomorphism, which is compatible with the
projections D —> K\ Ό' —» U. Therefore K' and Lr are equal.

If 0 < i < n, the only (n — i)-simplex of £& not containing any
cone-vertices is a join w*Fn"t'1t where F71'^1 is that face of d£&,
common to Xn and Yn, which contains no cone-vert ices. The
disjoined star of w^F71'1'1 in L is obtained from £$ by doubling
the (n - l)-faces of Xn and Yn not containing w*Fn~i-1. The ball
Df built as for i — n has boundary Σ', equal to Σ up to dipoles (as
many as the doubled faces). Lemma 3 then implies that Kf and U
are equal up to dipoles of type h ̂  2.

Finally, if i = 0, an out-tree (ε', ζ') can be built by adding to
(ε, ζ) a new vertex corresponding to Xn and F r a attached together
by a common (w — l)-face, and a new edge corresponding to a non-
common (n — l)-face. The result comes again from Lemma 3.

Let now 3f be nondegenerate, i.e., of type h < n, and set Fn~h =
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ΠUFΓ1; let then XΓ\ •••, XίU+i, YΓ\ •••, TO+i be the non-
common (n — l)-faces oί Xn and F n , where faces with equal lower
index are opposite to the same vertex; set Q — \Jk X*~\ R = \Jk YjΓ1.

Elimination of the inside of \&\ from \L\ yields the manifold
M with the sphere Q U R as boundary. Identification of each X?'1

with YΓ1 produces |JSL|.

Now, let (ε, ζ) be an out-tree for K, such that the ball D built
on it has all simplexes of R (hence also of Q) on its boundary Σ.
These simplexes will not in general form an (n — l)-ball isomorphic
with Q; but, if (ε, ζ) is carefully built, elimination of nondegenerate
dipoles will yield a sphere Σ in which this happens. Let vl9 ••-, vt

be the cone-vertices of L, and let F}'*, F?"1 be the faces of Xn and
Yn respectively, not containing vlf , vt. If Fχ~ι = Fγ~ι = Fn~h,
then its disjoined star is £2f itself. The ball Όr obtained by attach-
ing ^ to ΰ by one of the simplexes of R, has a sphere Στ as
boundary, such that Σ can be obtained from Σ' by cancelling non-
degenerate dipoles. This leads to the result.

Analogous constructions prove the statement in the cases
Fn-i = Fn-i φ Fn-

LEMMA 4d. Let L,L'e&ί, ieAn — {0}, be obtained from each
other by a simple cut-and-glue move, and let JϊeSί(L), £Γ'e9ΐ(L').
Then H and H1 are obtained from each other by a finite sequence
of simple cut-and-glue moves and of addings and cancellings of non-
degenerate dipoles.

Proof First, assume n > 2. Let L e Q "̂1 be the pseudocomplex
obtained from L (resp. from U) by adding the dipole of type 1 £&
(resp. Sf\ formed by two w-simplexes Xn, Yn meeting at the
(n - l)-face Fn~\Xfn, Y'n, F'71"1 resp.). Let vlf ••-,!;< be the cone-
vertices of L (and of L')\ vlf , vt^u say, will be cone-vertices also
for L. Call w, w' the vertices common to £& and 3f\ which are
opposite to F71-1 in 3ϊ, to F'11'1 in 3f\

If 3ί Π £&' is not contained in the (n — 3)-skeleton of L, adding
of a suitable nondegenerate dipole yields a pseudocomplex L\ in
which this happens. Call K* and K'* the pseudocomplexes obtained
by adding the same dipole in L and JJ respectively.

The pseudocomplex L, closure of ΊJ — (ϋ?' U 3?') is then strongly
connected. In order to show this, let A", Af be two ^-simplexes

of L, joined in U by a sequence of w-simplexes A?, •••, A", where
A]-lf A] meet at an (n — l)-face A]~\ for each j e Δt. Let Al be
the first simplex of the sequence which belongs to 2f U ̂ ' . AJU
and Aj+1 meet at a face A71"2 = Ajr1 Π A^+ί of A]f. Now, the star of
An~2 is cyclic, so we can substitute Al by a sequence 2?? = Al_u
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Bf, '"9Bi+lf where all JS's are adjacent and belong, B? possibly

excluded, to L. A finite number of such substitutions shows the
strong connectedness.

Therefore one can build an out-tree (έ, ζ) for L* so that
(1) each ε-vertex represents the disjoined star of an (n — i)-

simplex of L not containing vu , Vi_u w, w';
(2) if i > 1, no ζ-edge represents faces of £& U ϋ^';
(3) if i — 1, the έ-vertices representing the dipoles themselves

are terminal in the out-tree.
Call D the ball obtained as in point (b) of the construction of a

cone-algorithm relative to (έ, ζ). Set W = F*'1 Π dD, W = Ftn-χ n
dD. Accomplish point (c) by means of a new vertex vi+1; set W =
vi+1 *Wf W' = vi+1 * W. Carry out the identifications of point (d) to
get a pseudocomplex K.

Let (ε, ζ), (ε', ζ') be the analogous out-trees for K*, Kt% respec-
tively (isomorphic with (ε, ζ) if i > 1, only homeomorphic if i = 1);
call K, Kf respectively the out-coming pseudocomplexes. Let S, Sf

be the disjoined stars of w, w', respectively, in K.
Now, the ball obtained from S and S' by re-identifying the

pairs of copies of the (n — l)-simplexes of W, has boundary isomor-
phic with the disjoined link of vt in K; re-triangulation of the ball
as a join from vt then gets the disjoined star of vt in K. Similarly,
one gets the disjoined star of v{ in Kr by using Wf. In K, each
of these operations is equivalent to: a simple glueing (corresponding
to the re-identification of the first (n — l)-simplex), and cancelling
of n — 2 dipoles if i = 1 (n — i if i > 1), which, by Lemma 3, are
nondegenerate.

Resuming, the passage from K to Kf consists of: adding of
nondegenerate dipoles, one simple cut-and-glue, and cancelling of
nondegenerate dipoles. Now, apply Lemma 4c to L and U (to U
and Z/#), then Lemma 2 to the out-coming pseudocomplexes, to H,
and to K (to H\ and to Kf resp.) to get the final result.

In dimension 2, the analogous of L may be non strongly con-
nected, but then the cut-and-glue can be substituted by adding and
cancelling of a finite sequence of (obviously degenerate) dipoles (i.e.,
by a finite sequence of cut-and-glues) in which any pair of consecu-
tive dipoles does not disconnect. •

Proof of (i) ==> (ii). The statement will be proved as last step of
an inductive argument.

Let Kl9 Lγ e <£\ By Lemma 4a, there exist KQ, Lo e K°, K[ e 9i(iQ,
L[ e Sί(L0), such that Kλ and K[ (Lx and L[ respectively) are equal
up to dipoles of type h ^ 2. On the other hand, Lemma 4b assures
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that there exist K" e W(K0)9 L" e Sί(L0), which are equal up to dipoles
of type h ^ 2. Now, by Lemma 2, K[ and K" (L[ and Lϊ respec-
tively) are obtained from each other by a finite sequence of cut-and-
glue moves; therefore, Kx and Lx are obtained from each other by
a finite sequence of cut-and-glues and addings and/or cancellings of
dipoles of type h ^ 2.

Now, let Kif Liβ&f 2 ^ i ^ n. Application of Lemma 4a yields
pseudocomplexes K^u L^ e &~\ K , L\ e K* analogous to the previ-
ous Ko, Lo, Kl, L[ and with the same properties. The inductive
hypothesis that Kt_u L^ are obtained from each other by a finite
sequence of cut-and-glues and addings and/or cancellings of dipoles
of type h ^ 2, together with Lemmas 2, 4c and 4d, assure again
that Kt and Lt are obtained from each other in the same way.

Finally, the same argument applies for K, Le @>+1 with the
following stronger inductive thesis, due to the particular form which
Lemmas 4a and 4c assume for ®n+1: K and L are obtained from each
other by a finite sequence of cut-and-glue moves and addings and/or
cancellings of nondegenerate dipoles. This means that the correspond-
ing crystallisations are (I, Π)-equivalent. Π

5* Dimension 3: generalised dipoles* We now describe a
further move for dimension 3, which, however redundant, often
turns useful. In the natural correspondence between crystallisations
of 3-manifolds and Heegaard diagrams, a "genus" can be assigned
to such crystallisations. This move permits to lower the genus even
in cases when a (standard) dipole of type 2 is not present. Actually,
it is the closest analogous, in crystallisation theory, of the stabilisa-
tion move of Reidemeister and Singer for Heegaard diagrams.

Let (Γ, 7) be a 4-coloured graph, ^ = {c^ieΔz being its colour
set. Assume that for two colours (c0 and c± say) there are a con-
nected component C of Γ{CQtCι} and a connected component C of Γ{C2>C3}

with only one common vertex. Let {x0, xl9 , xm}, {x0, yl9 , yn} be
the sets of vertices of C and C respectively (see Figure 6a for
m = 3, n = 5).

DEFINITION 9. The subgraph Θ of Γ determined by C and C"
will be called an (m, n)-dipole.

Assume xu xm9 yl9 yn to be the vertices joined with x0 by edges
of colours c0, c19 c2, c3 respectively. Let (Γ', 7') be a further 4-
coloured graph with & as colour set.

DEFINITION 10. We shall say that Γ' is obtained from Γ by
cancelling the (m, n)-dipole if:

(1) Γ' is obtained from Γ by substituting to θ the product
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(see [10], p. 21) Ξ of the subgraphs C — {x0} and C" — {x0} (see
Figure 6b);

( 2 ) for all i, if e Δm ~ {0}, j , f e Δn - {0}, an edge joining the
vertex (xίf ys) with the vertex (xi9 yά>) (resp. (xiΊ yά)) in Ξ is coloured
like the edge joining yά and yr (resp. xi and xit)\

( 3 ) for all ί e Jm-{0}, i e Λ~{0}, if a vertex 2 of Γ-θ is joined
c0 (&!, ys) c0

t o ^ j b y a C l -coloured e d g e in Γ , t h e n v is jo ined t o tym> ]f/) b y a

c o l o u r e d e d g e in Γf.
Gi, Vn)

°2
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Conversely, we will say that Γ is obtained from Γr by adding
the (m, n)-dipole Θ.

PROPOSITION. Let (Γ, 7), (Γ'f 7') be crystallisations of two closed,
connected, ^dimensional manifolds M, M' respectively. If Γf is
obtained from Γ by cancelling an (m, n)-dipole, then M and M' are
homeomorphic.

Sketch of proof Cancelling of an (m, w)-dipole, for mf n > 1,
can be accomplished by a sequence of (n — l)/2 (or (m — l)/2) cut-
and-glue moves and cancelling of a dipole of type 2. For m = 1
or/and n = 1, it is just cancelling of a dipole of type 2. •

Note that the w-simplexes corresponding to the vertices of an
(m, w)-dipole form a pseudocomplex, the inside of whose space is an
open ball; cancelling the (m, w)-dipole results in re-triangulating this
ball.
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